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Abstract

Efficient calculation of the light diffraction in free space is of great significance for tracing electromagnetic field
propagation and predicting the performance of optical systems such as microscopy, photolithography, and manipulation.
However, existing calculation methods suffer from low computational efficiency and poor flexibility. Here, we present a
fast and flexible calculation method for computing scalar and vector diffraction in the corresponding optical regimes
using the Bluestein method. The computation time can be substantially reduced to the sub-second level, which is 10°
faster than that achieved by the direct integration approach (~hours level) and 107 faster than that achieved by the fast
Fourier transform method (~minutes level). The high efficiency facilitates the ultrafast evaluation of light propagation in
diverse optical systems. Furthermore, the region of interest and the sampling numbers can be arbitrarily chosen,
endowing the proposed method with superior flexibility. Based on these results, full-path calculation of a complex optical
system is readily demonstrated and verified by experimental results, laying a foundation for real-time light field analysis for

realistic optical implementation such as imaging, laser processing, and optical manipulation.

Introduction

Diffraction is a classic optical phenomenon accounting
for the propagation of light waves. The efficient calcula-
tion of light diffraction is of significant value toward the
real-time prediction of light fields in microscopy’, laser
fabrication”, and optical manipulation®’. The diffrac-
tion of electromagnetic (EM) waves can be cataloged into
scalar diffraction and vector diffraction according to the
validation of different approximation conditions. Scalar
diffraction considers only the scalar amplitude of one
transverse component of either the electric or the mag-
netic field with certain simplifications and approxima-
tions®. Scalar diffraction can yield sufficiently accurate
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results if the diffracting aperture and observing distance
are both far larger than a wavelength, which is most valid
for optical systems with a low numerical aperture (NA).
For high-NA optical systems, polarization effects play a
paramount role near the focal spot, and thus, vector dif-
fraction must be adopted for light field tracing”''.
Although mathematical expressions for optical diffrac-
tions have been presented authoritatively for ages, fun-
damental breakthroughs have rarely been achieved in
diffraction computations. The direct integration method
was first used to calculate both scalar and vector diffrac-
tion'>'*, However, the point-by-point calculation fashion
renders the computation extremely tedious and ineffi-
cient. Fast Fourier transform (FFT)-based algorithms have
been developed to perform fast calculations of light dif-
fraction'>~'°, However, these methods can generate only
the light field distribution within a fixed region of interest
(ROI) and sampling numbers (i.e., resolution) determined
by the intrinsic characteristic of the Fourier transform
(FT), lacking flexibility in computing the desired local
distribution with variable sampling intervals. Therefore,
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the versatile computation of optical diffraction in an
efficient and flexible fashion is highly demanded for wide
applications.

In addition, scalar and vector diffractions are separately
analyzed in conventional studies because different integral
formulas are needed for each case. However, in most
practical apparatuses, scalar and vector diffractions co-
exist for different parts of the optical system. For example,
in typical systems for optical microscopy, fabrication and
manipulation, a monochromatic beam propagates over a
long distance by passing optical elements such as focusing
lenses, expanders, and collimators before entering an
objective lens with a high NA. For the preceding part
where the paraxial condition is valid, scalar diffraction is
satisfactory for the light propagation evaluation. For the
part behind the high-NA objective that meets the Debye
approximation, vector diffraction is required for the
accurate evaluation of the light propagation by taking into
account each polarization component and non-paraxial
propagation of light as well as apodization function of
optical systems. Therefore, a facile and efficient method
with the capacity for light propagation calculation along
the entire optical path, which is termed full-path calcu-
lation, is highly desired for the comprehensive analysis of
numerous realistic application scenarios.

Here, we propose an efficient full-path calculation
method by exploring the mathematical similarities in
scalar and vector diffraction. The scalar and vector dif-
fraction are both expressed using the highly flexible
Bluestein method. A fast light field evaluation over the
entire optical path is achieved with arbitrarily defined
ROIs and sampling numbers. This paper is organized as
follows: first, the integral formulas for scalar and vector
diffraction are revisited and deduced in FT forms. Second,
the Bluestein method is utilized and reformed to com-
pletely supplant the FT in a more flexible fashion. Based
on this, optical diffractions are evaluated with designated
ROIs and sampling numbers. Third, representative
examples are given for both scalar and vector diffraction
to demonstrate the improvement in efficiency and flex-
ibility. Finally, full-path light tracing of a laser holographic
system is presented with unprecedented computation
speed and agrees well with the experimental results,
showcasing the superior ability of the Bluestein-based
diffraction calculation. The proposed method holds great
promise in the universal applications of optical micro-
scopy, fabrication, and manipulation.

