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Abstract

This paper presents a Speech Enhancement (SE) technique based on multi-objective learning 

convolutional neural network to improve the overall quality of speech perceived by Hearing Aid 

(HA) users. The proposed method is implemented on a smartphone as an application that performs 

real-time SE. This arrangement works as an assistive tool to HA. A multi-objective learning 

architecture including primary and secondary features uses a mapping-based convolutional neural 

network (CNN) model to remove noise from a noisy speech spectrum. The algorithm is 

computationally fast and has a low processing delay which enables it to operate seamlessly on a 

smartphone. The steps and the detailed analysis of real-time implementation are discussed. The 

proposed method is compared with existing conventional and neural network-based SE techniques 

through speech quality and intelligibility metrics in various noisy speech conditions. The key 

contribution of this paper includes the realization of CNN SE model on a smartphone processor 

that works seamlessly with HA. The experimental results demonstrate significant improvements 

over the state-of-the-art techniques and reflect the usability of the developed SE application in 

noisy environments.

INDEX TERMS

Convolutional neural network (CNN); speech enhancement (SE); hearing aid (HA); smartphone; 
real-time implementation; log power spectra (LPS)

I. INTRODUCTION

Speech understanding in adverse noisy environments is a major problem even for a normal 

hearing person and this problem escalates for a hearing impaired listener. Statistics reported 

by National Institute on Deafness and other Communication Disorders (NIDCD) show that 

there are more than 360 million people across the world which includes 15% of American 
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adults (37million) aged 18 and over, who suffer from some kind of hearing loss [1]. 

Researchers have developed viable solutions in the form of individual hearing devices such 

as hearing aid devices (HADs) and Cochlear Implants (CI). HADs compensate for the loss 

in audibility due to the modest of sensorineural hearing loss. Although, HA users achieve 

near-to-normal hearing in controlled acoustic conditions, it becomes extremely challenging 

to have a normal conversation in many real world noisy environments. This is because, the 

performance of the HADs degrades in the presence of different background noise [2]. SE 

algorithms on HADs try to overcome this problem by improving speech quality and 

intelligibility of the noisy speech. Therefore, SE is a vital block in the HAD signal 

processing pipeline. HADs have limited computational capabilities due to their size, 

processor, and power consumption. Due to these limitations, it is impractical to implement 

complex yet indispensable signal processing algorithms on HADs in order to improve their 

performance. HA manufacturers have come up with external microphones in the form of a 

pen or a necklace to improve the performance of a HAD by capturing the signal at higher 

signal to noise ratios (SNRs). However, the usage of these auxiliary devices are seldom due 

to their high cost, limited power and portability, especially in formal and social settings. An 

alternate solution is to use smartphone as an assistive tool for HADs as they are portable, 

have better battery life, ubiquitous as large population possess smartphone and use them 

almost everywhere. Smartphones are equipped with superior ARM multi-core processors 

which can run complex algorithms. In this type of setup, the smartphone captures the noisy 

speech. The SE algorithm running on the processor of the smartphone suppresses the 

background noise and the enhanced speech is sent from smartphone to HA through wire or 

wireless connection via low-latency Bluetooth [3]. Recent studies [4], [5] show that, 

smartphones such as iPhone (iOS) and Pixel(Android) can run SE algorithms on a 

smartphone to enhance the overall quality of the speech perceived by the users with hearing 

loss.

SE has been widely studied for decades. We can find extensive studies where SE algorithms 

are developed to improve the performance of HADs in the presence of background noise [6]. 

However, the prime challenge in SE is to suppress the background noise without inducing 

any sort of speech distortion which would degrade the speech perception. SE algorithms like 

spectral subtraction [7] and statistical model based methods proposed by Ephraim and 

Malah [8], [9] are studied over years and have been successful in the removal of noise if the 

noise is approximately stationary and at high SNR levels. There are some computationally 

efficient alternatives for [8] and [9] which are proposed in [10] and [11] that can be 

implemented in real time. Recent algorithms such as optimally modified Log-spectral 

amplitude (OM-LSA) [12] and non-negative matrix factorization (NMF) [13] can achieve 

better performance at the cost of higher computational complexity. But, these 

aforementioned algorithms are based on key apriori knowledge or assumptions between the 

speech and nature of underlying noise. Therefore, due to these assumptions, most of the 

algorithms induce musical noise and do not acceptably improve performance in complex 

real world scenarios, especially at low SNRs. Several studies [14], [15] include microphone 

array and beamforming based SE techniques for better noise suppression. But, as the number 

of microphones increase, so does the computational power, which makes it practically 

impossible to implement on HADs or on smartphones which usually allow using a 
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maximum of two microphones. It should be noted that promising results have been observed 

in [4] and [5] with regard to real-time operation of conventional SE algorithms and their 

efficient implementations on smartphones using no external hardware of any kind.

