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A global dataset of surface 
water and groundwater salinity 
measurements from 1980–2019
Josefin Thorslund   1,2 ✉ & Michelle T. H. van Vliet   1

Salinization of freshwater resources is a growing water quality challenge, which may negatively impact 
both sectoral water-use and food security, as well as biodiversity and ecosystem services. Although 
monitoring of salinity is relatively common compared to many other water quality parameters, no 
compilation and harmonisation of available datasets for both surface and groundwater components 
have been made yet at the global scale. Here, we present a new global salinity database, compiled 
from electrical conductivity (EC) monitoring data of both surface water (rivers, lakes/reservoirs) and 
groundwater locations over the period 1980–2019. The data were assembled from a range of sources, 
including local to global salinity databases, governmental organizations, river basin management 
commissions and water development boards. Our resulting database comprises more than 16.3 million 
measurements from 45,103 surface water locations and 208,550 groundwater locations around the 
world. This database could provide new opportunities for meta-analyses of salinity levels of water 
resources, as well as for addressing data and model-driven questions related to historic and future 
salinization patterns and impacts.

Background & Summary
Freshwater salinization is a growing water quality challenge, affecting both surface and groundwater resources1,2. 
Salinization of freshwater resources may have natural causes, arising from weathering, atmospheric deposition 
and saltwater intrusion, but rising salinity also occurs due to human activities, such as land alterations, road salts 
(for de-icing) and irrigation return flows3. High salinity levels can negatively impact both sectoral water use, 
including drinking water supply and irrigation, as well as biodiversity and ecosystem health4–6. Although increas-
ing attention is being payed towards problems of freshwater salinization, assessing its extent and magnitude is still 
challenging and several research gaps remains7,8.

Improving water quality is a central part of the UN Sustainable Development Goals (SDGs) and data collec-
tion and sharing have been communicated as important steps for reaching associated water quality targets9,10. 
Access to reliable water salinity data is critical for increased understanding of salinity issues and its drivers, 
and for developing efficient management strategies11,12. In addition, using observed salinity data in modelling 
approaches can contribute to better process understanding and in reducing model prediction uncertainty, ena-
bling better water quality projections under global change13,14. Although the number of studies sharing salinity 
datasets are increasing15–18, few assessments extend to the global scale, and even less target both the surface and 
groundwater systems. In addition, salinity data is often scattered and non-harmonized, both in terms of reported 
parameters, units, and spatio-temporal resolution. This complicates comparison of information across scales.

To support scientists and others working on freshwater salinity-related topics, we here provide a global, har-
monized salinity database, comprising salinity monitoring data of both surface and groundwater components. We 
collected and combined observational data, focusing mainly on electrical conductivity (EC), which is the most 
commonly monitored salinity parameter globally. For groundwater, we also included a few additional datasets of 
total dissolved solids (TDS), which were converted into EC for comparisons across sites. The data was collected 
from a suite of sources, including local, regional and global water quality databases, governmental organizations, 
river basin management commissions, water development boards and individual research projects. We included 
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all surface water monitoring stations with at least 30 measurements, and all groundwater stations with measure-
ments and depth information, within the selected time period of 1980–2019.

The resulting database contains more than 16.3 million EC measurements, from around 250,000 locations 
around the world, divided into 34,494 river locations, 10,609 lake or reservoir locations and 208,550 groundwater 
locations (Fig. 1). Though measurement data was found for all continents, station density and sampling frequency 
varies greatly, both in space and time. For example, station density is generally highest for North America and 
Australia (green color of Fig. 1a,b), and overall lowest for Asia and Africa (white color of Fig. 1a,b), with the 
exception of South Africa that has a high station frequency (turquoise color of Fig. 1a,b). Station density has com-
monly increased over time, particularly for Europe and parts of South America. The distribution of sampled water 
types also varies between continents and over time (Fig. 1c). For example, for Asia, no measurements were found 
for the 1980s and 1990s (striped bar color), and during the 21st century, only groundwater data was reported 
(light grey bar color). For Europe on the other hand, more groundwater than surface water measurements were 
obtained in the 1980s than later on. However, for the majority of the sampled water types of this database, the 
distribution has not changed substantially over time (Fig. 1c). Regarding the number of measurements per water 
type (Fig. 1d), this is also rather constant throughout time, with groundwaters having an overall much lower 
sampling frequency than surface waters. Groundwater locations were on average sampled four times, while river, 
respectively, lake/reservoirs on average contain 321 and 417 samples per station.

