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ABSTRACT 
 

The molecular properties of CD8+ T cells that respond to SARS-CoV-2 infection are not fully 

known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells from 

39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based 

on whether the dominant CD8+ T cell response to SARS-CoV-2 was ‘exhausted’ or not. SARS-CoV-2-

reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity 

and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, 

SARS-CoV-2-reactive cells in the non-exhausted subsets from patients with severe disease showed 

enrichment of transcripts linked to co-stimulation, pro-survival NF-NB signaling, and anti-apoptotic 

pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe 

COVID-19 illness. CD8+ T cells reactive to influenza and respiratory syncytial virus from healthy subjects 

displayed polyfunctional features. Cells with such features were mostly absent in SARS-CoV-2 

responsive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. 

Overall, our single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding 

to SARS-CoV-2. 
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INTRODUCTION 

Coronavirus infections with SARS-CoV-2 have created a global crisis; a large international effort 

is underway to develop treatments and vaccines to reduce the severity of disease and to provide 

protective immunity. To inform this effort, a detailed understanding of anti-viral immune responses is 

required. CD8+ T cell responses are thought to be critical for control of viral infections1-4, but to date, our 

understanding of anti-viral CD8+ T cell responses, specifically against Coronaviridae during infection 

and in the memory phase, is limited. Recently, studies have begun to improve our knowledge about 

CD8+ T cells responsive to SARS-CoV-25-14, but the molecular features that associate with poor clinical 

outcomes or differentiate them from other virus-reactive CD8+ T cells remain incompletely understood. 

We report here on the data generated by single-cell RNA sequencing of virus-reactive CD8+ T cells 

from COVID-19 patients with varying severity of disease. We benchmark these data against the 

transcriptomes from CD8+ T cells from healthy donors, who have memory responses to other respiratory 

viruses. 

 

RESULTS 

Evaluation of virus-reactive CD8+ T cells 

From 39 subjects with confirmed SARS-CoV-2 infection (17 patients with relatively milder 

disease not requiring hospitalization, 13 hospitalized patients and 9 additional patients requiring 

intensive care unit (ICU) support (Fig. 1a and Extended Data Table 1)), we isolated virus-reactive 

CD8+ memory T cells using a modified Antigen-Reactive T cell Enrichment (ARTE) assay15-17. 

Peripheral blood mononuclear cells (PBMC) were first stimulated for 24 hours with peptide pools specific 

to SARS-CoV-27,8 (online Methods). Responding cells were then isolated based on the expression of 

the cell surface activation markers CD137 and CD69 (Fig. 1a,b and Extended Data Fig. 1a)5,8,9. We 

observed that the numbers of SARS-CoV-2-reactive CD8+ memory T cells were significantly increased 

in patients with severe COVID-19 illness who required hospitalization compared to those with milder 

illness not requiring hospitalization (Fig. 1b). A large fraction of SARS-CoV-2-reactive CD8+ T cells co-
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expressed CD279 (PD-1), CD38, and HLA-DR, which are markers linked to T cell activation and 

exhaustion6,18,19 (Fig. 1c, Extended Data Fig. 1b and Extended Data Table 2). Recent studies in 

patients with COVID-19 illness have reported that circulating CD8+ T cells express activation markers 

CD137 and CD69, likely activated by SARS-CoV-2 infection in vivo5,9; these cells are also captured and 

contribute to an unbiased evaluation of virus-reactive T cells from patients with recent COVID-19 illness. 

To study the properties of SARS-CoV-2-reactive CD8+ T cells in healthy non-exposed 

individuals5,20,21, we isolated CD8+ T cells responding to SARS-CoV-2 peptide pools from healthy 

subjects, who provided blood samples pre-COVID-19 pandemic (Fig. 1a and Extended Data Table 1). 

To contextualize our data and to define shared or distinguishing properties of CD8+ T cells reactive with 

other common non-corona respiratory viruses, we stimulated PBMC from healthy subjects with peptide 

pools specific to respiratory syncytial virus (RSV) and influenza A (FLU) and isolated responding cells 

(Fig. 1a). In total, from 49 subjects, we sorted and analyzed the single transcriptome and T cell receptor 

(TCR) sequence of > 87,000 virus-reactive CD8+ T cells with good quality metrics (Fig. 1a, Extended 

Data Fig. 1c,d and Extended Data Table 3). 

