
Orchestrating Single-Cell Analysis with Bioconductor

Robert A. Amezquita1, Aaron T. L. Lun2,3, Etienne Becht1, Vince J. Carey4, Lindsay N. 
Carpp1, Ludwig Geistlinger5,6, Federico Marini7,8, Kevin Rue-Albrecht9, Davide Risso10,11, 
Charlotte Soneson12,13, Levi Waldron5,6, Hervé Pagès1, Mike L. Smith14, Wolfgang Huber14, 
Martin Morgan15, Raphael Gottardo†,1, Stephanie C. Hicks†,16

1Fred Hutchinson Cancer Research Center, Seattle, WA, USA 2Cancer Research UK Cambridge 
Institute, University of Cambridge, Cambridge CB2 0RE, UK 3Bioinformatics and Computational 
Biology, Genentech, Inc., South San Francisco, California, USA 4Channing Division of Network 
Medicine, Brigham And Women’s Hospital, MA, USA 5Graduate School of Public Health and 
Health Policy, City University of New York, NY, USA 6Institute for Implementation Science in 
Population Health, City University of New York, NY, USA 7Center for Thrombosis and Hemostasis, 
Mainz, Germany 8Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Mainz, 
Germany 9Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK 
10Department of Statistical Sciences, University of Padua, Italy 11Division of Biostatistics and 
Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, 
NY, USA 12Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland 13SIB Swiss 
Institute of Bioinformatics, Basel, Switzerland 14European Molecular Biology Laboratory, Genome 
Biology Unit, Heidelberg, Germany 15Biostatistics and Bioinformatics, Roswell Park 
Comprehensive Cancer Center, Buffalo, NY, USA 16Department of Biostatistics, Johns Hopkins 
Bloomberg School of Public Health, MD, USA

Abstract

Recent technological advancements have enabled the profiling of a large number of genome-wide 

features in individual cells. However, single-cell data present unique challenges that require the 

development of specialized methods and software infrastructure to successfully derive biological 

insights. The Bioconductor project has rapidly grown to meet these demands, hosting community-

developed open-source software distributed as R packages. Featuring state-of-the-art 

computational methods, standardized data infrastructure, and interactive data visualization tools, 

we present an overview and online book (https://osca.bioconductor.org) of single-cell methods for 

prospective users.
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This Perspective highlights open-source software for single-cell analysis released as part of the 

Bioconductor project, providing an overview for users and developers.

Introduction

Since 2001, the Bioconductor project [1] has attracted a rich community of developers and 

users from diverse scientific fields, driving the development of open-source software 

packages using the R language for the analysis of high-throughput biological data [2–6]. 

While bulk profiling technologies have yielded important scientific insights and methods [7–

9], recent advancements in technologies to profile samples at single-cell resolution have 

emerged that can answer previously inaccessible scientific questions [10–20]. Bioconductor 

has been home to a wide range of software packages used in analyzing bulk profiling data, 

and more recently it has expanded significantly into the realm of single-cell data analysis 

with a rapidly growing list of community contributed software packages (Figure 1).

Current single-cell assays can be both high-throughput, measuring thousands to millions of 

cells, and high dimensional, measuring thousands of features within each individual cell. 

Compared to bulk assays, there are two defining characteristics of single-cell data that must 

be specially handled to achieve biological insight: (i) the increased scale of the number of 

observations (i.e., cells) that are assayed in large compendiums such as those from the 

Human Cell Atlas [21, 22] and the Mouse Cell Atlas [23], and (ii) the increased sparsity of 

the data due to biological fluctuations in the measured traits or limited sensitivity for 

quantifying small numbers of molecules [13, 24–26]. These unique characteristics have 

motivated the development of statistical methods tailored for single-cell data analysis [27–

30]. Furthermore, as single-cell technologies mature, the increasing complexity and volume 

of data require fundamental changes in data access, management, and infrastructure 

alongside specialized methods to facilitate scalable analyses.

To address these challenges, software packages developed for the analysis of single-cell data 

have become an integral part of the Bioconductor project. Herein we primarily focus on the 

analysis of single-cell RNA-seq (scRNA-seq) data, much of the concepts mentioned herein 

are also generalizable to other types of single-cell assays. We cover (1) data import, (2) 

common data containers for storing single-cell assay data (3) fast and robust methods for 

transforming raw single-cell data into processed data suitable for downstream analyses, (4) 

interactive data visualization, and (5) downstream analyses. To help users leverage this 

robust and scalable framework, we describe selected packages and present an online book 

(https://osca.bioconductor.org) covering installation, sources of help, specialized topics 

pertaining to specific aspects of scRNA-seq analysis, and complete workflows analyzing 

various scRNA-seq datasets. The references for all packages are available at http://

bioconductor.org/packages/.