Recently, supervised learning approaches based on ideal binary mask (IBM) [16] and ideal 

ratio mask (IRM) [17] have been proposed for SE in HADs. More recently, SE using deep 

neural networks (DNNs) have been appeared in literature, as they do not require any such 

apriori conditions to be met when applying the SE. In DNN based SE approaches [18]–[20], 

a regression model is trained to predict the estimate of clean speech features from the noisy 

speech features. Based on the mask estimating DNNs (masking) or direct feature estimating 

DNNs (mapping), the training targets are selected for different applications [21]. In [22], a 

mapping based DNN architecture to predict the clean log-power spectra (LPS) features from 

noisy LPS features was developed. DNN acts as a mapping function to learn the relationship 

between clean and noisy speech features. Recent studies also point towards the use of 

convolutional neural network (CNN) for SE as they typically reflect correlations of speech 

in time and are invariant to translational speech variance [23]. In [24], results show that 

CNNs can perform better than the fully-connected DNN architecture and recurrent neural 

networks (RNNs) in SE while utilizing lesser number of learnable parameters. Researchers 

have also considered CNN-based end-to-end approach to SE that requires just the raw audio 

data [25]. Linguistic training and testing of SE based on CNN [26] concluded that the 

performance of monolingual trained models was on par with multilingual models which 

makes it better than DNNs. Several features like LPS, Mel Frequency cepstral Coefficients 

(MFCC), Gammatone Frequency cepstral coefficients (GFCCs) and IBM were employed in 

multi-objective learning for SE with a DNN architecture to improve the performance in 

terms of quality and intelligibility of speech [27], [28]. However, most of the 

aforementioned methods are application specific and the approaches have long inference 

times. This limits their utilization in a real-time frame-based speech processing applications, 

such as that needed for using a smartphone as a standalone hardware platform. Due to the 

fact that neural network architectures normally achieve better performance when defined to 

be as large and as deep as possible, most of the techniques use deep and large networks and 

do not consider real-time limitations in practice. The speed of the neural networks depends 

on how many hyper parameters and the layers we have and what operations are run on the 

nodes. Therefore, in order to achieve smartphone implementation for real-time operations, 

the architecture of the network, the feature sets and the operations on the network that play a 

vital role must be revisited and modified as needed.

In this paper, a multi-objective learning framework which improves the performance of the 

CNN is developed. LPS and Log Mel-filterbank energy are used as primary and the 

secondary targets for CNN. The joint optimization of these two features improves the 

performance of the proposed CNN architecture in predicting the primary target LPS. The 

developed neural network architecture is small with low inference time, allowing it to 

implement on low-latency smartphone devices. The proposed method works in real-time as 

an application on a smartphone which can be used as an assistive tool for hearing impaired 

listeners. The novel contribution made in this work lies in the development of a practical 

CNN architecture for SE and its real-time operation as an app running on smartphone 

platforms with no additional or external hardware. It also includes the use of secondary 
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targets to learn and improve the performance of the CNN architecture. The proposed SE 

method is computationally efficient, and implementable in practice. Objective and subjective 

evaluations of the proposed method show substantial improvement in quality and 

intelligibility of enhanced speech in various noisy environment reveal the overall benefits 

and usability of the developed CNN-based SE algorithm for the end-users.

The remainder of this paper is organized as follows. In Section II, we describe the signal 

model, the features utilized in the proposed algorithm and the CNN architecture for de-

noising the speech signal. Section III describes the real-time implementation of the 

developed CNN-based SE method on smartphone. Analysis over real time characteristics 

and experimental results are presented in Section IV. Conclusion is in Section V.

II. PROPOSED SPEECH ENHANCEMENT METHOD

In this section, we describe the developed speech processing method. Fig. 1 shows the block 

diagram of the proposed method. (Function of each block is discussed further in the Section 

II and III).

A. PROBLEM FORMULATION

Speech enhancement (SE) techniques often consider the additive mixture model for noisy 

speech y(n), with clean speech s(n) and noise v(n), as

y (n)=s (n)+v(n) (1)

The noisy kth short time fourier transform (STFT) coefficient of y(n) for frame λ is given by,

Y k (λ) = Sk (λ) + V k (λ) (2)

where S and V are the clean speech, and noise STFT coefficients respectively. In polar 

coordinates, (2) can be written as,

Rk (λ)ejθY k(λ) = Ak(λ)ejθSk(λ) + Bk (λ)ejθV k(λ) (3)

where Rk (λ), Ak (λ), Bk (λ) are magnitude spectra of noisy speech, clean speech, and noise 

respectively. θYk (λ), θSk (λ), θVk (λ) are the phase spectra of noisy speech, clean speech 

and noise respectively. The goal of a speech enhancement is to determine an estimate of the 

speech spectrum Ak. As we know from the literature that the phase is perceptually 

unimportant [30], we consider the noisy phase for reconstruction. Hence the estimate of 

clean speech after reconstruction can be written as,

Sk (λ) = Ak (λ)ejθY k(λ)
(4)

B. PRIMARY FEATURES - LOG POWER SPECTRA

The proposed CNN system is similar to the one in [19] and the overall working of the 

method can be seen in Fig. 2. We consider processing only the magnitude part of the 
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spectrum, because phase is of less importance for speech intelligibility [29]. Therefore, as a 

mapping based CNN network, the log power features of noisy and clean recordings are 

computed in our approach for training. Only the first half of LPS is considered as the 

primary target in the proposed CNN technique since the magnitude spectrum is symmetric. 