This database provides a starting point for global, open-source salinity observational data in surface and 
groundwater systems and can assist data and model-driven studies at cross-regional to global scales. The database 
can for example be utilized for assessing (i) spatial and temporal patterns of freshwater salinization, (ii) its impact 
for ecosystem health and sectoral water use, (iii) estimations of drivers of freshwater salinization across scales, 
and for (iv) calibration and validation of surface and groundwater salinity models.

Methods
Selection criteria.  Salinity is the measure of the concentration of dissolved (soluble) salts in water from all 
sources, and it can be measured by a range of parameters (including dissolved solids fractions, total dissolved 
solids, chloride, electrical conductivity, salinity) and units (including ppm, mg L−1, µS cm−1, dS m−1). A pri-
mary data collection focus here was given to EC measurements, since this is the most widely reported salinity 
parameter, and a main aim of this database is to provide comparable data across various scales. However, total 
dissolved solids (TDS) is also a common salinity parameter, particularly for groundwater quality measurements. 
The relationship of TDS and EC is correlated and can be determined using a conversion factor19. Regional con-
version factors have been shown to produce better correlations than global factors, since the relationship between 
EC and TDS depends on a range of factors that may vary spatially, e.g. with climate, temperature, dissolved ion 
concentrations and ionic strength20. Thus, for optimizing data inclusion, a dataset containing TDS measurements 
was included, but only if a regional conversion factor could be found in the literature (see Methods and Technical 
Validation for further description on conversion and correlation analyses).

Multiple selection criteria were applied for each monitoring location and water type sampled. Surface waters 
were divided into the following categories: (i) river; and (ii) lake/reservoir. A sampling location was included if 
there were at least 30 measurements within the selected time period (1980–2019). For groundwater, we included 
all measurements at each location, if reported sampling depth information was available. The reason for this less 
stringent sampling frequency criterion for each groundwater location was due to the general limitation of high 
frequency groundwater monitoring compared to surface water monitoring21,22. Additionally, low temporal resolu-
tion groundwater data could provide valuable input for first order salinity assessments, model calibration and/or 
hypothesis testing23. An important variable for interpreting groundwater EC is however sample depth, since this 
has large implications on, for example, withdrawal depths for different sectoral water use, as well as for estimation 
of the freshwater/saltwater lens24. This thus motivates the depth availability criterion over sampling frequency for 
groundwaters. In addition to these criteria, all samples also had to have date and coordinate (latitude, longitude) 
information for qualifying inclusion in the database (see Fig. 2 for a schematic flowchart of the data selection and 
processing steps).

Data collection and sources.  Data was collected from both surface water and groundwater monitoring 
locations using a combination of data sources, including: (i) global datasets, (ii) regional datasets, and (iii) indi-
vidual river basins and groundwater aquifers datasets. The regional data includes datasets spanning multiple river 
basins and/or groundwater aquifers, both within the same region, but also cross-regionally. Most of these data are 
provided by governmental organizations or cross-regional data portal platforms under environmental protection 
agencies or National water quality monitoring programs. The local/individual basins datasets consist of monitor-
ing data for individual basins and were usually found through governmental agencies, river basin management 
commissions, research organizations, as well as provided by individual researchers. Each data source is listed and 
described shortly below (the data source abbreviations were defined by us, for easy reference to the database ter-
minology). A full list of the corresponding data (including their spatial and temporal resolution) for each of these 
sources (including their URL), divided by water type, is given in online-only Table 1.