Data Infrastructure

One of Bioconductor’s strongest advantages is the availability of common representations 

and infrastructure for complex, highly interdependent data sets [1]. Bioconductor uses 

standardized data containers to enable modularity and interoperability of diverse packages 
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while maintaining robust end-user accessibility. To this end, Bioconductor employs a 

flexible object-oriented paradigm called S4 [31] that enables encapsulation of multiple 

object components into a single instance with a rich and user-friendly interface. Such an 

approach is especially important for biological analysis, as there are often many links 

between primary data and metadata that need to be preserved throughout an analysis.

The SingleCellExperiment container

Bioconductor uses the SingleCellExperiment class for storing single-cell assay data and 

metadata (Figure 2). Primary data, such as count matrices, are stored in the assays 

component as one or more matrices, where rows represent features (e.g. genes, transcripts) 

and columns represent cells. In addition, low-dimensional representations of the primary 

data, and metadata describing cell or feature characteristics can also be stored in the 

SingleCellExperiment object. Through the SingleCellExperiment class, all pertinent data 

and results relevant to a scRNA-seq experiment can be stored in a single instance. By 

standardizing the storage of single cell data and results, Bioconductor fosters interoperability 

between single-cell analysis packages and facilitates the development and usage of complex 

analysis workflows.

Data Processing

The aim of this section is to describe the precursor steps that are common to most scRNA-

seq analyses. These preliminary steps follow a general workflow (Figure 3): (1) 

preprocessing raw sequencing data to produce a per-gene (or transcript) per-cell expression 

count matrix, followed by creating a SingleCellExperiment object, (2) applying quality 

control metrics and subsequent removal of low quality cells that would otherwise interfere 

with downstream analyses, (3) converting counts into normalized expression values to 

eliminate cell and gene-specific biases, (4) performing feature selection to pick a subset of 

biologically relevant genes for downstream analyses, (5) applying dimensionality reduction 

methods to compact the data and reduce noise, and (6) if applicable, integrating multiples 

batches of scRNA-seq data.

Preprocessing

For scRNA-seq data, preprocessing involves the alignment of sequencing reads to a 

reference transcriptome and quantification into a per-cell and per-gene count matrix of 

expression values. While various preprocessing methods are available as command line 

software, Bioconductor packages such as scPipe [32] and scruff [33] provide a preprocessing 

workflow that is entirely written in R. For preprocessing workflows utilizing command line 

software, the DropletUtils [34] and tximeta Bioconductor packages can import the results 

from various tools including Cell Ranger [35] (10X Genomics), Kallisto-Bustools [36], and 

Alevin [37]. Notably, pseudo-alignment methods such as Alevin and Kallisto significantly 

reduce compute time and memory usage.

In all the above workflows, the end result is the import of a count matrix into R and creation 

of a SingleCellExperiment object. For specific file formats, we can use dedicated methods 

from the DropletUtils (for 10X data) or tximeta (for pseudo-alignment methods) packages.
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Quality Control

Low-quality libraries in scRNA-seq data can arise from a variety of sources such as cell 

damage during dissociation or failure in library preparation (e.g., inefficient reverse 

transcription or PCR amplification). These usually manifest as “cells” with low total counts, 

few expressed genes and high mitochondrial read proportions. These low-quality libraries 

are problematic as they can contribute to misleading results in downstream analyses.

For droplet-based protocols, it is common to exclude data from droplets that did not contain 

exactly one cell. The DropletUtils [34] package distinguishes between empty – ambient 

RNA-containing – and cell-containing droplets, based on the frequency of each droplet 

barcode observed and a comparison of their respective expression profile with that of the 

ambient solution. It can also remove artificial cells generated by barcode swapping in 

droplet-based experiments [38]. Similarly, droplets that likely contain more than one cell 

(doublets) can be identified using the scran [28] or scds [39] packages, which compare the 

droplets in question against the expression profile of simulated doublets.