 

Virus-reactive CD8+ T cells show transcriptomic heterogeneity 

 Our unbiased single-cell transcriptomic analysis of all the virus-reactive CD8+ T cells revealed 8 

distinct clusters (Fig. 2a-c and Extended Data Table 4), indicating that CD8+ memory T cells can 

activate a wide range of transcriptional programs in response to different viral infections22. Recent 

reports from COVID-19 patients have suggested the presence of exhaustion-related markers in global 

CD8+ T cell populations. To examine, whether such ‘exhausted’ cells were present in our dataset, we 

first generated a consensus list of ‘exhaustion’ signature genes from 9 studies23-31 that reported 

exhaustion features in T cells analyzed from patients with infection or cancer and in mouse models of 

viral infection (Extended Data Table 5). Gene set enrichment analysis (GSEA) of individual clusters 

showed significant positive enrichment of exhaustion signature genes only in cluster 1 cells (Fig. 2d-f 

and Extended Data Fig. 2a). This cluster (cluster 1) was also highly enriched for genes linked to type 
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I interferon signaling (Fig. 2d-f and Extended Data Fig. 2a), highlighting the association between the 

interferon signaling and exhaustion program that has been previously described in the context of murine 

LCMV infection32-34. Because CD4+ T cell-mediated help is required for the generation of robust memory 

CD8+ T cells35, we assessed if cells in the ‘exhausted’ cluster 1 displayed ‘unhelped’ features that are 

linked to the lack of CD4+ T cell ‘help’35. As expected, the exhausted’ cluster 1 was also significantly 

enriched for transcripts linked to ‘unhelped’ CD8+ T cells (Fig. 2d,e). Despite displaying ‘exhausted’ and 

‘unhelped’ features, intriguingly, cells in cluster 1 showed significant positive enrichment of cytotoxicity 

signature genes and higher expression levels of cytotoxicity-associated transcripts such as GZMB and 

GZMA relative to other clusters (Fig. 2d-f and Extended Data Fig. 2a,b), which suggested potential 

heterogeneity within this exhausted subset. 

 CD8+ T cells reactive to specific viruses made strikingly different contributions to individual 

clusters (Fig. 2g and Extended Data Table 3). Clusters 0,1,2, and 3 were overrepresented by SARS-

CoV-2-reactive CD8+ T cells from COVID-19 patients, and are likely to reflect memory or effector cells 

generated in the context of a recent infection. In contrast, the vast majority (>80%) of FLU-reactive and 

RSV-reactive CD8+ T cells were present in cluster 4, where SARS-CoV-2-reactive cells were 

underrepresented (<2%) (Fig. 2g). Cells in cluster 4 expressed higher levels of transcripts encoding for 

cytokines such as IFN-γ, TNFD, CCL3, CCL4, XCL1, and XCL2 (Fig. 2c, Extended Data Fig. 2c, and 

Extended Data Table 4), resembled polyfunctional CD8+ T cells that have been linked to protective 

immunity against a range of viral infections36-38 39. Besides, this cluster displayed positive enrichment 

and the highest score for genes in the aerobic glycolysis pathway, which is linked to better effector 

function through multiple mechanisms that are independent of metabolism itself40,41 (Fig. 2d,e and 

Extended Data Fig. 2a). 

SARS-CoV-2-reactive CD8+ T cells from healthy non-exposed subjects, presumed to be human 

coronavirus (CoV)-reactive cells that cross-react with SARS-CoV-221, were mainly present in clusters 

0,1, 5 and 6 (Fig. 2g and Extended Data Table 3). The cells in cluster 6 were highly enriched for the 

expression of transcripts encoding ZNF683 (Extended Data Fig. 2d), also known as HOBIT, a 
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transcription factor that plays a pivotal role in the development of tissue-resident memory (TRM) cells42. 

Notably, the vast majority of cells in cluster 6 were from SARS-CoV-2-reactive cells of healthy non-

exposed subjects (Fig. 2g); in contrast, cells from COVID-19 patients were mostly absent in this cluster. 

Overall, our data revealed substantial heterogeneity in the nature of CD8+ T cell subsets generated in 

response to different viral infections. 

