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1  | INTRODUC TION

Cardiomyopathies assessment represents a key role in the setting 
of heart failure and sudden death approach (McKenna, Maron, & 
Thiene, 2017). Compound genetic mutations leading to complex 
phenotype in the setting of cardiomyopathies represent an import-
ant challenge in clinical practice, and genetic tests are helpful in the 
clinical management of patients as they can provide important in-
formation on risk stratification, to achieve personalized therapy in-
dicating differential surveillance strategies among individuals. Here, 
we report a case of a 50‐year‐old woman with congestive heart fail-
ure characterized by dilated cardiomyopathy, diffuse coronary dis-
ease and complete atrioventricular block, and genetic evidence of 

missense mutations in cardiac myosin‐binding protein C (MYBPC3) 
and myopalladin (MYPN).

2  | C A SE REPORT

A 50‐year‐old woman was referred to our cardiovascular depart-
ment for ankles swelling and shortness of breath. An electrocardio-
gram showed sinus tachycardia and complete atrioventricular block 
with ventricular rhythm 40 bpm and diffuse ST depression (Figure 1). 
Then, the patient was admitted to the cardiology intensive care unit 
after a clear evidence of heart failure with peripheral congestion; 
she had a history of nontoxic multinodular goiter and no previous 
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Abstract
Cardiomyopathies caused by double gene mutations are rare but conferred a re-
markably increased risk of end‐stage progression, arrhythmias, and poor outcome. 
Compound genetic mutations leading to complex phenotype in the setting of cardio-
myopathies represent an important challenge in clinical practice, and genetic tests 
allow risk stratification and personalized clinical management of patients. We report 
a case of a 50‐year‐old woman with congestive heart failure characterized by di-
lated cardiomyopathy, diffuse coronary disease, complete atrioventricular block, and 
missense mutations in cardiac myosin‐binding protein C (MYBPC3) and myopalladin 
(MYPN). We discuss the plausible role of genetic profile in phenotype determination.
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history of cardiovascular disease or cardiovascular risk factors. 
An echocardiogram demonstrated a dilated cardiomyopathy with 
end‐diastolic diameter of the left ventricle (LV) of 62 mm, severely 
depressed left ventricle ejection fraction (LVEF), 20%, mild hyper-
trophic septum (13.5 mm), trabecular aspect of lateral and inferior LV 
wall, thrombus in the apex, and severe tricuspid regurgitation with 
inferior vena cava reflow (Figure 2). Furthermore, at a cardiac mag-
netic resonance, the short‐term inversion recovery (STIR) detected 
subendocardial edema in the septum, anterior and lateral walls. Late 
sequences showed subendocardial necrosis at the level of the ante-
rior‐middle and later‐middle segments, and full‐thickness necrosis in 
the lateral‐apical segment.

A coronary angiography showed calcified critical stenosis of 
many proximal vessels and diffuse peripheral atheromasic disease 
with consequent recommendation to surgical revascularization. As 
the patient was asymptomatic for angina with negative troponin test 
and in presence of the complete atrioventricular (AV) block, severe 
LV dysfunction and apical thrombosis, he underwent cardiac resyn-
chronization therapy defibrillator (CRT‐D) and started therapy with 
ACE‐inhibitor, mineralocorticoid receptor antagonist, beta‐blocker, 
warfarin, acetylsalicylic acid, and furosemide. After 1 month, we ob-
served complete regression of apical thrombosis associated to clini-
cal improvement with increased LVEF. Then, the patient underwent 
surgical myocardial revascularization with the mammary artery to 
anterior interventricular artery and venous by‐pass to the obtuse 
marginal and posterior interventricular artery. Five months later, 
the patient was in sinus rhythm with ventricular CRT‐D stimulation, 
NHYA class I, improved contractile function (LVEF 45%–48%) and 
mild tricuspidal insufficiency, still stable at 1 year follow‐up.

Genetic analysis by next‐generation sequencing (NGS), after 
informed consent of the patient, was performed for suspected ge-
netically dilated cardiomyopathy and identified a double mutation 
in 11p11.2, cardiac myosin‐binding protein C (MYBPC3) gene, and in 
10q21.3, myopalladin gene (MYPN). We verified that this patient was 
heterozygous for two missense mutations: the first in gene MYBPC3: 
c.2459G  >  A, p.(Arg820Gln) in exon 24, and the second in gene 
MYPN: c.3335C > T, p.(Pro1112Leu) in exon 18.

3  | MATERIAL S AND METHODS

3.1 | Libraries preparation and Next‐generation 
sequencing (NGS)

Peripheral blood samples were taken from the patient, and genomic 
DNA was isolated by using Bio Robot EZ1 (Quiagen). The quality of 
DNA was tested on 1% electrophorese agarose gel, and the concen-
trations were quantified with Nanodrop 2000 C spectrophotometer 
(Thermo Fisher Scientific).