After excluding empty droplets and identifying potential doublets, droplets containing 

potentially damaged cells or exhibiting poor read coverage are filtered out. The library size - 

defined as the total sum of counts across all relevant features for each cell - is an oft-used 

metric for filtering. Cells with small library sizes are more likely to be of low quality as the 

RNA has been lost at some point during library preparation, either due to cell lysis or 

inefficient cDNA capture and amplification. Another metric is the number of expressed 

features in each cell - defined as the number of endogenous genes with non-zero counts for 

that cell. Cells with very few expressed genes are likely to be of poor quality as the diverse 

transcript population has not been successfully captured. The proportion of reads mapped to 

genes in the mitochondrial genome can also be used, as high proportions indicate the 

possible loss of cytoplasmic RNA due to cell damage, wherein the mitochondria - being 

larger than individual transcript molecules - are less likely to escape through holes in the cell 

membrane [40]. The scater [41] package simplifies the calculation of these various metrics.

Normalization

Systematic differences in coverage between libraries are often observed in scRNA-seq data, 

such as differences due to sequencing depth [25, 28, 42]. This typically arises from 

differences in cDNA capture or PCR amplification efficiency across cells, attributable to the 

difficulty of achieving consistent library preparation with minimal starting material. 

Normalization aims to remove these systematic differences such that they do not interfere 

with comparisons of the expression profiles between cells, for example during clustering or 

differential expression analyses.

Here we consider methods that moderate systematic differences within a single scRNA-seq 

experiment that bias all genes in a similar manner. This includes, for example, a change in 

sequencing depth that scales the expected coverage of all genes by a certain factor. Library 

size normalization is the simplest strategy for performing scaling normalization, as 

implemented in scater [41]. While this approach makes the assumption that there is no 

imbalance in the differentially expressed genes (DEG) between any pair of cells, 
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normalization accuracy is usually not a major consideration for exploratory scRNA-seq 

analysis, as there are minimal effects on cluster separation.

Accurate normalization however is important for procedures that involve estimation and 

interpretation of per-gene statistics as in DEG. Composition biases that systematically shift 

log-fold changes are most often observed when multiple cell types are present in a given 

scRNA-seq dataset. Normalization by deconvolution overcomes this by pooling counts from 

many cells to increase the size of the counts for accurate size factor estimation, followed by 

deconvolution into cell-based factors for normalization per-cell, as implemented in scran 
[28].

Alternatively, BASiCS [43], zinbwave [30], and MAST [27] provide model-based 

approaches to normalization that can not only handle such library size or composition 

biases, but also can adjust for known covariates or other intrinsic technical factors that could 

conceal biologically meaningful variation [25]. These methods enable more complex scaling 

strategies such as non-linear transformations of the data. For reviews on this topic, see [42].

Imputation

Imputation methods have been proposed to address the challenge of data sparsity in single-

cell assays [44, 45]. As scRNA-seq experiments frequently fail to measure expression for 

some genes, leading to an overabundance of zero-values [46], zero-inflated models have 

been developed. However, there are differences in the degree of zero-inflation depending on 

type of assay or protocol [46–48], suggesting that the optimal method is assay dependent. 

Furthermore, imputation methods for scRNA-seq data have been shown to generate false-

positive results and decrease the reproducibility of cell-type specific markers [49].

Feature Selection

Exploratory analyses of scRNA-seq data is often directed to characterize heterogeneity 

across cells. Procedures such as clustering and dimensionality reduction compare cells based 

on their gene expression profiles. However, the choice of genes to use in these calculations 

has a major impact on the behavior and performance of such downstream methods. Feature 

selection methods aim to identify genes that contain useful information about the biology of 

the system while removing genes that contain random noise. By limiting analyses to such 

genes, interesting biological structure is preserved minus the variance that obscures that 

structure. Furthermore, focusing on such a subset of the transcriptome can significantly 

reduce the size of the dataset, improving the computational efficiency of downstream 

analyses. See references [50, 51] for reviews in feature selection methods.

The simplest approach to feature selection is to select the most variable genes based on their 

expression across the population. This assumes that genuine biological differences will 

manifest as increased variation in the affected genes, compared to other genes that are only 

affected by technical noise or a baseline level of uninteresting biological variation (e.g., from 

transcriptional bursting). However, the log-transformation does not achieve perfect variance 

stabilization. This means that the variance of a gene is more affected by its abundance than 

the underlying biological heterogeneity. Thus, calculation of the per-gene variance for 
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feature selection requires modelling of the mean-variance relationship. Packages such as 

scran [52], BASiCS [43], and scFeatureFilter adopt this approach.