 

Exhausted SARS-CoV-2-reactive CD8+ T cells are increased in mild COVID-19 illness 

By linking single-cell transcriptome with T cell receptor (TCR) sequence data of the same cells, 

we observed extensive clonal expansion as well as clonal sharing of TCRs between the different SARS-

CoV-2-reactive subsets in COVID-19 patients (Fig. 3a,b and Extended Data Table 6,7). Single-cell 

trajectory analysis showed that cells in cluster 0,1 and 2 were interconnected rather than following a 

unidirectional path (Fig. 3c). Together, our data support both diversity as well as plasticity in the nature 

of memory CD8+ T cell responses to SARS-CoV-2 infection. However, the dominant memory subsets 

varied substantially across COVID-19 patients with cells in some subsets represented only by a few 

patients (Fig. 3d and Extended Data Table 3). For example, over 85% of SARS-CoV-2-reactive CD8+ 

T cells in patient 8 were just from cluster 3 (identified by * in Fig. 3d), indicating a lack of plasticity in 

CD8+ T cell responses in this person. 

We next examined how SARS-CoV-2-reactive cell subsets varied between patients. COVID-19 

patients broadly clustered into two groups based on whether the majority (>50%) of their CD8+ memory 

T cell responses to SARS-CoV-2 were either from cluster 1 or cluster 0 (Fig. 3d). Cluster 1 represented 

‘exhausted’ cells with significant positive enrichment of both exhaustion and interferon signatures, 

whereas cluster 0 cells showed significant negative enrichment of these signatures, i.e., these cells 

were not ‘exhausted’ (Fig. 2d,e). Our analysis suggested that a sub-group of COVID-19 patients (30%) 

mounted a predominantly ‘exhausted’ CD8+ memory T cell response to SARS-CoV-2. The magnitude 

of this ‘exhausted’ response did not show a strong correlation to the time interval between onset of 

illness and sample collection (Extended Data Fig. 3a). Importantly, patients with milder disease had a 
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significantly higher frequency of cells in the ‘exhausted’ cluster (cluster 1) when compared to those with 

severe disease (mean 41% versus 20%, Fig. 3e). Further, patients with severe disease when compared 

to those with mild disease showed significant enrichment of cytotoxicity signature genes and depletion 

of interferon signature genes in cluster 1 (Extended Data Fig. 3b,c), suggesting both quantitative and 

qualitative differences in cells in the ‘exhausted’ cluster based on disease severity. In support of 

qualitative differences, single-cell differential gene expression analysis showed that cells in the 

‘exhaustion’ cluster (cluster 1) from severe COVID-19 patients expressed significantly higher levels of 

transcripts encoding for cytotoxicity-associated molecules (granzyme B, granzyme H, granulysin, Fas 

ligand5,43) and pro-inflammatory cytokines (CCL3, CCL4, CSF-2, TNF, LTA and LTB)5,9,44 (Fig. 3f,g, 

and Extended Data Fig. 3d). Transcripts encoding for several transcription factors that support cytokine 

production, inflammation and persistence (T-BET, BHLHE40, NFKB2, REL, FOS, JUNB)45-50 (Fig. 3h,i 

and Extended Data Table 8) were also expressed at significantly higher levels in cluster 1 cells from 

COVID-19 patients with severe illness. TCR sequence analysis of cells in the ‘exhausted’ cluster 1 

revealed greater clonal expansion in patients with severe compared to mild illness, suggesting greater 

proliferative capacity and/or persistence of cells from severe COVID-19 patients (Fig. 3i). Given the 

importance of exhaustion programs in preventing excessive host tissue damage in viral infections51,52, 

we speculate that the failure to imprint an ‘exhaustion’ program that restrains T cell effector function 

may reflect a failure to limit exaggerated CD8+ T cell effector function, and thereby contribute to disease 

pathogenesis in some patients with severe COVID-19 illness.  

 

Pro-survival features in SARS-CoV-2-reactive CD8+ T cells from patients with severe COVID-19 

SARS-CoV-2-reactive cells from COVID-19 patients, who did not mount a pre-dominant 

‘exhausted’ response, were present mainly in clusters 0 and 2, the ‘non-exhausted’ subsets (Fig. 2d, 

3d). These ‘non-exhausted’ subsets displayed cytotoxicity signature scores comparable to other 

clusters (Fig. 2d). Furthermore, cluster 2 was enriched for cell cycle signature, indicative of a higher 

proportion of proliferating cells in this cluster (Fig. 2c, e). We found no significant difference in the 
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proportions of cells in cluster 0 and 2 between patients with severe and mild COVID-19 illness 

(Extended Data Fig. 4a).  