Results
Scalar and vector diffraction integral in the form of a
Fourier transform

For scalar diffraction, as shown in Fig. 1a, the electric
field at a point (%, y, z) in the Cartesian coordinates can be
obtained based on the Huygens—Fresnel principle
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and expressed by the Rayleigh—Sommerfeld diffraction
integral®:

k
E(x,y,2 *A//EO u,v,0)x exp}(ﬁmr) x cos 0 dudy

(1)

where r = \/(x —u)’+(y—v)’+22 is the distance
between the source point and the observation point of
interest. k= 2m/A is the wavenumber. In the condition of
the Fresnel approximation with a Fresnel number F>1,
the third term and higher orders in the Taylor expression
of r can be ignored, that is, r = z +W. In the
denominator of Eq. (1), r can be further approximated
with only the first term (r=z). Moreover, the paraxial
approximation ensures cosf =~ 1. In this way, the complex
electric field can be described by the Fresnel diffraction

integral:
(ikz)
_expzz//Eouvo
ilz

x exp{zz (2 — u)*+(y —v)°] }dudv
(2)
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which can be further rewritten as:
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Here, we define:
exp(ikz) x exp (ka 1y ) @)
Fy= -
ilz
b4
Fexp[/lz (u*+v )} (5)

Therefore, the integral Eq. (3) can be expressed in terms
of the two-dimensional FT:

E = Fyx F(Eyx F) (6)

here F represents the two-dimensional FT. Moreover, as
with the other type of scalar diffraction, Fraunhofer
diffraction in the far field can be expressed by
E = Fyx F(E,), which can be regarded as a special case
of Fresnel diffraction passing through a converging lens.
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Fig. 1 lllustrative diagrams of scalar and vector diffraction. a Geometry for scalar diffraction calculation. b Geometry for vector diffraction calculation
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Therefore, scalar diffraction can be computed across the
xy-plane using an FT-based approach.

Scalar diffraction can be used to effectively compute the
complex amplitude distribution of many optical systems
with a few approximations, as described above. However,
it is known that the polarization components are changed
due to large refractivity after passing through a high-NA
non-paraxial system, and scalar diffraction is incapable of
achieving proper results. The vectorial Debye diffraction
integral, established by Richards and Wolf*!, has to be
adopted to analyze the complex EM field of each
polarization component (Supplementary Information
Section 1). The optical layout is shown in Fig. 1b.

Due to the refraction of the non-paraxial tight focusing
system, the electric field components (polarization com-
ponents ¢’; and €,) on the entrance pupil P, are trans-
formed into a spherical reference surface P, (€, €m, and
¢,). The transformation can be expressed in Cartesian

. 20
coordinates as”":

E, = ApVcosOxM x E; (7)

M is the transform matrix of the polarization from the
entrance surface to the converging spherical surface.
AoVcosf is the apodization factor accounting for the
energy conservation. The propagation of the electric field
from the reference surface P, to the imaging point p (, ¥, 2)

near the focus is expressed by the Debye integral:

E = —%// E.x expli(k.z — kwx — kyy)|dZ  (8)
s

The definition of ?rcan be found in Supplementary
Information Section 1. By performing the integration over
the planar surface P, instead of the surface P, (Supple-
mentary Information Section 2):

e[ [Fromnend
A Q
x exp[—i(kex + kyy) ] dkydk, 9)

which can be rewritten in the form of an FT:

f(x, y,2) = — %F {f}, x exp(ik,z)/cos 6}

= — %F [Mx E.ix exp(ik,z)/V cos 6}

(10)

In brief, both scalar diffraction and vector diffraction
can be expressed by the FT. FFT algorithms in modern
computer systems allow for fast and accurate calculations.
The similarity between these two diffractions is obvious
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from a mathematical point of view: the vector diffraction
integral is equivalent to the scalar Fraunhofer diffraction
in the case of a low-NA optical system where 1/cosf = 1.