Alternate metrics to variance have also been proposed, such as selecting genes based on their 

deviance, a metric that quantifies how well each gene fits a null model of constant 

expression across cells [48]. Unlike variance based feature selection approaches, calculating 

the deviance is done on raw UMI counts, thus making the approach less sensitive to errors 

brought on by normalization. The deviance can be calculated using the glmpca package.

Dimensionality Reduction

Dimensionality reduction aims to reduce the number of separate dimensions in the data. This 

is possible because different genes are correlated if they are affected by the same biological 

process. Thus, we do not need to store separate information for individual genes, but can 

instead compress multiple features into a single dimension. Dimensionality reduction 

approaches thus create low-dimensional representations that aim to preserve the most 

meaningful structures in the dataset. This has the additional benefit of reducing noise by 

averaging across multiple genes to obtain a more precise representation of patterns in the 

data (e.g. related to a specific pathway). Computational work in downstream analyses is also 

reduced, as calculations only need to be performed for a few dimensions rather than 

thousands of genes. More aggressive dimensionality reduction schemes yield two- or three-

dimensional representations that can be directly visualized to assist in the interpretation of 

the results.

A common first step to dimensionality reduction of scRNA-seq data is principal components 

analysis (PCA). PCA discovers axes (principal components, PCs) in high-dimensional space 

that capture the largest amount of variation. The top PCs capture the dominant factors of 

heterogeneity in the data set, and thus can be used to efficiently perform dimensionality 

reduction. This takes advantage of the well-studied theoretical properties of the PCA - 

namely, that a low-rank approximation formed from the top PCs is the optimal 

approximation of the original data for a given matrix rank. Given this property, calculations 

performed using the top PCs (or any similar low-rank approximation) takes advantage of 

data compression and denoising, which includes downstream analyses such as clustering.

No matter the approach, dimensionality reduction for visualization necessarily involves 

discarding information and distorting the distances between cells. Thus, it is ill-advised to 

directly analyze the low-dimensional coordinates used for plotting. Rather, these plots 

should only be used to interpret or communicate the results of quantitative analyses based on 

a more accurate, higher-rank representation of the data. This ensures that analyses make use 

of the information that was lost during compression into two dimensions. For example, 

given a discrepancy between the visible clusters on a 2-dimensional plot and those identified 

by clustering using the top PCs, one would be inclined to favor the latter.

The SingleCellExperiment class has a dedicated component, reducedDims, for storing lower 

dimensional representations of the assay data (Figure 2). The scater [41] package provides 

convenience wrapper functions for dimensionality reduction algorithms including Principal 

Components Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE) [53], 
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and Uniform Manifold Approximation and Projection (UMAP) [54]. Diffusion map methods 

are available via the destiny [55] package. The zinbwave [30] and glmpca [48] packages use 

a zero-inflated negative binomial model and a multinomial model, respectively, for model-

based dimensionality reduction approaches that can account for confounding factors.

Integrating Datasets

Large scRNA-seq projects usually need to generate data across multiple batches due to 

logistical constraints. However, the processing of different batches is often subject to 

uncontrollable differences, e.g., changes in operator, differences in reagent quality. This 

results in systematic differences in the observed expression in cells from different batches. 

Furthermore, as the prevalence of scRNA-seq data expands and reference datasets become 

available, encountering such confounding variables will become inevitable in meta-analysis 

contexts. Such batch effects are problematic as they can be major drivers of heterogeneity in 

the data, masking relevant biological differences and complicating the interpretation of 

results.

While generalized linear modeling frameworks can be used to integrate disparate data sets 

[6], these frameworks may be sub-optimal in the scRNA-seq context. This is often due to the 

underlying assumption that the composition of cell populations is either known or identical 

across batches of cells. To overcome these limitations, bespoke methods have been 

developed for batch correction of single-cell data [56, 57] that do not require a priori 

knowledge about the composition of the population. This enables exploratory analyses of 

scRNA-seq data where such knowledge is usually unavailable.

Before performing any correction, it is worth examining whether any batch are present in a 

dataset. This can be examined by performing PCA on the log-expression values of select 

genes, followed by graph based clustering to obtain a summary of the population structure. 

