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A direct-from-source rapid musculoskeletal diagnostic panel 
(MDP) was validated recently. We compared clinical measures 
to theoretical time points had MDP results been available. The 
MDP would have significantly decreased the time to pathogen 
identification (7 hours), time to definitive antimicrobial therapy 
(22 hours), and hospital length of stay (26.4 hours).
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Acute musculoskeletal infections are common causes of hos-
pitalization of children (incidence, approximately 6 cases per 
1000 pediatric hospitalizations) [1, 2].

Pathogen identification for musculoskeletal infections 
enables targeted antimicrobial therapy but currently relies on 
traditional time-intensive bacterial culture techniques [3–5]. 
We recently validated a novel rapid musculoskeletal diagnostic 
panel (MDP) [6]. The purpose of this study was to quantify the 
potential clinical effects of this new diagnostic tool.

MATERIALS AND METHODS

MDP Overview and Testing

Details of the study population and the MDP were published pre-
viously [6]. In brief, the MDP combines 3 separate rapid tests, 
including the Xpert MRSA/SA SSTI assay, which identifies the 
presence of Staphylococcus aureus and genotypic methicillin re-
sistance directly from a specimen, polymerase chain reaction 

(PCR) assays for the ermA, ermB, and ermC genes, which encode 
genotypic clindamycin resistance, and a Kingella kingae PCR 
assay, which targets the rtxA gene [6]. Turnaround times from 
bone or joint specimen collection until reporting of results were 
estimated to be 3 hours for the Xpert MRSA/SA SSTI results and 
2:00 pm the following calendar day for the ermA/ermB/ermC gene 
and K kingae PCR assays. These estimates were based on existing 
Children’s Hospital Colorado microbiology laboratory workflows 
that allow for specimen extraction once every morning.

Included Patients

Patients were included in the study if they were admitted to 
the hospital with acute complaints (<2 weeks of symptoms), 
had a bone or joint specimen sent for microbiological testing, 
and were started on antimicrobial therapy (not including 
perioperative antibiotics) after specimen acquisition, indicating 
suspicion for infection. Patients were excluded if they did not 
have an infectious indication for biopsy, were aged <6 months 
or >18 years, or had perforating trauma or decubitus ulcers, se-
vere underlying comorbidity (including cerebral palsy, spina 
bifida, or immunosuppression), or a head, neck, or central 
nervous system infection.

Data Analysis

All bone and joint specimens from the included patients were tested 
using the 3 components of the MDP [6]. A retrospective review of 
patient charts was managed alongside MDP results using a REDCap 
electronic data-capture tool hosted at Children’s Hospital Colorado 
[7]. Initiation of care was defined at the date and time of either the 
first recorded set of vital signs or the acquisition of a blood or source 
specimen for culture, whichever occurred first. For patients with a 
pathogen identified via blood culture, the theoretical rapid multiplex 
PCR  blood culture identification (BCID) turnaround time was re-
corded as 1 hour after blood culture Gram-stain results were first re-
ported in the electronic medical record.

The time to definitive antimicrobial therapy was defined as 
the time at which care was initiated until both of the following 
criteria were met: a patient was being treated with an effective 
antimicrobial (based on an a priori definition for each identified 
pathogen) (Supplementary Table 1) and the pathogen was 
identified and the relevant antimicrobial susceptibility values 
were available in the electronic medical record. If no pathogen 
was found in the blood culture, source culture, or MDP, then 
the time to definitive antimicrobial therapy was defined as 72 
hours after source-specimen collection for both the actual and 
theoretical time points.

The actual discharge date and time were based on the time 
the discharge order was signed. A theoretical discharge date was 
calculated for each patient on the basis of the earliest time at 

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

mailto:samuel.dominguez@childrenscolorado.org?subject=


BRIEF REPORT • jpids 2020:9 (july) • 383

which the following criteria were met: MDP results identified 
a pathogen, 24 hours after the last recorded fever (>38.2°C), 
4 hours after the patient’s C-reactive protein level had either 
decreased to <3  mg/dL was less than 50% of the highest re-
corded value, and 36 hours after at least 1 negative blood culture 
result. For patients in whom MDP did not identify a pathogen, 
the theoretical discharge time was the same as the actual dis-
charge time. This study was approved by the Colorado Multiple 
Institutional Review Board.