Thus,

RLPk (λ) = ln Rk (λ)2
(5)

ALPk (λ) = ln Ak(λ)2
(6)

where, RLPk (λ) and ALPk (λ) are the log power spectra of noisy and the clean speech at 

every kth frequency bin for current time frame λ. Here the ALPk (λ) can be visualized as 

target vectors and RLPk (λ) as inputs for training and testing.

C. SECONDARY FEATURES - LOG MEL - FILTERBANK ENERGY

The Log Mel-filterbank energy is considered as the secondary features for the CNN. 

Experiments show that the human ear follows the Mel frequency scale for the perception of 

the frequency components in the speech which can be seen as a linear frequency spacing 

below 1kHz and logarithmic spacing above 1kHz [30]. Therefore, linearly spaced filters at 

low frequency and logarithmic at high frequencies are used in our approach to capture the 

phonetically important characteristics (voiced and unvoiced) of the speech. In [31] and [32], 

the Log Mel-filterbank have shown promising results in increasing the classification 

accuracy when treated as input to the neural network. The Mel-scaled STFT spectrograms, 

in which the audio data represented in image format, consistently performed well as inputs 

to CNNs for audio classification tasks [33]. The performance of CNN with Mel-scaled STFT 

spectrogram as an input feature [33] was better when compared to the CNNs with input 

features like linear-scaled STFT spectrograms, Constant-Q transform (CQT) spectrogram, 

continuous Wavelet transform (CWT) scalogram and MFCC cepstrogram.

In addition, the Log Mel-filterbank energy used here is computationally efficient for real-

time implementation on a smartphone. Since we already have LPS as our primary feature, 

we cannot afford the secondary feature to be computationally complex. This is because, it 

can lead to an added delay when combined with the primary feature for real time application 

on smartphone. The Log Mel energy spectrum represents the short term energy of an audio 

signal in the Mel-frequency scale made up of Mel-frequency spectral coefficients (MFSC).

Mel-frequency analysis of speech is based on human perception, the commonly used 

formula to approximately reflect the relation between the Mel-frequency and the physical 

frequency is [34],

M = 1125 ln (1 + f /700) (7)

f(n) = 700(exp(M(n)/1125) − 1 (8)
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Here, the (7) computes the Mel-frequency coefficient from frequency f in Hertz. Eq. (8) is 

the inverse to go from Mel domain back to physical frequency, where M(n) is the 

nthfrequency coefficient in Mel domain.

Typically, to compute the MFSCs of a speech signal, the signal is split into 20–40 ms 

frames. This is because, the shorter frames do not provide enough samples for accurate 

spectral estimation and if it is longer; the signal may change too much within the frame. The 

frames are 50% overlapped frames and are windowed (e.g. Hamming window) to counteract 

the spectral leakage that could occur with DFT computation. Fast Fourier transform (FFT) is 

applied to the windowed audio frame to compute the frequency spectrum. Then the power 

spectrum is computed and only the first half is utilized while the magnitude spectrum is 

mirrored in frequency.

Filterbank is computed by applying L triangular filters (typically 26–40) [30], [34] on Mel-

scale to calculate MFSCs. A lower and upper frequency is specified to limit spectrogram. 

Ideal values are 300Hz for the lower and 8000Hz for the upper frequency. Of course, if the 

speech is sampled at 8000Hz our upper frequency is limited to 4000Hz. Using the lower and 

upper frequencies, the lower and the upper Mel-frequency coefficients (Mels) are calculated 

from (7). L linearly spaced frequencies are obtained between lower and upper Mels in the 

Mel-domain. These linearly spaced frequency coefficients in the Mel domain are then 

converted to the non-linearly spaced frequencies in frequency domain using (8). The non-

linearly spaced frequencies f(n) act as center frequencies for L triangular filters. To calculate 

the FFT bins corresponding to the center frequencies, we need to know the FFT size (N) and 

the sampling frequency (Fs), given by (9). Finally, the Mel-spaced filterbank is then created 

by (10),

ℎ(n) = (N + 1)f(n)
Fs

, n = 0, 1…L + 1 (9)

Gn(k) =

0 k < ℎ(n − 1)
(k − ℎ(n − 1))

ℎ(n) − ℎ(n − 1) ℎ(n − 1) < k ≤ ℎ(n)

ℎ(n + 1) − k
ℎ(n + 1) − ℎ(n) ℎ(n) < k ≤ ℎ(n + 1)

0 k > ℎ(n + 1)
k = 1, 2…N /2
n = 1, 2…L

(10)

Here, Gn(k) represents the amplitude nth filter at kth frequency bin. h(n) denotes the list of 

frequency bin values of L + 2 Mel-spaced frequencies. The triangular filters of the filterbank 

observed in the frequency domain is illustrated in Fig 3.