Ideally, clusters should consist of cells from replicate scRNA-seq datasets. However, if 

instead clusters are comprised of cells from a single batch, this indicates that cells of the 

same type are artificially separated due to technical differences. Approaches such as t-SNE 

and UMAP will also typically show a strong separation between cells from different batches 

that are consistent with such clustering results. Notably, such a diagnostic that relies on the 

degree of intermingling may not be effective when the batches involved may indeed contain 

unique subpopulations, but is nonetheless a useful first approximation.

Supervised integration via the labeling of cells a priori (see Annotation) can be used via 

packages such as scMerge [57] and scmap [58] to guide the application of any batch 

correction on the gene expression values or to adjust lower dimensional representations. On 

the other hand, unsupervised approaches such as mutual nearest neighbours (MNN) identify 

pairs of cells from different batches that belong in each other’s set of nearest neighbours. 

Thus, the difference between cells in MNN pairs can be used as an estimate of the batch 

effect, the subtraction of which yields batch-corrected values [56]. Vitally, by altering the 

number of k-nearest neighbors that are considered, the aggressiveness of the batch correction 

can be tuned, wherein a higher k results in more generous matching of subpopulations across 

batches. This MNN-based approach is implemented in the batchelor package.
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The success of the batch correction is contingent on the preservation of biological 

heterogeneity, as one could envision a correction method simply aggregating all cells 

together, which would achieve perfect mixing but also discard the biology of interest. To this 

end, the CellMixS package can be used to evaluate the degree of cell mixing across batches. 

Another useful heuristic is to compare clusters identified in the merged data against those 

identified per batch. Ideally, we should see a many-to-1 mapping where the across-batch 

clustering is nested inside the within-batch clustering, indicating that any within-batch 

structure was preserved post-correction. A summary statistic such as the Rand index can 

then be calculated, where larger Rand indices are more desirable.

Downstream Statistical Analysis

The choice of methods and workflows can differ greatly depending on the specific goals of 

the investigation and the experimental protocol used. Following data processing, 

Bioconductor can be used to generate new biological insights from single-cell data, using 

tools that are interoperable with the SingleCellExperiment class and that scale with cell 

number. Our online book (https://osca.bioconductor.org) provides prospective users 

workflows and case studies for downstream analyses and visualizations (Figure 4).

Clustering

Clustering is used in scRNA-seq data analysis to empirically define groups of cells with 

similar expression profiles. This allows us to describe population heterogeneity in terms of 

discrete labels that can be more easily understood, rather than attempting to comprehend the 

high-dimensional manifold on which the cells truly reside. After annotation based on 

differentially expressed marker genes, the clusters can be treated as proxies for more abstract 

biological concepts such as cell types or states.

It is worth highlighting the distinction between clusters and cell types. The former is an 

empirical construct while the latter is a biological truth (albeit a vaguely defined one). Thus, 

it is helpful to realize that clustering, like a microscope, is simply a tool to explore the data. 

One can zoom in and out by changing the resolution of the clustering parameters, and 

experiment with different clustering algorithms to obtain alternative perspectives of the data.

Graph-based clustering is a flexible and scalable technique for clustering large scRNA-seq 

datasets. A graph is constructed where each node is a cell that is connected to its nearest 

neighbours (NN) in the high-dimensional space. Edges are weighted based on the similarity 

between the cells involved, with higher weight given to cells that are more closely related. 

Algorithms such as louvain and leiden [59] can then be used to identify clusters of cells.

BiocNeighbors provides an engine for both exact and approximate nearest neighbor 

detection, with scran building the actual graph. Notably, for large scRNA-seq datasets, 

approximate NN methods trade an acceptable loss in accuracy for vastly improved run times, 

with the added advantage of smoothing over noise and sparsity. Alternative approaches 

include the SIMLR package [60], which uses multiple kernels to learn a distance metric 

between cells that best fits the data and can then be used for clustering and dimension 

reduction. For large data, the mbkmeans package implements a scalable version of the k-
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means algorithm. Finally, the SC3 [61] and clusterExperiment [62] packages calculate 

consensus clusters derived from multiple parameterizations.

Many of these packages allow quantitative and visual evaluation of the clustering results, 

alongside external packages designed solely for data visualization and evaluation (e.g., 

clustree). Clusters can also be evaluated independently by assessing metrics such as cluster 

modularity or the silhouette coefficient.