Statistics

Times to outcome for the standard method versus those for 
theoretical results with the MDP were compared using a 
Wilcoxon signed rank-sum test to account for departures 
from normality. For all theoretical calculations, the MDP 
time was changed to the standard time if it would have been 
longer, because the MDP would not have affected care in those 
situations. For comparisons that included the BCID results, 
the MDP time was changed to the theoretical BCID time if 
MDP results would have taken longer. Kaplan–Meier curves 
were plotted for times to pathogen identification, and the 
results were censored at 48 hours after source-specimen col-
lection if no pathogen was identified. Kaplan–Meier curves 
were plotted also for times to methicillin resistance and to 
clindamycin resistance.

RESULTS

Of the 125 unique patients included in the initial validation 
study, 53 met criteria for inclusion in this retrospective clin-
ical impact study (Supplementary Table 2). When standard 
culturing techniques were used, a pathogen was identified in 
37 (69.8%) of 53 patients, and according to blood culture, a 
pathogen was identified in 13 (24.5%) of 53 patients. S aureus 
was identified in 25 (47.2%) of the 53 patients; methicillin-
resistant S aureus (MRSA) was identified in 4 (16.0%) of these 
25 patients, and clindamycin-resistant S aureus was identified 
in 2 (8.0%). K kingae was identified in only 1 (1.9%) of the 53 
patients with standard microbiologic cultures. Of the 25 patients 
with S aureus identified on culture, MDP testing identified S 
aureus in 22 (88%). According to the MDP, 3 (13.6%) of 22 S 

aureus isolates were identified as MRSA, and all 3 of them were 
identified as MRSA on culture. Three (13.6%) of 22 S aureus 
isolates were clindamycin resistant according to the MDP; 1 of 
these isolates was reported as clindamycin susceptible on cul-
ture. We found no patient for whom S aureus was identified 
with the MDP alone. Only 1 patient would have had a pathogen 
found on MDP that was missed on standard bacterial culture 
(positive K kingae PCR result from a 15-month-old patient with 
monoarticular septic arthritis of the elbow and negative source 
culture results).

The median time to pathogen identification using the 
MDP would have been 7 hours faster  than standard mi-
crobiology culture techniques (45.6 hours [IQR, 23–62] vs 
52.5 hours [IQR, 36.1–65.6], respectively; P < .001) (Table 
1, Figure 1A). When we incorporated the potential effect 
of BCID on these results, we found that the median time to 
pathogen identification would have been slightly decreased 
in the BCID-available group and decreased more in the 
BCID-plus-MDP group (52.5 hours [standard] vs 50.5 hours 
[BCID] vs 39 hours [BCID  plus  MDP]; P  <  .001) (Figure 
1B). Among patients for whom S aureus was identified in 
blood or source cultures, the time to methicillin resistance 
via the MDP would have been 30 hours faster than that 
via standard microbiology culture techniques (23 vs 53.5 
hours, respectively; P < .001) (Figure 1C), and clindamycin 
resistance would have been reported 34 hours faster (42.5 
vs 76.9 hours, respectively; P < .001) (Figure 1D).

Thirteen (24.5%) patients received at least 1 dose of vanco-
mycin during their admission, but none of them had a pathogen 
identified that required vancomycin (ie, clindamycin-resistant 
MRSA). Among vancomycin-exposed patients, use of the MDP 
would have decreased the vancomycin length of therapy in 4 
(30.8%) of 13 patients. The total cumulative vancomycin-days 
of therapy would have decreased from 17.6 to 12.1  days of 
therapy had MDP results been available (Table 1).

The MDP would have decreased the time to definitive 
therapy by nearly 22 hours (median, 23.5 vs 45.1 hours, respec-
tively; P  <  .001) (Table 1). On the basis of our a priori MDP 
discharge criteria, 20 (37.7%) of 53 patients theoretically would 
have been discharged earlier (median decrease in hospital 
length of stay [LOS], 26.4 hours; P < .001) (Table 1).