The filterbank is then multiplied with the computed power spectrum of the noisy speech and 

the clean speech to generate inputs for training and testing and the target vectors 

respectively. The logarithmic summation of each individual product is taken to compute the 

Log Mel energy spectrum, given by (11–12),
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MFSCY (λ, n) = log ∑
k = 0

N /2
Gn (k)Rk (λ)2 , n = 1, 2…L (11)

MFSCS (λ, n) = log ∑
k = 0

N /2
Gn (k)Ak (λ)2 , n = 1, 2…L (12)

The noisy and the clean speech Log Mel-filterbank energy features per time frame are given 

by (11) and (12). Here, Rk (λ)2 and Ak (λ)2 denote the noisy and the clean speech power 

spectrum estimate. The MFSCS (λ, n) can be visualized as target vectors and MFSCY(λ, n) 
as inputs for training and testing.

After finding the LPS features and Log Mel-filterbank energy features per time frame, they 

are concatenated across the time frames to create an image. This image is then fed as an 

input to the CNN during the training and testing phase. We believe that the estimate of clean 

LPS features would be better predicted with a MFSC constraint imposed at the output layer. 

The MFSC estimates were used to improve the overall performance of the CNN network 

and were not used for signal reconstruction. The reconstructed enhanced speech was 

obtained from the clean LPS estimate Ak (λ) and the noisy speech phase information as 

shown in (4).

Similar work in [27] showed that to improve the performance of SE based on DNN, we 

could make use of different input features. However, the motivation of our work is multi-

objective learning with a different neural network, novel architecture in input, hidden and 

output layers, and also its smartphone real-time implementation.

D. CNN FOR SPEECH ENHANCEMENT

A regression based decision which estimates the LPS and MFSC of the clean speech is done 

by the proposed convolutional neural network (CNN). CNNs use a matrix or an image as an 

input and they are processed by their hidden layers performing convolution and pooling 

functions. Finally, before inferring the decision, they are connected with fully connected 

layers similar to traditional DNNs which use back propagation methods.

Typically, in CNNs, a small region of an image can be convoluted by a series of weighted 

learnable filters (also known as kernels) which can form a convolutional layer. These kernels 

are repeated over the entire input space. After every forward pass, each kernel generates a 

feature map that describes simple features of an image. These feature maps are fed to the 

maxpooling layer for dimensionality reduction or to reduce the resolution. Furthermore, 

based on the application, the maxpooled output can be connected to convolutional layers as 

adding more convolutional layers enables the network to learn complex features of an image. 

The output from convolutional or maxpool layers are then flattened and connected to fully 

connected layers. Thus, the classification or regression output is obtained by connecting the 

fully connected layer to a non-linear output layer.
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When used for speech enhancement, the overall network remains similar. However, the 

extracted features from the audio input is represented as an image and the output is treated as 

a regression problem and not classification. Here, the network learns to recognize crucial 

time-frequency auditory features, such as formants. Since each part of the feature map is 

processed by the same kernel, the CNN is invariant to translational variance. This enables 

the network to learn and process speech from different gender and language which usually 

have different pitch and therefore different fundamental frequencies.

The proposed CNN structure illustrated in Fig. 4 consists combined LPS and MFSC features 

as input to the network. The input vector consists of N
2 + 1 LPS features and L MFSC 

features per time frame, then they are concatenated to create D × T image, where 

D = N
2 + 1 + L  and T is the total number of frames considered in a spectrum. Multiple 

frame expansion [19] is considered with T being 9 consecutive noisy frames; 8 preceding 

plus the current frame. The target vector is the current clean frame. Usually T is considered 

to be a large number for capturing the temporal details. However, in order to reduce 

computational complexity especially for real time implementation, T is taken to be 9 frames. 

Network consists of convolutional layers, and a fully-connected layer. The convolutional 

kernels extract the local patterns from input image in both time and frequency.

Let z be a convolutional kernel of size a × b. We define a feature map uz to be the 

convolution of the input with kernel z, followed by an elementwise nonlinear mapping.

uz (Q) = σ(Q * z)

For brevity, the D × T image is considered to be Q.* is the convolution operation.

In order to aid the network to learn complicated and nonlinear functional mapping between 

the inputs and the output labels, activation functions are used in each hidden layers. As it has 

been verified to be effective in solving the gradient vanishing problem in practice [35], we 

choose rectified linear unit (ReLU) as activation function, σ(.), i.e.

σ(a) = max a, 0

Each convolutional kernel z produces a 2D feature map, and we apply η separate 

convolutional kernels to the input image Q leading to a collection of 2D feature maps uz
η(Q). 

This locality approach allows the CNN to learn the characteristics of the spectrum. Also, the 

convolutional kernels can map the local temporal structure of the utterances, which 

generates effective temporal behavior. To obtain ideal reconstruction of speech signal, we 

have to ensure that the input and the final prediction of the model to have same length in 

time dimension. Zero padding is applied to the input Q before convolution. Zero padding 

also assures that the feature maps uz has same dimension as that of the input.
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The maxpool layer can be applied due to the fact that the spectrograms replicate local 

similarities in adjacent frequency bins. This design will reduce the number of parameters 

and the computations needed for the further layers. It is also worth pointing out that instead 

of pooling layer, we can use a stride of size equal to the pooling factor along the frequency 

domain while convolving the input Q and kernel z. In the proposed method, we make use of 

stride of size 3 to make the network computationally efficient without losing much of 

prediction accuracy. The complexity in real-time also decreases as there are no additional 

maxpool layers. Finally, before the fully connected layer, a second convolution layer with η/
3 number of convolutional kernels is applied as the dimension is reduced by using the stride 

of size 3. The output layer has D neurons and uses a linear activation function to map the 

predicted output features. (CNN SE architecture is explained in Section IV.)