Differential Expression

Differential gene expression (DGE) analysis can be used to identify marker genes that drive 

the separation between clusters. These marker genes allow us to assign biological meaning 

to each cluster based on their functional annotation. In the most obvious case, the marker 

genes for each cluster are a priori associated with particular cell types, allowing for 

clustering to serve as a proxy for cell type identity. The same principle can be applied to 

detect more subtle differences such as activation status or differentiation state. An alternative 

to DGE analysis for cell type annotation is gene set enrichment analysis, which groups genes 

into pre-specified gene modules or biological pathways to facilitate biological interpretation. 

We discuss this topic in the annotation section.

DGE can also be used to compare individual cells within a given population across 

conditions such as time or treatment, while adjusting for covariates (e.g. patient id, batch 

effects).

Across differential expression methods, two general approaches stand out. The first 

approach retrofits well supported and long-standing DE analysis frameworks initially 

designed for bulk RNA-sequencing (edgeR [2], DESeq2 [5], limma-voom [6]) that have 

made the transition to scRNA-seq through various approaches, such as by creating pseudo-

bulk RNA-seq profiles. Alternatively, approaches such as zinbwave [30] can be used to 

downweight excess zeros observed in scRNA-seq data during the dispersion estimation and 

model fitting steps prior to assessing DE, and consequently further enabling the adaptation 

of bulk RNA-seq based DE methods for use with scRNA-seq data [63].

The second class of approaches is uniquely tailored for single-cell data because the 

statistical methods proposed directly model the zero-inflation component, frequently 

observed in scRNA-seq data. These methods explicitly separate gene expression into two 

components: the discrete component, which describes the frequency of a discrete component 

(zero versus non-zero expression), and the continuous component, where the level of gene 

expression is quantified. While all the methods mentioned herein can test for differences in 

the continuous component, only this second class of approaches can explicitly model the 

discrete component, and thus test for differences in the frequency of expression. To do this, 

the MAST [27] package utilizes a hurdle model framework, whereas the scDD [64], 

BASiCS [43], and SCDE [14] use Bayesian mixture and hierarchical models, respectively. 

Together, these methods are able to provide a broader suite of testing functionality and can 

be directly utilized on scRNA-seq data contained within the SingleCellExperiment class.
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For more details regarding DE analysis and the benchmarking of the various packages 

mentioned above, see [65–67].

Trajectory Analysis

Heterogeneity may also be modeled as a continuous spectrum arising from biological 

processes, such as cell differentiation. A specialized application of dimension reduction 

specific to single-cell analysis - trajectory analysis or pseudotime inference - uses 

phylogenetic methods to order cells along a (often time continuous) trajectory, such as 

development over time. Inferred trajectories can identify transition between cell states, a 

differentiation process, or events responsible for bifurcations in a dynamic cellular process 

[68].

Modern approaches for trajectory inference have minimized the need for extensive 

parameterization and can test for differential gene expression across various topologies (e.g., 

Monocle [69], LineagePulse, and switchde [70]). Moreover, several Bioconductor packages 

for trajectory inference (e.g., slingshot [71], TSCAN [29], Monocle [69], cellTree [72], and 

MFA [73]) were recently demonstrated to have excellent performance [74]. As different 

methods can produce drastically different results for the same dataset, a suite of methods and 

parameterizations must be tested to assess robustness. Bioconductor facilitates such testing 

by providing standardized data representation such as the SingleCellExperiment class 

objects. See [74] for further discussion.

Annotation

The most challenging task in scRNA-seq data analysis is arguably the interpretation of the 

results. Obtaining clusters of cells is fairly straightforward, but it is more difficult to 

determine what biological state is represented by each of those clusters. Doing so requires 

bridging the gap between the current dataset and prior biological knowledge, and the latter is 

not always available in a consistent and quantitative manner. As such, interpretation of 

scRNA-seq data is often manual and a common bottleneck in the analysis workflow.

To expedite this step, various computational approaches can be applied that exploit prior 

information to assign meaning to an uncharacterized scRNA-seq dataset. The most obvious 

sources of prior information are curated gene sets associated with particular biological 

processes (e.g., from the Gene Ontology (GO) or the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) collections).

An alternative approach involves directly comparing expression profiles to published 

reference datasets where each sample or cell has already been annotated with its putative 

biological state by domain experts.