For the here presented database, we focused on combining and harmonizing EC datasets from already avail-
able, open data sources. The reason for this is that EC is often included in broader environmental monitoring 
websites and/or water quality datasets, which are not identifiable as salinity datasets, but rather in general water 
quality terms. We thus wanted to extract the salinity data component, and facilitate the reuse of harmonized EC 
data for salinity-specific applications. Most of the dataset included in our database have original licenses that per-
mit unrestricted reuse. Where this was not the case, or if information was lacking, we requested and were granted 
permission from the data owners to release the data under the CC-BY license.
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Fig. 1  Global overview of station density and measurement distributions. The global map of panel (a) shows 
the total number of stations per country with electrical conductivity (EC) observations included in our 
database, over the full data period (1980–2019). The zoomed panels highlight high-density station regions of 
each continent, whereas the numbers given for each water type is the total number of stations for associated 
continent. Panel (b) shows number of stations per country for the different decades included in the database 
(1980–1989, 1990–1999, 2000–2019). Panel (c) shows the distribution of sampled water types (as percentages of 
total samples) over the three decades, per continent. No data is represented as striped columns. Panel (d) shows 
violin plots of the distribution of number of measurements, per water type, over the same time periods.
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Although we acknowledge the potential of valuable datasets in the scientific literature, this was not a data focus 
type, since this requires a different data search and extraction approach. We only incorporated pre-extracted 
datasets from literature reviews and synthesis when shared from individual researchers (reached through com-
munication within our research community, e.g. during workshops and conferences and within own networks 
and communication channels). The following subsections provide an overview of the global, regional and local 
salinity datasets included in our developed database.

Global salinity dataset

The Global River Chemistry Dataset (GLORICH) includes multiple water quality parameters for river locations 
around the world, assembled by researchers from Hamburg University25,26. This data is publicly available and was 
downloaded as a zip file from PANGEA. The dataset includes 1.27 million samples of major compounds, nutri-
ents, carbon species and physical properties. We extracted Specific Conductivity data (another terminology for 
EC) from the “hydrochemistry” csv file and paired it with station information (“Sampling_locations” file), for all 
stations that fulfilled our selection criteria.

Regional salinity datasets:

	(1)	 Data for Europe was collected from the European Environment Agency’s water quality database; Wa-
terbase. Waterbase contains multiple water quality parameters for rivers, lakes and groundwater bodies 
throughout Europe. We extracted relevant EC and station information data using the raw disaggregated 
water quality data file: “Waterbase_v2018_1_T_WISE4_DisaggregatedData” and the parameter code for 
EC (“EEA_3142-01-6”, specified as Specific Conductance). The water types were identified and distin-
guished from the column parameterWaterBodyCategory, where “RW” is river, “LW” is lake and “GW” is 
groundwater location. Site information was extracted from the file: “Waterbase_v2018_1_WISE4_Moni-
toringSite_DerivedData”. The groundwater EC data was matched with depth information, using the param-
eterSampleDepth parameter.

	(2)	 The Water Quality Portal (WQP) for surface and groundwaters across the United States contains a range of 
water quality data for surface and groundwaters across the US. The data portal is established by the United 
States Geological Survey (USGS), the Environmental Protection Agency (EPA), and the National Water 
Quality Monitoring Council (NWQMC). The data originated from state, federal, tribal, and local agencies. 
Data was downloaded in bulk, for Specific conductance, for all available sites included under the search 
criteria (i) streams, (ii) lake, reservoir, impoundment and (iii) subsurface. Station information was addition-
ally downloaded and paired with the salinity data.
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Step 3: Add harmonized station and associated data 
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Fig. 2  Data selection and harmonisation flowchart. The figure illustrates the processing and harmonizing steps 
of each dataset (divided into surface and groundwater parts) after initial data collection.
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	(3)	 Groundwater data for the US was also gathered from the Dissolved-Solids Dataset (Qi & Harris 2017)27, 
by downloading the “Dissolved solids” csv file and combining it with depth information from the “Aq-
uiferDepthSources” excel file. This data is published by the ScienceBase Catalog, provided by the USGS 
and contains EC (and other geochemical) data that was collected with the purpose of assessing brack-
ish groundwaters across the United States. The original dataset contains a compilation of water-quality 
samples from 33 sources for almost 384,000 groundwater wells across the continental U.S., Alaska, Hawaii, 
Puerto Rico, the U.S. Virgin Islands, Guam, and American Samoa, dating back to the early 18th century.