However, single-cell differential gene expression analysis in clusters 0, as well as cluster 2, 

revealed significant transcriptional differences between COVID-19 patients with mild and severe illness 

(Fig. 4a and Extended Data Table 8). Ingenuity pathway analysis of transcripts with increased 

expression in cluster 0 from COVID-19 patients with severe relative to mild illness showed significant 

enrichment of transcripts in multiple co-stimulation pathways (OX40, CD27, CD28, 4-1BB, CD40), the 

NF-NB and apoptosis signaling pathways (Fig. 4b-d, Extended Data Fig. 4b-d and Extended Data 

Table 9). Co-stimulation is required for the robust activation and generation of memory T cell 

responses53, and activation of the NFNB pathway is important for T cell IL-2 production, proliferation, 

survival, cytokine production, and effector function46. IL2 receptor alpha and STAT5 encoding 

transcripts were also increased in severe compared to mild disease, indicating a greater potential for 

these cells to receive the pro-survival IL-2 signals54 (Fig. 4a,c). Other transcripts with increased 

expression encoded for transcription factors involved in cell fitness and cytokine production 

(BHLHE40)45, effector differentiation (BLIMP1)55 and prevention of exhaustion (JUN)49, and for CRTAM 

that has previously been shown to be important for generating effective cytotoxic T cells and viral 

clearance in mouse models56,57 (Fig. 4a,c,d). In addition, many transcripts encoding for molecules 

involved in cell survival and preventing apoptosis like BIRC3, VIM, and BCL2L158 were also increased 

in cells from patients with severe COVID-19 illness, although some molecules with pro-apoptotic 

function (e.g., BAX, BIM, FAS)59 were also increased (Fig. 4a-d and Extended Data Fig. 4b). TCR 

sequence analysis indicated greater clonal expansion of cells in cluster 0 and 2 from severe COVID-19 

patients (Fig. 4e). Overall, our findings suggest that SARS-CoV-2-reactive CD8+ T cells from patients 

with severe COVID-19 displayed multiple features that support the generation of robust CD8+ memory 

T cell responses with pro-survival properties. 
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DISCUSSION 

Recent studies in COVID-19 patients have verified the presence of CD8+ T cells that are reactive 

to SARS-CoV-25,7,8. However, the nature and types of CD8+ T cell subsets that respond to SARS-CoV-

2 and whether they play an essential role in driving protective or pathogenic immune responses remain 

elusive. Here, we report on the single-cell transcriptomes and TCR sequence analyses of >87,000 virus-

reactive CD8+ T cells from 39 COVID-19 patients and 10 healthy, pre-pandemic donors. To compare 

the molecular properties of antigen-specific SARS-CoV-2-reactive CD8+ T cells to other common 

respiratory virus-reactive CD8+ T cells, we also isolated virus-reactive CD8+ T cells from healthy control 

subjects and analyzed their single-cell transcriptomes. 

Across all the virus-reactive CD8+ T cells studied, we delineated eight distinct clusters with 

distinct transcriptomic features that shared TCRs, suggesting a high degree of plasticity among virus-

reactive CD8+ T cells. We find that CD8+ memory T cells can acquire a wide range of transcriptional 

programs following different viral infections. For example, in healthy subjects, CD8+ T cells with 

polyfunctional features, linked to protective anti-viral immunity36-39, are abundant among CD8+ memory 

T cells reactive to FLU and RSV. In contrast, these cells were mostly absent in SARS-CoV-2 responsive 

cells from both COVID-19 patients and healthy non-exposed subjects. Notably, cells in this 

polyfunctional cluster were also significantly enriched for genes related to aerobic glycolysis, which is 

considered to enhance effector functions of CD8+ memory T cells40,41. 

A large fraction of SARS-CoV-2-reactive cells (43% and 37%) from healthy non-exposed 

subjects (pre-pandemic), presumed to be human coronaviridae (CoV)-reactive cells that cross-react 

with SARS-CoV-2 peptide pools5,21, were present in clusters 1 and 0, respectively. These clusters also 

had similar representation of SARS-CoV-2-reactive cells from patients with COVID-19 illness. Cells in 

cluster 1 showed significant positive enrichment for type 1 interferon and ‘exhaustion’ signatures, 

reminiscent of the ‘exhausted’ CD8+ T cells reported in murine LCMV infection models60. Cluster 0, in 

contrast, was non-exhausted and showed significant negative enrichment of exhaustion and interferon 

signatures. SARS-CoV-2-reactive cells from COVID-19 patients also contributed the large majority of 
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cells in cluster 2, which was characterized by enriched expression of cell cycle-related genes. Similar 

to cells in cluster 0, cluster 2 cells also showed negative enrichment of interferon genes and relatively 

lower exhaustion signature scores. Thus, we find that the nature of CD8+ T cells reactive to 

coronaviridae differed substantially from those responding to FLU or RSV. 