III. REAL-TIME IMPLEMENTATION ON SMARTPHONE

A. TOOLS AND STEPS INVOLVED FOR SMARTPHONE IMPLEMENTATION

The proposed CNN-based SE algorithm was trained and tested using the input image data. 

The LPS and MFSC features for noisy and the clean speech were extracted and the input 

images were created using MATLAB. The CNN modeling and the training which are offline 

procedures, were performed using Tensorflow in Python [36]. The main reason behind using 

Tensorflow was that it offered a special tool called TensorFlow Lite for running deep 

learning models on mobile and embedded platforms [37]. The C++ API provided by 

TensorFlow Lite can be used on smartphones to run the inference only part of the CNN. The 

TensorFlow Lite converter and the TensorFlow Lite interpreter libraries have been provided 

to facilitate model deployment on a mobile device and using the compressed model for on-

device inference. Google cloud Platform (GCP) and Chameleon Cloud Computing were 

used to train the CNN-based SE. All the trained weights had to be converted to constants to 

deploy the trained model on smartphone. The trained weights were saved to a file (.pb 

extension) by freezing the model. Freezing removed training, backpropagation and 

regularization layers and inference only structure was taken by saving all the required 

weights. This model can be used for implementing on a smartphone and operating in real-

time. The Tensorflow libraries mentioned above were used to run the inference part of the 

frozen model. The size of the frozen model can be varied from several bytes to gigabytes 

depending on the model architecture.

The LPS and MFSC feature extraction and image formation for smartphone application 

were coded in C. Xcode [38] was used for coding and debugging of the SE algorithm. For 

deployment on iPhone, the GUI was coded in Objective C and to carry out input/output (i/o) 

handling, Core Audio [39], an open source library from Apple, was used.

B. REAL - TIME SE PROCESSING

In this work, iPhone 7 and iPhone X smartphones running iOS 12.0.1 operating system have 

been considered, offering the smartphone platform as an assistive device to HA. Though 

smartphones come with 2 or 3 built-in microphones, manufacturers only allow default 

microphone (Fig. 6) on iPhone to capture the audio data. The audio signal is processed and 

the enhanced signal is transmitted to the HADs. The HADs can be connected to smartphone 
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either by a wire or wirelessly via Bluetooth. The smartphone device considered for 

implementation had an M3, T4 HA Compatibility rating and meets the requirements set by 

Federal Communications Commission (FCC).

The optimal parameters for the proposed SE constitute 8 kHz sampling frequency with a 

processing frame size of 32 ms with 50% overlap. To achieve the lowest latency audio setup 

on iOS smartphones, it is required to read and write audio data samples at a sampling rate of 

48 kHz. This latency is related to i/o of the smartphone. Therefore, for real-time processing, 

the input is captured at 48 kHz giving 1536 samples for each 32ms frame. The frames are 

then down sampled to 8 kHz by low-pass filtering and decimation factor of 6. This produces 

a down sampled frame of size 256 samples which is again 32ms in time. A 256-point FFT is 

computed for each frame. Considering only the first half of magnitude spectra, 129 LPS 

features are generated. 26 MFSC features are generated by considering the 26 triangular 

filters of filterbank. We note that the FFT size and the filter number considered here are set 

to be as small as possible to reduce the computation and preserve the efficiency of the 

proposed method. Therefore, we get a total of 155 features per frame out of which 129 are 

LPS and 26 are MFSC. Once these features are generated, a circular buffer is created to 

collect the features from 9 processing frames (i.e. 8 preceding frames plus current frame) to 

process to process. This creates an input processing image. The circular buffer works in a 

First in first out (FIFO) manner as shown in Fig. 5. This process continues for the entire 

signal duration. Thus, we continuously get a processing image as an input to the CNN. 

Finally, we get a processed output frame of size 155 × 1. The predicted LPS and the phase of 

the noisy input frame is utilized to reconstruct the signal.

The GUI of the app is displayed in Fig. 6. When the switch buttons shown are in ‘OFF’ 

mode, the application merely plays back the audio through the smartphone without 

processing it. Switching ‘ON’ the button on the touch screen panel of the smartphone 

enables SE module to process the incoming audio stream by applying the proposed noise 

suppression algorithm.

There are three models implemented on the smartphone based on three different real world 

noisy environments; machinery, restaurant/babble/crowd, and traffic background noise types. 