	(4)	 Groundwater data from Colorado was collected from the Department of Agriculture and Agricultural 
Chemicals & Groundwater Protection section (Co Gov). Data was downloaded directly from the site using 
a search query of statewide inorganic quality monitoring data, and selecting the parameter Specific Conduct-
ance (Lab), for all available years. Site coordinate (latitude, longitude) information was not available online, 
but when requested via email, it was submitted to us, by their groundwater monitoring specialists (Karl 
Mauch, personal email communication). In addition, data on well sampling depth estimations were also 
provided via email, and the perforated interval measure (the interval between top and bottom of perforated 
section where the pump is installed) was recommended and used as depth information.

	(5)	 Groundwater data from California was downloaded from the GeoTracker Groundwater Ambient Moni-
toring and Assessment Program (GAMA), provided by the California state open data portal. The dataset 
includes multiple groundwater quality data from the GAMA Domestic Well (DW) and Priority Basin (PB) 
programs, covering locations throughout the state. The column “well_depth” was the only depth informa-
tion available, and was included (and converted from feet to meters) as the Depth parameter.

	(6)	 Groundwater monitoring data from the Ohio Environmental Protection Agency (Ohio EPA) was download-
ed from their ambient groundwater monitoring program. Monitoring of groundwater wells was established 
in the late 1960s and today covers more than 300 wells. Also here, the “well_depth” parameter was the only 
depth information available, and was included (and converted from feet to meters) as the Depth parameter.

	(7)	 The groundwater database from the Texas Water Development Board (TWDB) was also utilized to down-
load water quality data. EC data was downloaded in bulk by groundwater aquifer (in total nine datasets). 
Well depths were converted from feet to meters and where multiple measurements for the same day and 
well was reported, daily averages were calculated. A total of 404 wells fulfilled the selection criteria and 
were included in the main groundwater database.

	(8)	 Data for South Africa was collected from the Department of Water and Sanitation (DWS), Republic of 
South Africa28. Both surface- and groundwaters are monitored, as a part of their National Chemical Mon-
itoring Program. Monitoring stations and their data can be viewed and downloaded through the Water 
quality data exploration tool. However, due to the large amount of data for surface waters, we requested 
and recieved raw water quality data from the Resource Quality Information Services national monitoring 
programs for specific rivers and dams, through E-mail.

	(9)	 Surface water monitoring data for a large part of Australia is provided by the Australian Government, 
Bureau of Meteorology (AU Gov). Data can be queried at the Water Data Online portal, and search criteria 
can be specified. Conducted search criteria of all stations with EC data resulted in 1,333 stations. However, 
since data can only be downloaded as one by one station, we sent an email through the help desk system 
requesting a bulk download of all available data. The data was then provided as daily means recorded 
at midnight and as csv files (one file per station), with a metadata summary file included (with station 
information). From this, all files were combined and stations that fulfilled the selection criteria were then 
included in the main database. The separation between river and lake/reservoir locations were determined 
from the datafile “long_name” column, which always included the water type as well as the actual name of 
the monitoring location.

	(10)	 Surface water data for Australia was also synthesized from the Queensland Government Open Data Portal 
(QLD AU Gov). Data from QLD AU Gov was collected from the ambient estuary water quality monitoring 
program, which includes tidal rivers, streams and inshore waters of Central Queensland, monitored from 
1993–2013. Data is available for 12 different drainage basins, reported as Specific Conductance at 25 °C. 
Data was downloaded as individual csv-files for each drainage basin (containing multiple sampling loca-
tions), and then combined and extracted according to the selection criteria.

	(11)	 Groundwater data for Australia was gathered from the Australian Government Bioregional Assessment 
Program (BAP). The data is provided through a collaboration between the Department of the Environ-
ment and Energy, the Bureau of Meteorology, CSIRO and Geoscience Australia. The dataset contains EC 
measurements of groundwater bores in the Namoi sub-region. The data is collected from groundwater 
bores that fell within the data management acquisition area as provided by the Bioregional Assessment to 
the Namoi NSW Office of Water. All data were downloaded in one csv-file.