Although the FFT-based optical calculation is much
faster than the direct integration method, it results in
inevitable drawbacks: the resultant output field has a fixed
transverse dimension and unchangeable sampling num-
bers determined by the dimension and sampling size of
the input aperture for a given distance. The dimension of
the output field is:

Ad

Dy =22 (11)

s

where d is the distance between the input aperture and
output plane. p; is the sampling size of the input
aperture. The sampling numbers of the output plane
are rigidly equivalent to those of the input aperture.
The restriction is brought about by the intrinsic
characteristic of the FT and greatly limits the flexibility
in light propagation calculations. For example, the
input aperture must be enormously expanded with the
aid of the zero-padding approach when a small portion
of the output plane is required with high resolution,
which inevitably leads to a large increment of the
computation time.

Bluestein method to compute Fourier transform with
arbitrary ROl and sampling resolution

Regarding mathematics, to achieve the required band-
width and resolution in the frequency domain, the
appropriate zero-padding operation is needed to extend
the dimension of the original input sequence'®. For most
applications in laser manipulation and lithography, only a
small fraction of the output field with high resolution is
needed to obtain sufficient details, resulting in large
amounts of zero-padding. This results in a severe waste of
resources, as most of the results are discarded. The
operation of the zero-padding inevitably increases the
computation time and the demand for memory usage.
Moreover, the resultant output region remains
unchangeable, greatly limiting its potential in practical
applications. Here, the Bluestein method is adopted to
evaluate the scalar and vector diffraction calculations. The
Bluestein method is an elegant method conceived by L.
Bluestein®® and further generalized by L. Rabiner et al.*?
that is capable of performing more general FTs at arbi-
trary frequencies as well as boosting the resolution over
the full spectrum. The Bluestein method offers us a
spectral zoom operation with high resolution and arbi-
trary bandwidth. This advantage is enabled by computing
the z-transform along spiral contours in the z-plane for an
input sequence (Supplementary Information Section 3
and Fig. S1). The computational complexity is O[(M + N)
log»(M + N)], manifesting an FFT algorithm. The method
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is based on the z-transform along a spiral contour in the
z-plane defined by A and W:

N-1 N-1
X[m] =) x[nxz™" = Zx[n]xA’”x w
n=0 z=Ax W—m n=0

(12)
here m = [0, - -, M — 1]. M is the length of the transform.
N is the length of input sequence. A specifies the complex
starting point of the z-plane spiral contour of interest, and
W specifies the complex scalar describing the complex
ratio between points along the contour. Note that the case
of A=1, W=-exp(—i2n/N), and M =N corresponds to
the discrete Fourier transform (DFT), which computes the
z-transform along the unit circle with a finite duration.
More generally, the method can be used to calculate the
DFT between an arbitrary starting point f; and ending
point f5 (i.e., the tuneable frequency bandwidth relative to
the total frequency range f;) with arbitrary sampling
numbers M.

The practical implementations of the Bluestein
method for enhanced DFT computation deserve addi-
tional comments. First, a 2D FT is needed for the com-
putation of both scalar and vector diffraction. The
Bluestein method should be adopted in both the column
and the row dimensions to fulfill this requirement. Sec-
ond, the Bluestein method internalizes padding of the
input array with zeros at the tail. However, symmetric
zero-padding around the input array is needed for the
simulation of realistic optical systems. Third, an addi-
tional operation is needed to shift the zero-frequency
component to the center of the array before and after the
DFT to eliminate the high-frequency oscillation in the
phase information. To address these issues, the defini-
tion of parameters A and W should be rearranged, and
phase shifting factor Py should be included at the end
of the calculation (see Supplementary Information Sec-
tion 3 and Figs. S2—54).

By performing these adjustments, the Bluestein
method can be developed as a fast approach for light
diffraction calculation with superior flexibility: it allows
for the selection of arbitrary segments in the imaging
plane with arbitrary resolution, providing competitive
efficiency and flexibility over direct integration and the
FFT methods.