Smartphone user can select the either of the three buttons to turn on the SE based on the 

nearest environment they are in. We have to note that we have considered mainly the outdoor 

noise and not indoor noises like fan, Vacuum cleaner etc. Once the CNN-based SE app is 

activated, the enhanced signal is played back through the HADs. Initially when the switch is 

turned on, no processing takes place for about 2 seconds to create the circular buffer. After 

that, the algorithm runs seamlessly on a smartphone in real time. We use live listen device 

[40] to stream the data from iPhone to the HAD. The audio streaming is encoded for 

Bluetooth Low Energy (BLE) consumption. The processing time for a frame of 32 ms is 

14ms. The computationally efficiency of the proposed algorithm is discussed in the 

experimental analysis in Section IV.
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IV. EXPERIMENTAL ANALYSIS, RESULTS AND DISCUSSION

A. CNN ARCHITECTURE

The proposed CNN architecture has 3 hidden layers, 2 convolutional layers, and 1 fully 

connected layer. The same network has been used for online and offline evaluations in this 

paper.

There exists 129 LPS features and 26 MFSC features per time frame, and since we need 9 

consecutive frames, the input layer is structured as 9 feature maps of size 155 × 1. 

Therefore, the input image size is 155×9 (Q = D × T ). The first convolutional layer uses 129 

feature maps, η, to avail superior learning of 129 LPS features. The second convolutional 

layer uses 43 feature maps η/3. As the second convolutional layer connects to a fully 

connected layer, we use less number of feature maps in order to reduce the computational 

complexity. The kernel for both convolution layers has a size 5 × 1 (a× b). The convolution 

is done with a stride of 1 for the first convolution layer and the stride size of 3 for the latter. 

The fully-connected layer has 1024 neurons. As discussed before, all the activation functions 

are ReLU and the output layer with linear activation function has 155 neurons. The resulting 

network has around 9 million learnable parameters The CNN architecture utilized is given in 

Table 1. Adam optimization algorithm [41] was used with mean squared error as the loss 

function to train the CNN model. All the training vectors which include weights and biases 

for all the nodes and kernels were initialized with a truncated normal distribution with zero 

mean and a standard deviation of 0.05. The model was trained for 20 epochs with 1125 

iterations per epoch.

The learning rates were set to 10−4 for first 10 epochs and 10−5 for the rest. A 10-fold cross-

validation was used with a single fold left-out for testing and the rest used for training.

B. OFFLINE OBJECTIVE EVALUATION

To train and evaluate the developed CNN-based SE, the noisy speech files were created by 

adding speech and noise at 3 different SNR levels of −5,0 and +5 dB. The speech corpus 

used for evaluation was the combination of HINT, TIMIT and LibriSpeech corpus [42]. The 

noise dataset used was the DCASE 2017 challenge dataset [43] that consists of 15 different 

background noise environments. Here, all the 15 different noise types were categorized into 

3 major types of outdoor noise namely multi-talker babble, machinery and traffic noise. This 

division was made because in real world acoustic conditions, we often come across these 

noise types in outdoors. In addition, more than 30 smartphone recorded realistic noise for 

each noise type were collected and used for training. Speech files and noise files from 

different corpus were chosen to diversify the data which is important for real-time 

application. The duration of the resulting dataset was almost 33 hours. The noisy speech was 

considered at the sampling rate of 8 kHz for experimental results. All the other parameters 

are considered to be the same as explained in Section III. As objective evaluation criteria, we 

choose the perceptual evaluation of speech quality (PESQ) [44], Log Spectral Distance 

(LSD), segmental SNR (SegSNR). PESQ measure usually has a correlation with subjective 

tests compared to other objective measures. It ranges between 0.5 and 4.5, with 4.5 being 

high perceptual quality. LSD, which is the measure of logarithmic distance in spectra, 
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provides information about signal similarity. Lower the LSD means higher the SNR and also 

do not contain considerable speech distortion. The amount of suppression of background 

noise and the musical noise reduction is generally measured using SegSNR. The proposed 

method which is the CNN-based SE method is compared to noisy speech, conventional 

single channel SE based on Log-MMSE [9] and dual-microphone method like spectral 

coherence [45]. SE methods based on DNN [19], single channel CNN based denoising auto 

encoder (CNN-DAE) [26], and Multi-Objective Learning-based DNN SE [27] methods are 

implemented and included for comparison. The deep learning-based SE methods were 

trained on the same datasets as that of proposed method. The experimental evaluations are 

performed for 3 different noise types; machinery, multi-talker babble, and traffic noise. The 

reported results in Fig. 7 are the average over 20 sentences in 3 seen and 3 unseen noise 

conditions. Objective measures show significant improvements over conventional and deep 

learning method methods for all three noisy types considered. In neural network based 

methods, the data knowledge plays a vital role in the performance. Objective evaluation of 

smartphone collected unseen speech and noise data, shown in Fig 8, was carried out in order 

to analyze the performance variation of these methods on smartphone collected real data. 

SegSNR result at machinery noise condition at 0 dB SNR was on par with the CNN-DAE 

method. Other than that, the proposed method outperformed the conventional and neural 

network based methods. Objective measures shown in Fig. 7 and Fig. 8 reemphasize the fact 

that the proposed method achieves comparatively more noise suppression without distorting 

speech.

C. EFFECT OF DROPOUT AND UNSEEN SNR

1) DROPOUT EFFECT—In deep learning literature, the dropout is a well-known 

regularization technique for reducing overfitting in neural networks. The term ‘dropout’ 

refers to dropping out some of the units in a neural network during training phase.