	(12)	 Another groundwater dataset from Australia was collected, using the groundwater data portal from Water-
Connect, which provides data from the Department for Environment and Water, for South Australia. Data 
was here queried by region, and then one file containing EC data for all sampled wells and one file contain-
ing site information were downloaded, for each region (in total 12 regions). The “Latest_Depth (m)” was 
used for depth information and all stations with both depth and EC measurements for a given data were 
included.

	(13)	 Additional groundwater data from Australia was downloaded using the Australian Groundwater Explor-
er tool (AU GwEX). Data was here search for by parameters Water level and Salinity and downloaded by 
region (in total 8 regions) and combined. Water levels and EC data was linked to the NGIS bore data to get 
the location and attributes of the measurement wells.

	(14)	 Data for New Zealand was gathered from New Zealand’s Hydro Web Portal for Hydrometric and Water 
Quality data (NIWA). This platform provides river water quality data under the National Institute of Water 
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and Atmospheric Research. Data was queried by searching for all available data under the parameter con-
ductivity and time-series, in their map interphase (resulting in 77 locations of timeseries data). Each dataset 
was then added for bulk export, using the export tab and a download link, via the map-interface platform.

	(15)	 Surface water quality data from the Government of Canada (Ca Gov) was downloaded from the National 
Long-term Water Quality Monitoring Data portal. The data include both rivers and lakes monitored for a 
set of physio-chemical variables, including specific conductance. Data was downloaded as csv-files.

	(16)	 River data was also synthesized from the Government of Ontario for multiple rivers, monitored be-
tween 2000–2016. The data is collected by the Provincial (Stream) Water Quality Monitoring Network 
(PWQMN), who measures water quality in rivers and streams across Ontario. Data was downloaded as 
individual excel files for each year, and then combined with site information.

	(17)	 Groundwater data from Argentina was downloaded from the repository of open public data of the Argen-
tinian Republic (Dat.ar). The data is provided by the Federal Groundwater Information System SIFAS-SI-
SAG and contains groundwater well measurements from April 2015. The data was downloaded as a main 
csv-file and translated from Spanish.

	(18)	 Groundwater data was also collected from Cambodia, using the online well database of Cambodia 
(WellMap). WellMap is an initiative of the Ministry of Rural Development of Cambodia, supported by the 
Water and Sanitation Program of the World Bank (WSP). The database is provided as a Microsoft Access 
Database and consists of water quality data collected from rural wells throughout the Country. Data was 
queried and extracted using the RODBC R package, that allows R interfacing to database systems. UTM 
coordinates were re-projected and converted to latitude and longitude, as decimal degrees, using the func-
tions “proj4string” and “spTransform” in R.

	(19)	 Data from Mexico Government (MX Gov), was downloaded and translated (from Spanish) from one main 
csv-file, containing both water quality and site information data. The data included both surface water lo-
cations (original classification was rivers, streams, dams, which were reclassified to the here used terminol-
ogy) and groundwater locations, monitored since 2012.

	(20)	 Groundwater data from Bangladesh was provided by M.M. Rahman (TH Cologne, University of Applied 
Sciences, Institute for Technology and Resources Management in the Tropics and Subtropics). The data 
was collected and shared by M.M. Rahman, and include electrical conductivity and depth data synthesized 
from both literature and governmental sources (see specifications and references in online-only Table 1).

	(21)	 Groundwater EC and level data from the Swedish geological Survey (SGU) was downloaded, on a county 
basis, for all 21 counties in Sweden, from environmental monitoring data. EC data was extracted from 
environmental monitoring files, with one file per county (queried using county specific codes and a URL 
link to each dataset) and combined with well water level data (downloaded in the same way as the salinity 
data) using matching coordinates. All stations with water level information were translated to English and 
were included in the main groundwater database.

Salinity datasets from individual river basins and groundwater aquifers:

	(1)	 Data for river locations within the Danoube river basin was collected from the Danube River Basin Water 
Quality Database. This database is provided by the International Commission for Protection of the Danube 
River (ICPDR) Information System Danubis (ICPDR). The database provides geochemical data for the 
major rivers in the Danube River Basin and waters are sampled at a minimum frequency of 12 times per 
year. The data was accessed through creating an account, and then performing a data search, for all availa-
ble years and stations for the conductivity parameter, and exporting the resulting data as a csv file.