A library of all coding regions of the 76 genes, including 
genes related to hypertrophic cardiomyopathy, dilated car-
diomyopathy, arrhythmogenic cardiomyopathy, and channel-
opathies, was obtained using the Haloplex target enrichment 
kit (Agilent Technologies) according to the manufacturer's 
instructions. The libraries were pooled, and NGS was per-
formed on a MiSeq sequencer (Illumina) using a MiSeq Reagent 
kit V3 300 cycles flow cell. All putatively pathogenic variants 
were confirmed by Sanger sequencing. Polymerase chain re-
action (PCR) products were sequenced using ABI Prism 3,100 

F I G U R E  1   Sinus tachycardia and complete atrioventricular block with ventricular rhythm 40 bpm and marked diffuse ST depression (red 
arrows indicate P wave) 
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Genetic Analyzer (Thermo Fisher Scientifi) and the BigDye 
Terminator v1.1 sequencing kit (Applied Biosystems, Foster 
City, CA, USA).The produced raw paired‐end reads underwent 
quality checking by using the FastQC tool [Andrews S. (2010). 
FastQC: a quality control tool for high throughput sequence 
data. Available online at: http://www.bioin​forma​tics.babra​ham.
ac.uk/proje​cts/fastqc] and then aligned to the hg19 reference 
genome sequence by means of Bowtie (Langmead & Salzberg, 
2012). Depth of coverage statistics for the target regions was 
calculated by TEQC ver. 3.47 (Hummel, Bonnin, Lowy, & Roma, 
2011). Variants were called by means of the HaplotypeCaller 
tool of GATK ver. 3.58 (McKenna et al., 2010), while functional 
annotation was carried out by ANNOVAR tool, using RefSeq 
gene and transcript annotations (updated to December 2016) 
(Wang, Li, & Hakonarson, 2010). Variants were found in dbSNP 
ver. 150 (Sherry et al., 2001), ExAC ver. 0.311 (Lek et al., 2016), 

and Exome Variant Server (http://evs.gs.washi​ngton.edu/EVS, 
accessed at December 2016), HRC (McCarthy, 2017), Kaviar 
(Glusman, Caballero, Mauldin, Hood, & Roach, 2011) and ClinVar 
(Landrum et al., 2017). Predictions of functional consequences 
for missense variants were further collected by querying the 
dbNSFP ver. 3.2 resource and retrieving precomputed pathoge-
nicity predictions and evolutionary conservation measures (Liu, 
Jian, & Boerwinkle, 2011).

Different filtering strategies were implemented in order 
to determine the candidate causative variants for the patient. 
Interesting variants were those exhibiting relevant functional an-
notations (e.g., they were either missense, or splicing, or stopgain, 
or stoploss or frameshift mutations), clinical significance accord-
ing ClinVar, low (≤0.05) or absent Minor Allele Frequency in public 
population databases, absence in healthy samples or presence in 
samples with same clinical traits.

F I G U R E  2   (a) Echocardiography 
evidence of left ventricular apical 
thrombosis and hypertrabeculation; 
(b) cardiac RMN showing septum 
hypertrophy and necrosis in the lateral‐
apical segment; (c) coronary angiography 
showing diffuse atherosclerosis 
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4  | RESULTS

Next‐generation sequencing revealed two missense variant in het-
erozygous state, one in the exon 17 of the MYPN gene (NM_032578) 
(OMIM 608,517) c.866G  >  C resulting in a p.(Pro1112Leu) substi-
tution (GRCh37/hg19), and one in the exon 24 of the MYBPC3 
gene (NM_000256) (OMIM 600,958) c.2459 G > A p.(Arg820Glu). 
Variants were detected with a depth of coverage >706× and 662×, 
respectively, with elevate quality scores (i.e., Phred quality > 3,000 
and genotype quality  =  99). The amino acid substitution MYBPC3 
(Arg820Glu) was known (dbSNP ID: rs2856655) but very rare 
(0,00,002 estimated frequency by the ExAC and gnomAD database) 
and predicted as deleterious or probably damaging by several soft-
ware tools, including SIFT, PolyPhen2, MutationTaster, CADD, and 
M‐CAP, and is reported to be likely pathogenic in ClinVAr. The amino 
acid substitution MYPN p.(Pro1112Leu) was less rare (dbSNP ID: 
rs71534278; 0,003 estimated frequency by the ExAC and gnomAD 
database), and it is predicted as deleterious or probably damaging by 
several software tools, including SIFT, PolyPhen2, CADD, and M‐
CAP, but its contribution to the phenotype is not clear. The variants 
were confirmed by Sanger sequencing.

5  | DISCUSSION

In this case report, the coexistence of advance heart failure, atrio-
ventricular block, significative and diffuse coronary atherosclerosis, 
and dilated cardiomyopathy in a relatively young woman without ap-
parent cardiovascular risk factors led us to perform genetic screen-
ing, and believing the particular clinical picture could have a deeper 
pathological explanation.