In this experiment, we analyze the effect of dropout in the proposed model. Dropout usually 

correlates with how the loss function as well as the performance of the objective measures 

change. In most of the neural network methods, if the model over fits, the objective 

measures show significant variations when dropout is applied. The objective measures for 

the proposed method with dropout of 0%, 10%, 20% and 30% were evaluated as shown in 

Table 2. Clean speech degraded by machinery noise at 0dB SNR were considered to evaluate 

the effect of dropout for the proposed CNN-based SE model.

Even when dropout was applied, the performance variation of PESQ, LSD, and SegSNR 

were not significant, as shown in Table 2. Therefore, we can say that the current model does 

not over fit with the current training data. We see a slight reduction in terms of performance 

as more dropout is applied. This is due to the drastic decrease in the number of learnable 

parameters in the network. Therefore, dropout of 20% was used for real-time 

implementation in order to reduce computations.

2) EFFECT OF UNSEEN SNR—In this experiment, we evaluated the effect of unseen 

SNR on the proposed model. Sometimes, in the real- world noisy conditions, the changes in 

the SNR is quite common and rapid. Even the conventional SE techniques which are 
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unsupervised can fail to maintain the performance during those changes. Therefore, we need 

a stable model which can overcome these changes in real time. To examine the effect of 

unseen SNR, three different models were trained at −5, 0 and +5dB SNRs and tested with 

the noisy speech at −2.5, +2.5 and +7.5dB respectively. Table 3. shows the performance 

evaluation of the proposed method versus unprocessed noisy speech and CNN-DAE method. 

Since, proposed method and CNN-DAE method use convolutional neural networks, this was 

used for comparison.

Clean speech degraded by machinery noise was considered to evaluate the performance of 

the proposed method in unseen SNR conditions. The neural network models of the proposed 

and the CNN-DAE methods were trained using noisy speech at −5dB SNR and were tested 

using the noisy speech data at −2.5dB SNR which is an unseen SNR. Similar experiments 

were conducted where the networks were trained at 0 and +5dB SNRs and tested at +2.5 and 

+7.5dB. From Table 3, we can see that the proposed method outperforms other methods in 

unseen SNR conditions. The trends were similar with other noise types like multi-talker 

babble and traffic noise. These results shown in Table 3 suggest that, the model can be used 

in unseen SNR conditions and also can be trained using different SNRs with a small trade 

off with the performance.

D. SMARTPHONE TESTING

Most of the methods perform extremely well in offline conditions with a controlled 

environment. However, their performance degrades when tested in real-time and in varying 

acoustic conditions especially on smartphone platforms. To the best of our knowledge, there 

are no published neural network based SE algorithms that are implemented on a smartphone 

as an application. Therefore, to evaluate the real-time operation of our proposed CNN-based 

SE application on smartphone, known speech sentences were played in machinery noise 

conditions at 0 dB SNR and were enhanced on a smartphone and also offline on a PC. The 

outcomes of the smartphone app running proposed CNN-based SE were stored to compare 

with the offline method. Both real-time and offline evaluations were tested on unseen data. 

Table 4 shows the performance evaluation of the proposed method in offline (PC) and in 

real-time (smartphone) conditions. The results shown in Table 4 show that, the real-time 

smartphone tested results are in par with the offline method. This experiment demonstrates 

that the model performs well when tested on smartphone platform.

E. SUBJECTIVE EVALUATIONS

Objective results provide useful information during the development phase of the proposed 

method. However, the practical usability of proposed method can be assessed by subjective 

tests. We performed mean opinion scores (MOS) [46] tests on 9 normal hearing adults 

including both male and female subjects. The subjects were presented with the noisy speech 

and enhanced speech using the Log-MMSE, Coherence, DNN SE, single channel CNN, 

multi-objective DNN SE and the proposed CNN-based SE methods at the SNR levels of 0 

dB for 3 different noise types. Each subject was instructed to score in the range of 1 to 5 for 

the different audio files based on the following criteria; 5 being excellent speech quality and 

imperceptible level of distortion, 4 for good speech quality with perceptible level of 

distortion, 3 stood for fair speech quality with mediocre level of distortion, 2 for poor speech 
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quality with lot of disturbances, causing uneven distortions, and 1 having the least quality of 

speech and intolerable level of distortion. Subjective test results are shown in Fig. 9 

illustrating the effectiveness of the proposed method in various background noise, while 

simultaneously evaluating the speech quality and intelligibility perceptually. Detailed 

description of the scoring procedure is explained in [46]. The sample audio files enhanced 

using proposed method can be found in [47]. We can also observe that the PESQ plot for 

different noise types at 0dB SNR (shown in Fig.7) has similar response as that of the MOS 

shown in Fig. 9.

F. COMPUTATIONAL COMPLEXITY

This subsection provides the information regarding the computational complexity of the 

developed real-time CNN-based SE app. To test the app, an iPhone X smartphone was used. 