	(2)	 Data for the lower Murray Darling river basin was accessed through the Water Connect data portal (Wa-
terconnect). All stations within the river basin that fulfilled the data selection criteria (six stations) were 
included and downloaded, one by one (using a combination of the historical EC daily readings and the Site 
summary files).

	(3)	 Groundwater TDS data for the Nile Delta aquifer (van Engelen et al.)29 was provided by Joeri van Engelen. 
These data include three datasets consisting of TDS measurements, synthesized from literature, collected 
with the selection criteria of including measurement data from less than 250 m depth. Two of these datasets 
had unspecific dates, and samples were thus assumed to be from the 1st of each reported month (see further 
specification of the data in van Engelen et al.29). The TDS data was then converted to EC, using a regional 
specific conversion factor, from literature sources (see section Conversions of TDS to EC for specifics on 
how this was done).

Data processing and harmonization.  The overall objective with this database is to facilitate data reuse 
and research efforts within different fields of salinity research. For this purpose, the harmonization of data was 
a main part of the database construction. The flowchart (Fig. 2) illustrates the data selection criteria, data pro-
cessing and harmonization of each sampling location and its associated dataset before it was added to the main 
database. All processing was done in R, version 3.6.0, using mainly the data.table and dplyr R packages. First, 
harmonization and fixing of data with regards to missing values and other uninterpretable field values and/or 
symbols preventing the appropriate reading of data files (i.e., special symbols like “***” or erroneous changes in 
field separators, e.g. from “,” to “;”) were done, e.g. by setting it to the standard missing data value (i.e., NA values) 
and by fixing or excluding rows which could not be read properly. Additionally, assumed erroneous data values 
for reported salinity values and depth (such as negative values, 999 and 9999, as well as depth values of zero) were 
removed.

Since information on sampling water type and parameter nomenclature and reported units differs between 
regions and organizations, we re-classified water types into the three mentioned categories (river, lake/reservoir, 
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groundwater). Where needed, we also re-named and converted other parameters and their associated units, 
according to the database variables listed in Table 1.

Different spatial and temporal conversions were also made (see Fig. 2). For instance, where multiple measure-
ments per day were available, these were averaged into daily values, using the data.table package, and grouping by 
Station_ID and Date (see Table 1 for parameter definitions). Depth conversions were also common and included 
conversions from feet or centimeter to meters. Regarding spatial harmonization, each sample coordinates were 
converted to decimal degrees and re-projected to WGS 1984, if needed, using the “SpatialPoints”, “proj4string“ 
and the “spTransform” function of the rgdal R-package. If country information was missing, this was assigned 
from coordinates of each station using the package map.where, or extracted from country codes (if available) 
using the function “countrycode”. Continent information was then assigned from country names, also using the 
“countrycode” function, by matching country name with continent.

For assisting studies that might be interested specifically in coastal regions and applications, we also quanti-
fied if a sampling location was coastal or not. This analysis was done in ArcMap, using the “Near Table” analysis 
tool. The distance from all sampling locations to the coastline was computed, (using vector data from Natural 
Earth: https://www.naturalearthdata.com/downloads/10m-physical-vectors/). All locations within 10 km from 
the coastline were classified as being coastal. The identification of coastal stations was then included in each data-
base summary file, under the column “Coastal_location” (see Table 1).

Conversions of TDS to EC.  We considered the inclusion of additional groundwater data, where TDS meas-
urements could be converted to EC. The relationship between EC and other measured salinity parameters (e.g. 
TDS) is depending on a range of conditions, such as temperature, climate and concentrations of ionic and undis-
sociated species18. This relationship is commonly estimated according to Eq. (1).