Gene Signature Enrichment

Classical gene set enrichment (GSE) approaches have the advantage of not requiring 

reference expression values. This is particularly useful when dealing with gene sets derived 

from the literature or other qualitative forms of biological knowledge. In the context of cell 

annotation, GSE is typically performed on a group of cells (or cluster) to identify the gene 
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set (or pathway) that is enriched in these cells. The enriched pathway can then be used to 

deduce a cell type (or state).

Bioconductor provides dedicated packages to programmatically access predefined gene 

signatures from databases such as MSigDB [75], KEGG [76], Reactome [77], and Gene 

Ontology (GO) [78]. EnrichmentBrowser [79]) simplifies the compilation of gene signature 

collections from such repositories. This prior knowledge is used to test for the enrichment of 

specific gene modules in scRNA-seq data, often adapting existing gene set analysis methods 

originally developed for bulk data. The EnrichmentBrowser [79], EGSEA [80], and fgsea 
packages each provide some version of classical gene set enrichment analysis (GSEA). 

Alternative approaches to testing for gene set enrichment are implemented in MAST [27], 

AUCell [81], and slalom [82].

Automated Classification of Cells

A conceptually straightforward annotation approach is to compare the single-cell expression 

profiles with previously annotated reference datasets. Labels can then be assigned to each 

cell in an uncharacterized dataset based on the most similar reference sample(s), based on 

some similarity metric. This is a standard classification challenge that can be tackled by 

standard machine learning techniques such as random forests and support vector machines. 

Any published and labelled RNA-seq dataset (bulk or single-cell) can be used as a reference, 

though its reliability depends greatly on the domain expertise of the original authors who 

assigned the labels in the first place.

The SingleR method [83] provides one such automated method for cell type annotation 

assignment. SingleR labels cells based on the reference samples with the highest Spearman 

rank correlations, and thus can be considered a rank-based variant of k-nearest-neighbor 

classification. To reduce noise, SingleR identifies marker genes between pairs of labels and 

computes the correlation using only those markers. A number of built-in reference datasets 

are included with the package that are derived from a variety of sources and tissues, 

including Immunological Genome project (ImmGen), ENCODE, and the Database for 

Immune Cell Expression (DICE).

Accessible Analysis

With the increased interest in data from single-cell assays, Bioconductor has developed not 

only the methods and software to analyze the data, but also has prioritized making the data 

itself and the data analysis tools more easily accessible to both users and developers. 

Specifically, the community has contributed data packages, containing both publicly 

available published data and simulated data, and interactive data visualization tools. Making 

single-cell data and data analysis tools more accessible allows researchers to leverage these 

resources in their own work and democratizes data analysis.

Benchmarking

As new single-cell assays, statistical methods, and corresponding software are developed, it 

is increasingly important to facilitate the publication of data sets, to reproduce existing 

analyses as well as to enable comparisons across new and existing tools. Bioconductor 
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houses a collection of data packages focused on providing accessible and well-annotated 

versions of data ready for analysis, alongside vignettes that can be used to reproduce 

manuscript figures and showcase data characteristics.

To facilitate querying of published data packages on Bioconductor, the ExperimentHub 
package enables programmatic access of published data sets using a standardized interface. 

Of note, the scRNAseq package provides direct access to a curated selection of high-quality 

scRNA-seq data from various contexts. In addition, simulated data are useful for 

benchmarking methods.

Alternately, the splatter package [84] can simulate scRNA-seq data that contains multiple 

cell types, batch effects, varying levels of dropout events, differential gene expression, and 

trajectories. The splatter package uses both its own simulation framework and wraps around 

other simulation frameworks with differing generative models to provide a comprehensive 

resource for single-cell data simulation.

To promote the reproducibility of benchmark comparisons assessing the performance of 

single-cell methods, software packages have been developed that provide infrastructure to 

compute and store the results of applying different methods to a data set. The 

SummarizedBenchmark [85] and CellBench [86] packages provide interfaces for which to 

store metadata (method parameters, package versions) and evaluation metrics.

Interactive Data Visualization

The maturation of web technologies has opened new avenues for interactive data 

exploration, aided by shiny, an R package facilitating development of rich graphical user 

interfaces. The iSEE [87] and singleCellTK packages provide full-featured applications for 

interactive visualization of scRNA-seq datasets through an internet browser, eliminating the 

need for programming experience if the instance is hosted on the web. Both packages 

directly interface with the SingleCellExperiment data container to enable scRNA-seq 

analysis results.