Intriguingly, COVID-19 patients broadly segregated into two groups, according to whether the 

majority of the virus-reactive CD8+ memory T cells were in the ‘non-exhausted’ cluster 0 or the 

‘exhausted’ cluster 1. Patients with mild COVID-19 illness had a greater proportion of SARS-CoV-2-

reactive cells in the ‘exhausted’ cluster 1. Besides, cells in the ‘exhausted’ subset (cluster 1) from 

patients with mild COVID-19 illness expressed significantly lesser levels of transcripts encoding for 

cytotoxicity molecules, Fas ligand and pro-inflammatory cytokines (CCL3, CCL4, CSF-2, TNF, LTA, and 

LTB)5,9,43,44, and were significantly less clonally expanded. This finding raises the possibility that the 

magnitude and quality of the ‘exhausted’ CD8+ T cell response may be clinically important for limiting 

excessive tissue damage by SARS-CoV-2-reactive CD8+ T cells in COVID-19 illness. 

Qualitative differences also emerged between patients with mild and severe COVID-19 illness 

in the ‘non-exhausted’ clusters, cluster 0 and 2. Transcripts increased in cluster 0 cells from patients 

with severe illness were significantly enriched in multiple co-stimulation pathways (OX40, CD27, CD28, 

4-1BB, CD40), NF-NB, and cell survival pathways thought to be important for IL-2 production, 

proliferation, and survival. This finding suggested that patients with severe disease mount a more 

effective CD8+ memory T cell response to SARS-CoV-2 infection that could potentially lead to durable 

protection against re-exposure. Overall, our findings indicate that SARS-CoV-2-reactive CD8+ T cells 

from patients with severe COVID-19 displayed pro-survival properties and multiple features that 

potentially support the generation of robust CD8+ memory T cell responses and a lack  of restraint  

reflected in the absence of an ‘exhaustion’ program. Whether these cells play a role in disease 

pathogenesis or provide long-term protection is not clear, and further longitudinal analysis and 

functional studies in relevant model organisms are required to clarify this.  
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ONLINE METHODS  

Patient recruitment, ethics approval, and sample processing 

The Ethics Committee of La Jolla Institute (USA) and the Berkshire Research Ethics Committee 

(UK) 20/SC/0155 provided ethical approval for this study with written consent from all participants. 22 

hospitalized patients with reverse transcriptase polymerase chain reaction (RT-PCR) assay confirmed 

SARS-CoV-2 infection were recruited between April-May 2020. A cohort of 17 non-hospitalized 

participants was also recruited with RT-PCR assay or serological evidence of SARS-CoV-2 infection. 

Up to 80 ml of blood was obtained from all subjects for this research. Clinical metadata linked to 

hospitalized patients such as age, gender, comorbidities, level of clinical care required, radiological 

findings, and laboratory results are provided in Extended Data Table 1. The COVID-19 cohort 

consisted of 30 (77%) White British/White Other, 4 (10%) Indian, 2 (5%) Black British, 2 Arab (5%), and 

1 Chinese (3%) participants. Of the 39 COVID-19 subjects, 22 (56%) had moderate/severe disease 

requiring hospitalization, and 17 (44%) had mild disease, not requiring hospitalization. The median age 

of hospitalized patients was 60 (33-82), and 77% were male. The median age of the non-hospitalized 

participants was 39 (22-50), and 47% were male. To study SARS-CoV-2-, FLU- and RSV-reactive CD8+ 

T cells from healthy subjects, we utilized de-identified buffy coat samples from 10 healthy adult subjects 

who donated blood at the San Diego Blood Bank before 2019, prior to the COVID-19 pandemic. 

Peripheral blood mononuclear cells (PBMC) were isolated from blood by density centrifugation over 

Lymphoprep (Axis-Shield PoC AS, Oslo, Norway) and cryopreserved in 50% human serum, 40% 

complete RMPI 1640 medium and 10% DMSO.  