Fast numerical implementation of the Bluestein method in
scalar Fresnel diffraction

Figure 2 illustrates the scalar calculation with a para-
digm of the converging spherical wave propagation, which
is generated by a plane wave passing through a convex
lens. The phase profile of the lens is shown in Fig. 2a,
which is equivalent to the phase plate after being wrapped
between 0 and 2 (Fig. 2b). The optical configuration is
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Fig. 2 Scalar calculation of the converging spherical wave. a Phase profiles of the convex lens (gray line) and the corresponding phase plate (red
line). b 3D rendered diagram of the phase plate. c lllustration of the optical setup. d Intensity and e phase distributions in the focal plane (z=
600 mm). f Intensity and g phase distributions in the longitudinal direction. h-k Line plots corresponding to (d-g), calculated using three different
methods. | Dependence of the computation time on the number of sampling points in one dimension. An incident light field with sampling points
of 1080 x 1080 and an interval of 8 um (i.e, width of 8.64 mm) is fixed for each calculation (the same hereinafter unless otherwise specified).
m Comparison of the computation time for the light field in the xy-plane using different methods. Here, the target region with a width of 0.2 mm is
fixed with sampling points of 1080 x 1080. n Comparison of the computation time for the light field in volumetric three dimensions and the cross-
sectional yz-plane using different methods. Here, 150 sliced layers are calculated

sketched in Fig. 2c, with the parameters A =800 nm,
f=600mm, and D=8.64 mm. Figure 2d, e shows the
optical field distribution in the focal plane in terms of the
intensity and phase. Figure 2f, g shows the cross-sectional
intensity and phase distributions in the light propagation
direction. The corresponding line plots of the intensity
and phase are given in Fig. 2h—k. A comparison between
the Bluestein method and traditional direct integration
and FFT methods is also made, from which we can see
excellent agreements. It is revealed that the Bluestein

method can calculate the scalar light diffraction with high
accuracy.

The Bluestein method has a superior advantage in the
computation time cost over the direct integration and
FFT methods. Due to the tedious point-by-point calcu-
lation method, the direct integration method is associated
with two cycling loops, and the computation time
increases drastically with the calculation points of the
target plane (with a computational complexity of O (M x
N?)). For the case of the FFT method, a zero-padding
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operation is needed to fulfill the requirement for the pre-
set target sampling numbers, resulting in a rapid increase
in computation time with the sampling points. As shown
in Fig. 21, with the increase in the sampling points along
one coordinate axis, the Bluestein method exhibits its
obvious superiority compared with the other two meth-
ods. This advantage makes the method particularly
applicable to scenarios where large sampling points are
needed, such as high-resolution microscopy. For the case
in Fig. 2d, e, where the sampling points in the entrance
pupil and output field are the same (M = N =1080) and
the ROI is 0.2 x 0.2 mm, the computational cost is ~13.7 h
for the direct integration method, making it unsuitable for
practical applications. For the FFT method, the compu-
tational cost is improved to 68, as shown in Fig. 2m. In
comparison, the computation time is only 0.67 s using our
proposed Bluestein method, which is 10° and 10* times
less than those of the direct integration method and FFT
method, respectively. The three-dimensional volumetric
light field (Supplementary Information Fig. S5) can be
reconstructed using cross-sectional light fields by calcu-
lating the lateral planes layer by layer. As depicted in
Fig. 2n, the computation time for the direct method is
excessively long to obtain the volumetric light field
(~85 days). It takes 2h to calculate the cross-sectional
light field in the longitudinal yz-plane. By using the FFT
method, the computational cost is the same (2.8 h) for
both the volumetric and cross-sectional light fields
because the ROI cannot be tuned due to the intrinsic
characteristic of the FT. Owing to the fast computation
property of the Bluestein method, calculation of the 3D
optical field can be accomplished in <100 s. The efficiency
enhancement is on the same order as that in the lateral
xy-plane. More examples of scalar diffraction are given in
Supplementary Information Section 4 and Fig. Sé6.