Table 1. Theoretical Effects of the MDP on Clinical Outcomes

Effect Actual Results (Median [IQR]) Theoretical Results (Median [IQR]) N P

Time to pathogen identification (hours) 52.5 (36.1–65.6) 45.6 (23–62) 53 <.001

Time to methicillin resistance (hours) 53.5 (41.7–68) 23 (9.8–44.6) 25 <.001

Time to clindamycin resistance (hours) 76.9 (61.1–88.3) 42.5 (31.8–61.2) 25 <.001

Vancomycin-hours of therapy per patient 24.6 (19.4–36.6) 19.4 (2.7–30.3) 13 .13

Total vancomycin-days of therapy 17.6 12.1 13 NA

Time to definitive therapy (hours) 45.1 (28.5–69.8) 23.5 (3–66.7) 53 <.001

Hospital LOS (days) 4.1 (3.5–5.6) 3.8 (3–5) 53 <.001

Abbreviations: IQR, interquartile range; LOS, length of stay; MDP, musculoskeletal diagnostic panel; NA, not applicable.
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DISCUSSION

No approved rapid diagnostic platforms currently exist for bone 
and joint specimens from pediatric patients with acute mus-
culoskeletal infection. Our findings suggest that our recently 
developed rapid MDP could decrease the time to pathogen 
identification and relevant antimicrobial-susceptibility results, 
and it could decrease the time to definitive antimicrobial 
therapy, vancomycin exposure, and hospital LOS.

Nearly one-third of the vancomycin-exposed patients in this 
cohort would have had vancomycin discontinued earlier or been 
able to avoid it completely if MDP results had been available 
during their admission. At institutions with high MRSA rates 
and frequent usage of empiric vancomycin, identifying MSSA 
versus MRSA within 3 hours of source-specimen collection 
would allow providers to choose a narrow initial antimicrobial 
with less toxicity while awaiting MDP results. In contrast, at an 
institution such as Children’s Hospital Colorado, where MRSA 
rates are relatively low (35% among all isolates, 12% among 
musculoskeletal isolates) and patients are routinely started on 
empiric cefazolin for acute musculoskeletal infection, the MDP 
could hasten appropriate MRSA coverage and potentially im-
prove outcomes.

Cost is an important balancing measure when a new potential 
diagnostic tool is considered. We determined that the MDP would 

lead, theoretically, to a decrease in LOS and justify the added cost 
of the MDP. Additional cost benefits are likely to be found from the 
MDP’s effect on clinical metrics, such as faster time to definitive 
antimicrobial therapy, although further cost-saving calculations 
are required to formally determine these potential benefits.

There are important limitations to this study. First, only 
patients from whom residual source specimens were available 
were included in the study; therefore, these results might not truly 
reflect our population of children with musculoskeletal infection. 
Second, clinical decisions are not always implemented immedi-
ately after new microbiological data are reported, and specific pa-
tient factors (such as severity of illness) also guide antimicrobial 
decisions. Therefore, our calculations might not accurately reflect 
clinical care. Last, our study was performed at a single institution 
and therefore might not be generalizable to other institutions with 
different populations, prescribing practices, and antimicrobial re-
sistance rates. It is possible that the MDP would have a greater 
effect at institutions with higher rates of MRSA, clindamycin re-
sistance, K kingae infection, and/or empiric vancomycin usage.

CONCLUSION

This recently validated MDP has the potential to greatly affect 
the care of pediatric patients with musculoskeletal infection by 

Figure 1. Time to pathogen identification and antimicrobial resistance results. (A) Times to pathogen identification for all 53 patients. (B) Times to path-
ogen identification, including BCID results. The median time according to the standard method was 52.5 hours (interquartile range [IQR], 36.1–65.6 hours), 
according to BCID was 50.5 hours (IQR, 29.7–65.6 hours), and according to BCID plus the theoretical MDP was 39.0 hours (IQR, 18.4–62.0 hours). (C) Time to 
methicillin resistance (25 methicillin-sensitive Staphylococcus aureus [MSSA]/methicillin-resistant S aureus [MRSA] samples only). (D) Time to clindamycin 
resistance (25 MSSA/MRSA samples only).
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decreasing the time to pathogen identification, time to definitive 
antimicrobial therapy, unnecessary vancomycin exposure, and 
hospital LOS. Additional prospective studies are needed after 
effective implementation of the MDP, alongside antimicrobial 
stewardship partnership, to fully evaluate its effects in a real 
clinical environment.

Supplementary Data
Supplementary materials are available at Journal of the Pediatric Infectious 
Diseases Society online.
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