In literature, the MYBPC3 gene is responsible for 40%–50% of 
all hypertrophic cardiomyopathies (HCM) (Sabater‐Molina, Pérez‐
Sánchez, Hernández Del Rincón, & Gimeno, 2018), but MYBPC3 mu-
tations can be associated to overlapping phenotype leading several 
forms of cardiomyopathies, as dilated cardiomyopathy (DCM) and left 
ventricular noncompaction (Sedaghat‐Hamedani et al., 2017; Zhao et 
al., 2015). Most MYBPC3 mutations are heterozygous and carriers 
often have a late disease onset with a benign disease progression 
(Carrier, Mearini, Stathopoulou, & Cuello, 2015). Konno and collab-
orators confirmed that elderly patients with the p.(Arg820Gln) mu-
tation in the MYBPC3 gene may show “burnt‐out” phase HCM, with 
DCM phenotype appearance, characterized by LV systolic dysfunc-
tion with a diffuse LV hypokinesis, slow LV ejection fraction, and mild 
fibrosis, without myocardial hypertrophy and myofibrillar disarray at 
myocardial biopsy (Konno et al., 2003). This underlines the difficult 
differential diagnosis between “burnt‐out” dilated HCM and DCM, 
as in our case, with a mild hypertrophic form evolved into dilatation.

The occurrence of complete atrioventricular block could have 
many explanations; among them, we could identify an ischemic‐re-
lated block at infrahissian level, explained by diffuse coronary ath-
erosclerosis. On the other hand, MYBPC3 could be implicated by 
unknown mechanism, as already suggested by a previous case, a 

16‐year‐old girl affected by missense mutation, with syncope and 
ICD implantation, and subsequent evidence of complete heart block 
(Walsh et al., 2012); furthermore, Chida and collaborators suggests 
a predictive role of MYBPC3 mutation for sudden death in patient af-
fected by hypertrophic cardiomyopathy, maybe related to abnormal 
heart conduction over ventricular arrhythmias (Chida et al., 2017).

Myopalladin mutations cause various forms of cardiomyopathy 
via different protein–protein interactions as disturbed myofibrillo-
genesis and nuclear shuttling and lead to abnormal assembly of ter-
minal Z‐disk within the cardiac transitional junction and intercalated 
disk (Purevjav et al., 2012). The p.(Pro1112Leu) residue of MYPN is 
well conserved among the orthologous proteins, the replacement 
of the polar proline for a hydrophobic leucine may not be patho-
genic on its own, (Duboscq‐Bidot et al., 2008), but the coexistence 
of other mutations may modulate the phenotype (Ingles et al., 2005; 
Tsoutsman, Bagnall, & Semsarian, 2008).

Myopalladin is part of the family members of palladin that in-
cludes also myotilin, expressed in skeletal and cardiac muscle.

The ability to connect with several molecules, in particular with 
α‐actinin, localized along stress fibers and at the Z line of cardiac mus-
cles, suggests that palladin family has the potential to serve as a cyto-
skeleton scaffold and signaling mediator (Jin et al., 2010). Palladin may 
also play a role in the pathology of myocardial infarction; several lines 
of evidence suggest that palladin is involved in vascular smooth mus-
cle cell phenotypic switching and migration, contributing to formation 
and repair of lesion in response to vascular injury or atherosclerosis 
disease (Shiffman et al., 2005). In our patient suffering from diffuse 
coronary artery disease without the common cardiovascular risk fac-
tors, we hypothesized that the myopalladin mutation could favor the 
atherosclerosis process due to its similarity with the palladin, a critical 
paralog implicated in vascular plaque progression (Modos et al., 2016; 
Waard, Achterberg, Beauchamp, Pannekoek, & Vries, 2003). Whether 
confirmed in future studies, we would much more take in consider-
ation genetic profiling in cardiac ischemic disease, ensuing strict car-
diovascular risk assessment in patient offspring.

6  | CONCLUSION

Atrioventricular block can induce chronic heart failure, and electro-
cardiogram represents the gold standard for detection of rhythm 
disturbance. Furthermore, a complete evaluation of the patient, 
from anamnesis to cardiac resonance and coronary angiography, 
can lead to a better definition of clinical puzzle, while genetic pro-
file allows the identification of genetic variants possibly implicated 
in the clinical picture. The missense mutations in MYBPC3 gene 
(c.2459G > A, p.(Arg820Gln)) could be responsible for dilated cardio-
myopathy and AV block, while the mutations in MYPN (c.3335C > T, 
p.(Pro1112Leu)) could be for the first time described in human as 
associated to diffuse and aggressive coronary atherosclerosis, and 
may contribute to phenotypic variability.

Cardiomyopathies caused by double‐gene mutations are rare 
but conferred a remarkably increased risk of end‐stage progression, 
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arrhythmias, and poor outcome. Compound genetic mutations leading 
to overlapping phenotype in the setting of cardiomyopathies represent 
an important challenge in clinical practice, and genetic tests are helpful 
in the clinical management of patients as they can provide important 
information on risk stratification, to achieve personalized therapy indi-
cating differential surveillance strategies among individuals.
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