In addition to the great improvement in computational
efficiency, the Bluestein method has remarkable flexibility
compared with the FFT method. That is, an arbitrary ROI
can be defined with arbitrary resolution. This feature is
illustrated by reconstructing a computer-generated holo-
gram (CGH), as shown in Fig. 3. Evaluation of the light
propagation after being modulated by a CGH is essential
for predicting the performance of optical holographic
tweezers®*, holographic displays*®, and laser holographic
processing®®*’. As shown in Fig. 3a, a CGH is generated
by the weighted Gerchberg—Saxton (GSW) algorithm®>°,
After FT by a converging FT lens, the designed pattern
can be reconstructed (Fig. 3b). The process involves two
scalar diffraction calculations: one is from the CGH to the
FT lens, and the other is from the FT lens to the recon-
struction plane. Figure 3c—f shows the intensity distribu-
tions with varying regions in the reconstruction plane and
constant sampling points (1080 x 1080). Figure 3g—j
shows the corresponding phase distributions. It is
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validated that the Bluestein method possesses fine flex-
ibility compared with the FFT method.

Fast numerical calculation of the vectorial Debye
diffraction

The vectorial nature of light is essential for optical
systems with a high-NA aperture or specific polarization,
such as radial and azimuthal polarizations®**'. Figure 4a
illustrates the focusing of radially polarized light by a
high-NA aplanatic objective (NA: 1.4). By using the pro-
posed Bluestein method in the vectorial Debye—Wolf
integral, the light field distribution near the focus can be
rapidly calculated (insets of Fig. 4a). The results are
consistent with those computed by direct integration and
the FFT methods, as reflected by the line plots of the light
intensity along the transverse and longitudinal directions
in Fig. 4b, c.

The optical vortex generated by a spiral phase plate
(Fig. 4d), in cooperation with circular polarization, plays a
key role in super-resolution stimulated emission deple-
tion microscopy®* and nano-lithography®’. A doughnut-
shaped focus profile with a dark center is used as the
depletion beam to eliminate fluorescence or poly-
merization. Figure 4e, j shows the optical intensity pro-
files of the optical vortex in the lateral xy and longitudinal
yz-planes, respectively. An engineered focus with a
symmetric doughnut shape can be generated. Moreover,
the light components in different polarizations can be
obtained efficiently using our Bluestein method, as shown
in Fig. 4f—i, k—-m. It can be seen that all the light com-
ponents have dark central intensities close to zero and
the spiral phase. The light in the transverse polarizations
is dominant over the longitudinal polarization. The
Bluestein method also endows the vectorial calculation
with high flexibility compared with the traditional FFT
approach. Figure 4n, o shows the enlarged intensity
profiles in the ROIs labeled in Fig. 4f, g, respectively.
Another example of the usage of the Bluestein method
for vector diffraction is shown in Supplementary Infor-
mation Section 5 and Fig. S7. The optical information in
the arbitrary ROIs can be investigated in detail without
increasing the computational cost, making the Bluestein
method advantageous in evaluating localized high-
resolution light distributions for the application of
microscopy and photolithography.

For the computation time, the Bluestein method also
exhibits great superiority. Here, we consider the calcula-
tion from the entrance pupil with ~10° sampling points to
the exit pupil with the same points in the xy-plane, and
100 layers along the optical axis are calculated for volu-
metric and cross-sectional light distributions in the
yz-plane. As shown in Fig. 4p, the direct method requires
57.16 min to calculate the lateral light field. 95.3h is
needed for the volumetric 3D light field distribution, and
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22.78 min is needed for the sliced yz-plane. An acceptable
time (2.88 s) is needed for the FFT method to calculate the
xy-plane. However, an impractical 280.4s is needed to
obtain the light distribution in the volumetric three
dimensions and the two-dimensional yz-plane. In con-
trast, only 0.2 s is consumed by the Bluestein method for
calculation in the xy-plane. Moreover, only 9.34 and
12.19 s is needed to achieve the 2D cross-sectional and 3D
volumetric light fields. Note that the computation time
increases much more quickly with the sampling numbers
of the ROI for the direct method and FFT method than
for the Bluestein method, e.g., more than 10 days are
needed for the direct method and 126.5 s is needed for the
FFT method to acquire transverse light distributions in
the xy-plane when the number of sampling points
increases to ~10° (1080 x 1080), while only 1.78 s is nee-
ded for the Bluestein method, which is five orders of
magnitude less than that needed for the direct method
and 107 times less than that for the FFT method.