=EC TDS
f (1)

Variable Name Description Unit

Station_ID unique sampling point ID —

Date Date of sample yyyy-mm-dd

Start_date Date of first sample in record yyyy-mm-dd

End_date Date of last sample in record yyyy-mm-dd

Lat Latitudinal coordinate of sample location Decimal Degrees

Lon Longitudinal coordinate of sample location Decimal Degrees

Country Geographic location —

Continent Geographic location —

Water_type water resource type sampled (i) Groundwater, (ii) 
River, (iii) Lake/Reservoir

EC Electrical conductivity value µS cm−1

TDS Total dissolved solids value (only groundwater) mg L−1

EC_conv Converted EC value from TDS and conversion factor µS cm−1

Depth Depth of groundwater sample meters (m)

Source Data source of the dataset. Source links are included in online-only Table 1 —

Coastal_location Identification if station location is coastal (<10 km from the coastline) Yes/No

n Total number of samples for each sampling point —

median EC sample median by sampling point µS cm−1

mean EC sample mean by sampling point µS cm−1

max EC sample max by sampling point µS cm−1

min EC sample min by sampling point µS cm−1

sd EC sample standard deviation by sampling point µS cm−1

median_TDS* TDS sample median by sampling point mg L−1

mean_TDS* TDS sample mean by sampling point mg L−1

max_TDS* TDS sample max by sampling point mg L−1

min_TDS* TDS sample min by sampling point mg L−1

sd_TDS* TDS sample standard deviation by sampling point mg L−1

median_EC_conv* Converted EC sample median by sampling point mg L−1

mean_EC_conv* Converted EC sample mean by sampling point mg L−1

max_EC_conv* Converted EC sample max by sampling point mg L−1

min_EC_conv* Converted EC sample min by sampling point mg L−1

sd_EC_conv* Converted EC sample standard deviation by sampling point mg L−1

Table 1.  Variable names and descriptions, including reported units, of the salinity database. Names with 
*indicate variables which were only included for groundwater samples.
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where EC is in µS cm−1, TDS in mg L−1 and f is a conversion factor19,30. Commonly, predefined conversion factors 
without proper site-specific validation are used, but such estimation may be highly uncertain, due to the con-
ditions mentioned above20. Instead, it has been shown that the use of region-specific conversion factors may be 
more representative, since these have been developed from measured relationships between EC and TDS under 
more local-reginal conditions19,20.

Due to reported improved predictability of EC-TDS relationships when using region-specific conversion 
factors (f), we included additional groundwater TDS measurements only for regions with available reported 
region-specific f values. This resulted in the inclusion of three additional groundwater datasets to the final data-
base; one from Idaho31, one from California32 and one from Egypt29. Together these datasets added 3,477 sam-
pling locations and a total of 9,654 measurements to the groundwater database. Both the original TDS data, as 
well as the converted EC values are included in the database.

For the two TDS groundwater datasets from the United States, TDS was converted to EC using the 
region-specific conversion factor f of 0.65. This conversion factor has been developed for the continental United 
States, by the US Geological Survey and is widely used cross-regionally within the US20,33. For the TDS groundwa-
ter data from Egypt (from the Nile delta)29, we converted TDS to EC using the region-specific conversion factor f 
of 0.64. This factor value has been derived from local measurement data in the Nile delta itself34.

For validation of our approach of predicting EC from TDS, we used regional-conversion factor f values on 
other groundwater datasets that had both TDS and EC measurements reported. These datasets, including data 
from both the US and from Australia, showed strong correlations between predicted and measured EC (Fig. 3; R2 
of 0.91–0.99), supporting the approach of using TDS and region-specific conversion factors to estimate EC (see 
Technical validation section).

Data Records
The salinity database can be downloaded from PANGAEA35 and consists of the following 3 categories and asso-
ciated listed files:

Category 1: River Data. This folder contains the full river database, which consists of a csv file with all EC and 
site related data for each river location. This folder also contains a data summary file, which provides basic EC 
statistics (median, mean, max, min, sd), sampling summary information (start and end period of measurements, 
number of measurements) and other station and data information (coordinates, country, continent, data source) 
for each sampled location (Station_ID).

•	 Rivers_ database.csv
•	 Rivers_summary.csv

Category 2: Lake/Reservoir Data. This folder contains the full database for lakes and/or reservoirs EC data, 
as well as the summary file, in accordance with the descriptions above.