The audio latency for these devices was measured to be 12 to 14 ms for iPhone X. Even 

some of the conventional methods [4], add a processing delay around 4–7ms considering a 

frame length of 32ms. Ideally, all processing should take place within the frame size of the 

audio input-output (i/o) frame to run smoothly at the lowest audio latency without skipping 

any frames. Since the processing time is less than frame length, i.e. 32ms, the proposed SE 

application is computationally efficient and runs seamlessly on a smartphone. Based on our 

experiments, the implemented application runs for approximately 5 hours on a completely 

charged iPhone X with a 2716 mAh battery.

The CPU, memory and battery usage of the app is also shown in Fig. 10 for the iOS 

smartphone used. The CPU consumption of the app is quite low. Since the app makes use of 

tensorflow C++ API, the CPU usage is around 29%. The maximum memory consumption of 

the app after switching on the SE is around 308.8 MB. The frozen model (explained in 

Section III) which includes all the weights that is used for smartphone implementation is 

about 57.3 MB, this means the actual memory footprint for the algorithm is around 251 MB. 

Since majority of the smartphones in the modern market come with processors with a 

memory of a minimum 12–16 GB, the memory consumption of the app is around 2.56% 

which is quite low. This shows that the app does not crowd the CPU and the memory 

resources of smartphones. It is also worth noting the point that even though both the energy 

and memory consumptions are quiet low, it is better to use simple networks rather than 

deeper/ wider networks. This is because the deeper networks usually have high inference 

time that can add higher latency in real-time.

V. CONCLUSION

In this paper, we proposed a multi-objective learning based convolutional neural network 

speech enhancement (SE). More accurate measurement of clean speech LPS estimate was 

obtained by adding the secondary feature sets MFSCs. The proposed CNN-based SE method 

is computationally efficient and is implemented on a smartphone as an application to 

perform real-time speech enhancement with low audio latency. The CNN-based SE 

architecture is optimized to allow input audio data frames to be processed on smartphone in 

real-time. Characteristics and performance of the proposed SE method and its 

implementation on smartphone are analyzed in detail. The objective and subjective test 

results validate the functionality of the proposed method as well as its practical application 
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in real world under different noisy environments and low SNRs. The smartphone plus the 

proposed SE algorithm offer an affordable portable platform that can be used by people with 

hearing loss, as well as by audiologists and researchers for improving hearing study.
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FIGURE 1. 
Block diagram of the proposed method and illustration of the real time processing modules 

used in the developed CNN-based SE application.
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FIGURE 2. 
Speech Enhancement system used in the entire experiment. The dashed lines indicate the 

training phase and the solid lines indicate the testing phase.
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FIGURE 3. 
The figure demonstrates Mel-filterbank consisting 26 triangular filters. These filters are 

linearly spaced in Mel domain and non-linearly spaced in frequency domain.
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FIGURE 4. 
Schema of the proposed CNN-based SE model architecture. The CNN consists 3 

components. Input image is first convolved with kernels. The final convolutional layer 

obtained by stride of 3 is flattened and fed into fully connected layer. Finally, output is fed to 

the linear layer.
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FIGURE 5. 
Buffer used to create input processing image. Here the frame 10 is the current processing 

frame. 2–9 are the preceding frames and 1 has left the buffer. When frame 11 comes in, 

frame 2 leaves the buffer.
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FIGURE 6. 
Snapshot of developed CNN-based SE application running on a smartphone.
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FIGURE 7. 
Comparison of average performance of PESQ, LSD, and SegSNR on seen and unseen data 

for different SE methods. Machinery, multi-talker babble and traffic noise at SNR levels of 

−5, 0 and +5dB are considered. The results show that the proposed CNN-based SE method 

outperforms the other SE methods.
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FIGURE 8. 
Comparison of average performance of PESQ, LSD, and SegSNR on smartphone recorded 

unseen data for different SE methods. Machinery, multi-talker babble and traffic noise at 

SNR levels of −5, 0 and +5dB are considered. The results show that the proposed CNN-

based SE method outperforms the other SE methods.
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FIGURE 9. 
Subjective MOS test results evaluated for Babble, Machinery and Traffic noise types at 0dB 

SNR. The results show that the subjects preferred the proposed CNN-based SE method over 

other methods in terms of speech quality and intelligibility.
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FIGURE 10. 
CPU and memory consumption of the iOS version of CNN-based SE application.
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TABLE 1.

Architecture of the proposed CNN-based SE. Illustration of the number of layers and the number of nodes in 

each layer.

Layers Number Number of nodes/kernels

Hidden Layers 3

Input 1 155 × 9

Convolutional 2 129 , 43

Fully Connected 1 1024

Output 1 155
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TABLE 2.

Illustration of the effect of dropout on the proposed CNN-based SE model. Speech data with Machinery noise 

at 0db SNR was considered.

Dropout (%) PESQ LSD SegSNR

0 2.1855 11.9056 6.7691

10 2.1684 11.6541 6.7420

20 2.1062 11.9294 6.6951

30 2.0050 12.2047 6.6240
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TABLE 4.

Objective evaluation for unseen noisy condition on smartphone platform and on PC platform. The speech 

degraded machinery noise at 0 dB was used for real-time (smartphone) and offline (PC) evaluation.

Testing Platform PESQ LSD SegSNR

PC(offline) 1.6876 12.7072 5.9085

Smartphone 1.6024 12.0219 5.8420
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