Full-path optical calculation with superior flexibility and
efficiency

As discussed above, both the scalar and vector diffrac-
tion can be efficiently calculated by the Bluestein method.
Based on this, the full-path optical calculation and tracing
can be performed with high flexibility and efficiency.
Figure 5a illustrates a representative optical layout for
laser holographic processing and holographic manipula-
tion. This setup can be further adopted for two-photon
scanning confocal microscopy. Here, a phase-only spatial
light modulator (SLM, Holoeye Pluto NIR-1I, resolution:
1920 x 1080) is used to modulate the wavefront of the
laser by loading a predesigned CGH. A combination of a
half-wave plate and polarization beam splitter is utilized
to attenuate the laser power. A 4f configuration consisting
of Lens 1 (f= 600 mm) and Lens 2 (f=200 mm) is placed
between the SLM and aplanatic objective (100x, NA: 1.4).
It is a typical optical system involving both scalar dif-
fraction and vector diffraction during light propagation.
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First, we simulate the multi-foci optical system, which
can be used for holographic tweezers, laser parallel pro-
cessing and data recording. Figure 5b is the corresponding
CGH for the generation of a 9 x9 multi-foci array. A
linearly polarized femtosecond laser (800 nm, emitted
from Chameleon Vision-S, Coherent) is modulated by the
CGH. After the FT of Lens 1, a multi-foci array is gen-
erated (Fig. 5¢). At the back of the objective, the phase and
intensity distributions are retrieved as shown in Fig. 5d, e.
The phase profile closely resembles the CGH, validating
the accuracy of the Bluestein-enabled calculation of scalar
diffraction. The light beam is slightly smaller than the size
of the entrance pupil of the objective, ensuring that the
phase-modulated beam can be fully transformed by the
objective. In the focal plane of the objective, a diffraction-

limited 9 x 9 multi-foci array is generated (Fig. 5f). The
full-path calculation can be accomplished with high effi-
ciency in <4s. The experimentally measured multi-foci
intensity (Fig. 5g) agrees well with the simulation. With
the help of the highly flexible Bluestein method, a detailed
analysis of a single focal spot is enabled, as shown in
Fig. 5h, revealing that a Gaussian focus is generated with
linear polarization. The light field in the longitudinal
section can be readily computed, and the spatial uni-
formity can be investigated (Fig. 5i).

Another universal example is given in Fig. 5j—m, where
a CGH is encoded on the SLM to generate a pattern as
discussed in Fig. 3. By using the Bluestein full-path cal-
culation method, the light field of the desired pattern can
be simulated in the focal plane of the objective (Fig. 5j),



Hu et al. Light: Science & Applications (2020)9:119

Page 9 of 11

a
Attenuator - Laser ‘ SLM
Vo — & . HWP o Lens1
B /
f f,
"l f 2 2 . . PBS . Lens2
P
Mirror r Objective
e .
3 Intensity .
2
1
0
-1
-2
-3
f Simulation |
1 1
0.8 0.8 —— Simulation
06 06 g 1.0 Experiment
0.4 04 =
2 05
0.2 0.2 _gé
0.0 .
-24 -12 0 12 24
. X (um)
[ Simulation . m Experiment ;
0.8 108
0.6 0.6
0.4 0.4
0.2 0.2
Fig. 5 Full-path calculation of a representative optical system. a Sketch of the optical system. S: the plane on the panel of the SLM. P: the focal
plane of Lens 1. £: the entrance pupil of the objective. F: the focal plane of the objective. (b) CGH displayed on the SLM for the generation of a 9 X 9
foci array. € The foci array on the focal plane of Lens 1 (P-plane). d Phase distribution and e intensity distribution on the entrance pupil of the
objective (E-plane). f Simulated and g measured multi-foci array generated on the focal plane of the objective (F-plane). h Enlarged intensity profile of
a single focal spot in the array. The arrows indicate the polarization directions. i Longitudinal intensity profile and corresponding line plot of the foci
array. j Simulated and k measured intensity distribution on the F-plane when the CGH for the generation of the pattern “E" is encoded on the SLM.
I, m Enlarged intensity profiles of the pattern corresponding to (j) and (k) with the same sampling points as in (i)