•	 Lakes_Reservoirs_database.csv
•	 Lakes_Reservoirs_summary.csv

Category 3: Groundwater Data. This folder contains all groundwater data, and its associated summary file. 
For the groundwater files, both measured EC, TDS and converted EC are included as separate columns in both 
the database file and associated summary file.

•	 Groundwaters_database.csv
•	 Groundwaters_summary.csv

For all files, the data source for each station is included, and its associated data link is given in online-only 
Table 1 and the definitions and units used for each column variable names are given in Table 1. Sample R code, 
including instructions for reading the database files and for reproducing of figures of this paper, is also available 
as part of this data record.

Technical Validation
The converted groundwater EC measurements from TDS are a main source of uncertainty in our database. Thus, 
to assess the validity of Eq. (1) to predict EC from TDS, we applied the approach on datasets in our database 
where we could find simultaneous EC and TDS measurements, as well as a corresponding region-specific con-
version factor. The validation datasets include one dataset from Australia (from the data source: Waterconnect) 
and two datasets from the US (from the data sources: TWDB and GAMA). For the Australian dataset, we applied 
the conversion factor, f of 0.55. This factor is reported at the Department of Environment and Water, from the 
Government of Australia and is for instance used for the Murray-Darling basin (AU Gov 2015). As mentioned 
above, we used the conversion factor, f of 0.65 for the US data.

Figure 3 shows different examples of measured versus predicted EC and their correlation, for these groundwa-
ter datasets that had simultaneous EC and TDS measurements and a reported region-specific conversion factor. 
Specifically, figure 3a shows a time-series example of the relation between measured and predicted EC from the 
Australia dataset, for the station with the highest number of measurements (Station ID: 72559, n = 538). The 
Pearson correlation scatterplot of measured and predicted EC for this station using the region-specific factor of 
0.55 showed a strong positive statically significant correlation (Fig. 3b, R2 = 0.99). This strong correlation pattern 
was also consistent when including all groundwater stations and their associated data from this dataset (R2 = 0.98, 
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n = 37,819, Fig. 3c). For the remaining two datasets, one dataset originates from Texas (n = 59,985; Fig. 3d) and 
one from California (n = 4,706; Fig. 3e). The California dataset show strong positive statistically significant cor-
relations between measured and predicted EC (R2 = 0.98). In comparison, the groundwater dataset from Texas 
is much larger and represent a more heterogenous system than the other locations. This dataset spans larger 
measurement depths and potentially also larger temperature ranges (no data on this), which may require different 
conversion factors to improve the results. Given the very large sample size, such effects could explain observed 
larger bias (both under and over-predictions) in this system compared to the other locations. However, the vast 
majority of the datapoints are close to the 1:1 line and show strong positive statistically significant correlations 
(R2 = 0.91). Overall, these examples highlight the potential of robust predictability of EC from TDS for ground-
water measurements used in combination with regional established conversion factors.

Code availability
The data for this study was mainly processed in R (version 3.6.0), but with cross-checking and corrections of 
spatial coordinates conducted using ArcGIS. Sample R codes, including instructions for reading the database files 
and reproducing summary files and figures of this paper, is available as part of the data record35.
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Fig. 3  Validation of converted TDS to EC for groundwaters. Time-series plot and scatter correlations of measured 
vs. predicted electrical conductivity (EC), using regional conversion factors. Panel (a) shows an example time-
series from the groundwater station with the highest number of measurements (estimated from the “max” 
function in R) in Australia (data source: Water connect, n = 538) and panel (b) shows its corresponding scatter 
correlation (R2 = 0.99). Panel (c) shows the correlation between measured and converted EC for the full dataset 
of all groundwater stations from Water connect (n= 37,819, R2 = 0.98). Panel (d) and (e) shows correlations 
between measured and predicted EC data, for groundwaters in Texas (data source: TWDB, n = 59,985, R2 = 0.91) 
respectively California (data source: GAMA, n = 4,706, R2 = 0.98). All scatterplots were done in R, using the 
“ggscatter” function from the ggpubr package and estimating correlation coefficients using the “pearson” function.
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