Discussion

Since the early days of genomics, the Bioconductor project has embraced the development 

of open-source and open-development software through the R statistical programming 

language. Bioconductor has established best practices for coordinated package versioning 

and code review. Alongside community-contributed packages, a core developer team 

(https://www.bioconductor.org/about/core-team) implements and maintains the essential 

infrastructure, and reviews contributed packages to ensure they satisfy a set of guidelines to 

ensure interoperability across packages. These packages are organized into BiocViews, an 

ontology of topics that classify packages by task or technology. For example, topics in 

single-cell analysis are labeled under the view SingleCell. Most importantly, the broader 

Bioconductor community - accessible through various means including forums, Slack, or 

mailing lists - is a model of altruism in code sharing and technical help. Together, these 

practices produce high-quality, well maintained packages, contributing to a unified and 

stable environment for biological research.
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Most recently, the Bioconductor community has developed state-of-the-art computational 

methods, infrastructure, and interactive data visualization tools available as software 

packages for the analysis of data derived from single-cell experiments. Emerging single-cell 

technologies in epigenomics, T-cell and B-cell repertoires, spatial profiling, and sequencing-

based protein profiling [88–95] promise to continue driving advances in computational 

biology. In particular, technologies enabling multimodal profiling are rapidly developing, 

and Bioconductor has laid the groundwork necessary to support statistical methodologies 

that fully leverage such approaches.

In addition, Bioconductor’s standardized data containers enable interoperability within and 

between Bioconductor packages as well as other software. Analysis stored in a 

SingleCellExperiment can be converted to formats usable with Seurat [96], Monocle [69], 

and Python’s scanpy [97], enabling the use of the tools that best serve the objective at hand. 

Indeed, R has a long history of interoperability with other programming languages. Four 

examples are the Rcpp [98] package for integrating C++ compiled code into R, the rJava 
package to call Java code from within R, the .Fortran() function in base R to call Fortran 

code, and the reticulate CRAN package for interfacing with Python. This interoperability 

enables common machine learning frameworks such as TensorFlow/Keras to be used 

directly in R.

To the newcomer, the wealth of single-cell analyses possible in Bioconductor can be 

daunting. To address the rapid growth of contributed packages within the single-cell analysis 

space, we have summarized and highlighted state-of-the-art data infrastructure (Figure 2), 

methods and software, and organized the packages along a typical workflow (Figure 3) for 

the most common single-cell analyses (Figure 4). Finally, we have developed an online 

companion book that provides more details on focused topics as well as complete coding 

workflows (https://osca.bioconductor.org). This effort will be continuously updated and 

maintained with new packages as they emerge, which increases discoverability of 

Bioconductor resources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Number of Bioconductor packages for the analysis of high-throughput sequencing data 
over ten years.
Bioconductor software packages associated with the analysis of sequencing data were 

tracked by date of submission over the course of ten years. Software packages were uniquely 

defined by their primary sequencing technology association, with examples of specific terms 

used for annotation in parentheses.
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Figure 2: Overview of the SingleCellExperiment class.
The SingleCellExperiment class instantiates an object (SingleCellExperiment herein 

abbreviated sce) capable of storing various datatypes associated with single-cell assays. A 

sce object is organized into components (e.g. rowData, assays, colData, reducedDims). In 

the assays component the rows represent features such as genes (horizontal pink bands), and 

the columns represent cells (vertical yellow band). The rowData and colData components 

can hold information (such as metadata) about the features and cells, respectively. Note that 

in the colData and reducedDims components, cells are represented as rows (horizontal 

yellow bands) and the number of columns in the assays component must match the number 

of rows in the colData and reducedDims components.
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Figure 3: Bioconductor workflow for analyzing single-cell data.
A typical analytical workflow using Bioconductor leads to the creation and evolution of a 

SingleCellExperiment (or sce) object during data processing and downstream statistical 

analysis (left column). An example of a sce object evolving throughout the course of a 

workflow is shown, including visualization, analysis, and annotation (right column).
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Figure 4: Select visualizations derived from various Bioconductor workflows.
Various visualizations associated with preprocessing (blue boxes) and downstream statistical 

analyses (orange boxes). The example data set used throughout was generated as part of the 

Human Cell Atlas [21]). Details on the generation of these figures are described in our 

online companion book (https://osca.bioconductor.org)
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