consistent with the experimental result (Fig. 5k). By taking
advantage of the high flexibility of the Bluestein method, a
magnified image of an arbitrary ROI can be calculated
with arbitrary resolution and good accuracy in compar-
ison with the experimental result, as shown in Fig. 5], k.
Another example of the usage of the Bluestein method for
vector diffraction is shown in Supplementary Information
Section 6 and Fig. S8. In brief, full-path light tracing of the
entire optical system can be accomplished by the Blue-
stein method with high efficiency and flexibility, unfolding

its capacities in the real-time prediction and evaluation of
optical performance in advanced microscopy, laser
manipulation, and photolithography.

Discussion

The proposed Bluestein-based method provides a fun-
damental improvement in optical diffraction calculations.
The advantages of the method lie in the following three
aspects. First, the computation method for light diffrac-
tion is superfast, allowing for the real-time prediction of
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light field propagation for diverse implementations.
Second, the method has great flexibility, without loss of
accuracy and efficiency. The desired ROI can be freely
chosen, and the sampling numbers can be arbitrarily
tuned. Third, the method shows good universality. It
suits all diffraction conditions, such as phase modula-
tion, amplitude filtering, polarization conversion, and
focusing transform. In particular, this method facilitates
the simulation and optimal design of metasurfaces®*>°,
as exemplified in Supplementary Information Section 7
and Fig. S9. Both scalar and vector diffraction can be
computed using this method, making this method pro-
mising for full-path propagation evaluation in broad
applications of optical microscopy, lithography, and
optical manipulation.

In addition, the applicability of this method needs to be
explicated for realistic implementations. First, some
approximation conditions are assumed for both vector
and scalar diffraction. For vector diffraction, the lens is
assumed to obey Abbe’s sine condition. For scalar dif-
fraction, the Fresnel approximation should be valid. It is
worth noting that Fraunhofer diffraction can also be
implemented using the Bluestein method with slight
modification. Second, it is important to take stringent
precautions against aliasing effects. When the diffraction
distance of scalar diffraction is too small or the focal shift
of vector diffraction is too long, obvious aliasing is likely
to occur because the sampling condition no longer
satisfies the Nyquist sampling condition.

In summary, an efficient calculation method is devel-
oped to evaluate light diffraction with high flexibility and
efficiency. First, a set of mathematical preliminaries is
given to express the scalar and vector diffraction integrals
in the form of an FT and then unified using the Bluestein
method. Examples for both scalar and vector diffraction
are demonstrated to reveal that the computational effi-
ciency and flexibility are greatly improved. Calculation of
the light field is realized at the sub-second time level
compared with several minutes using the FFT method or
hours using the direct integration method. Full-path light
tracing is finally demonstrated using the Bluestein
method. This method holds great potential not only in the
fast prediction of numerous optical systems but also in the
realm of signal processing for acoustic and other
communication waves.

Materials and methods
Computational environment

All the calculations are performed on a personal laptop
with an Intel processor I5 2.50 GHz and 8 GB of memory,
running the Windows 10 Professional operating system.
The code is written, compiled and run in the MATLAB
R2019a software. All the comparison studies on efficiency
are performed in the same computational environment.
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Laser holographic system

The laser holographic system consists of a Ti:sapphire
femtosecond laser oscillator (Chameleon Vision-S,
Coherent) with a central wavelength of 800 nm, a repe-
tition rate of 80 MHz, and a pulse width of 75 fs. A phase-
only reflective liquid crystal SLM (Pluto NIR-2, Holoeye)
is utilized for the phase modulation, which features a
1920 x 1080 resolution and a 8 um pixel pitch. In the
experiment, only the central portion of the SLM with
1080 x 1080 pixels is used to modulate the wavefront,
while the other pixels are set to zero. A phase hologram
pattern with 256 different shades of gray is loaded onto
the SLM, corresponding to the phase modulation depth
from O to 2. A CCD camera is used to capture the light
field distribution.
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