Skip to main content
. 2020 Jun 12;12(6):e8578. doi: 10.7759/cureus.8578

Table 3. Comparison of resultant matrices computed from 3-point change of basis technique and 5-point linear least squares method. The matrices are presented from CRW-to-MidACPC and the reverse as 3 x 4, where the 3 x 3 components are the rotational vectors and the last column is the translation. One can observe that the matrices are very similar and a simple delta, subtraction, between each is presented. Analysis of the 3 x 3 vector component of each matrix by orthonormality and orthogonality are close to 1 and 0, respectively, which would be expected in this affine system.

CRW = Cosman-Roberts-Wells; Mid-ACPC = Middle of Anterior Commissure (AC) and Posterior Commissure (PC); AP = Antero-Posterior; LAT = Lateral; VERT = Vertical.

CRW-         MidACPC-        
MidACPC Matrix 1:       CRW Matrix 2:      
Change of Basis 0.993792 -0.03941 0.104036 2.05   0.993792 0.032717 -0.106 -1.726
3-points 0.032717 0.997329 0.065298 2.5   -0.03941 0.997329 -0.061 -2.185
  -0.10633 -0.06149 0.992428 3.7   0.104036 0.065298 0.9924 -4.049
  Matrix 3:         Matrix 4:      
Linear Least Squares 0.993983 -0.04348 0.104011 2.021192   0.993471 0.036872 -0.107 -1.707
5-points 0.033201 0.995652 0.065853 2.472828   -0.03998 0.998827 -0.062 -2.161
  -0.10593 -0.06087 0.992991 3.680035   0.103533 0.065161 0.9919 -4.021
Delta -0.00019 0.004065 2.51E-05 0.028808   0.000322 -0.00415 0.0002 -0.018
  -0.00048 0.001677 -0.00056 0.027172   0.000563 -0.0015 0.0006 -0.024
  -0.0004 -0.00062 -0.00056 0.019965   0.000503 0.000137 0.0005 -0.028
    Orthonormality Orthonormality Orthonormality Orthogonality Orthogonality Orthogonality    
    AP LAT VERT AP-LAT LAT-VERT AP-VERT    
  Matrix 1 1 1 1 -1.39E-15 1.19E-15 3.25E-15    
  Matrix 2 1 1 1 1.26E-15 -1.33E-15 -2.73E-15    
  Matrix 3 1.000711 0.996762 1.000959 -0.00344 0.00127 0.000633    
  Matrix 4 0.999687 1.003105 0.998815 0.003722 -0.0006 -0.00038