Skip to main content
. 2020 Jul;10(7):1477–1489. doi: 10.21037/qims-19-872

Table 4. Classification performance of SVM-RFE.

Features sMCI-NC cMCI-NC cMCI-sMCI
Original dimension Optimized dimension AUC Acc (%) Sen (%) Spe (%) Optimized dimension AUC Acc (%) Sen (%) Spe (%) Optimized dimension AUC Acc (%) Sen (%) Spe (%)
Cortical thickness 68 58 0.6989 66.98 59.22 74.31 20 0.8753 81.19 80.37 81.56 63 0.7582 73.4 73.87 72.82
Gray volume 68 62 0.639 61.79 83.49 38.83 44 0.8123 74.31 77.06 71.56 63 0.7326 71.2 70.18 68.69
Mean curvature 68 45 0.6479 60.38 59.22 61.47 48 0.7344 68.18 68.47 67.89 43 0.6645 65.4 70.06 55.62
Surface area 68 43 0.6029 61.32 56.31 66.06 61 0.6197 59.09 63.06 55.05 35 0.6437 64.5 71.17 57.28
hippocampal sub-regions 16 4 0.681 64.62 61.17 67.89 5 0.8511 78.96 78.13 72.63 8 0.726 70.3 70.86 70.63
Combined cortical features 272 223 0.7374 70.75 67.96 73.39 205 0.8863 83.41 85.13 79.36 203 0.7869 75.2 75.36 76.55
Cortical features combined with volume of hippocampal subregions 288 235 0.754 71.86 70.12 73.62 235 0.905 84.64 85.32 81.33 233 0.797 76.9 75.66 78.14

AUC, area under the curve; Acc, accuracy; Sen, sensitivity; Spe, specificity; sMCI, stable mild cognitive impairment; cMCI, converted mild cognitive impairment; NC, normal control; SVM-RFE, support vector machine-recursive feature elimination.