Peptide pools 

Two overlapping 15-mer SARS-CoV-2 peptide pools were purchased from Miltenyi Biotec8. 

These peptide pools were derived from the immunodominant sequence of the spike glycoprotein (S) 

and the complete sequence of the membrane glycoprotein (M) of SARS-CoV-2. For capturing FLU- and 

RSV-reactive CD8+ T cells, PepTivator Influenza A (H1N1) and RSV strain B1 peptide pools that 
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covered the entire sequence of Hemagglutinin (HA) and Nucleoprotein (N) of each virus respectively, 

were obtained from Miltenyi Biotec. 

Antigen-reactive T cell enrichment (ARTE) assay  

Virus-reactive CD8+ memory T cells were isolated using the protocol from Bacher et al. 2016 

with minor modifications15. Thawed PBMC were plated overnight (5 % CO2, 37 ̊ C) in 1 ml (concentration 

of 5 x 106 cells/ml) of TexMACS medium (Miltenyi Biotec) on 24-well culture plates. Each of the SARS-

CoV-2-specific peptide pools (1 µg/ml) were added separately to the PBMC culture for 24 hours. For 

subsequent magnetic-based enrichment of CD137+ cells, cells were sequentially stained with human 

serum IgG (Sigma Aldrich) for FcR block, cell viability dye (eFluor780/APC.Cy7, eBioscience), 

Fluorescence-conjugated antibodies, Cell-hashtag TotalSeq™-C antibody (0.5 µg/condition, clone: 

LNH-94;2M2, Biolegend), and a biotin-conjugated CD137 antibody (clone REA765; Miltenyi Biotec) 

followed by anti-biotin microbeads (Miltenyi Biotec). The following fluorescence-conjugated antibodies 

were used: anti-human CD3 (UCHT1, Biolegend), CD4 (OKT4, Biolegend), CD8B (SIDI8BEE, 

eBioscience), CD137 (4B4-1, Biolegend), CD69 (FN50, Biolegend), CCR7 (3D12, BD Biosciences), 

CD45RA (HI100, Biolegend), CD38 (HB-7, Biolegend), HLA-DR (G46-6, BD Biosciences), PD-1 

(EH12.1, Biolegend). Antibody-tagged cells were added to MS columns (Miltenyi Biotec) to positively 

select CD137+ cells. After elution, FACSAria Fusion Cell Sorter (Becton Dickinson) was utilized to sort 

CD8+ memory T cells expressing CD137 and CD69. Extended Data Fig. 1a shows the gating strategy 

used for sorting. FlowJo software (v10.6.0) was employed for all Flow Cytometry Data analysis. In 

parallel, virus-reactive CD4+ memory T cells were isolated from the same cultures and analysis of their 

single-cell transcriptomes reported elsewhere61. 

Cell isolation and single-cell RNA-seq assay (10x platform) 

To facilitate the integration of single-cell RNA-seq and TCR-seq profiling from the sorted CD8+ 

T cells, 10x Genomics 5’TAG v1.0 chemistry was utilized. A maximum of 60,000 virus-reactive CD8+ 

memory T cells from up to 8 donors was sorted into a low retention 1.5mL collection tube containing 
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500 µL of a solution of PBS:FBS (1:1) supplemented with RNAse inhibitor (1:100). After sorting, ice-

cold PBS was added to make up to a volume of 1400 µl. Cells were then spun down (5 min, 600 g, 4 

˚C), and the supernatant was carefully aspirated, leaving 5 to 10 µl. The cell pellet was gently 

resuspended in 25 µl of resuspension buffer (0.22 µm filtered ice-cold PBS supplemented with ultra-

pure bovine serum albumin; 0.04 %, Sigma-Aldrich). Following that, 33 µl of the cell suspension was 

transferred to a PCR-tube and single-cell library prepared as per the manufacturer’s instructions (10x 

Genomics).  

Single-cell transcriptome analysis 

Using 10x Genomics’ Cell Ranger software (v3.1.0) and the GRCh37 reference (v3.0.0) 

genome, reads from single-cell RNA-seq were aligned and collapsed into Unique Molecular Identifiers 

(UMI) counts. The Feature Barcoding Analysis pipeline from Cell Ranger was used to generate hashtag 

UMI counts for each TotalSeq™-C antibody-capture library. UMI counts of cell barcodes were first 

obtained from the raw data output, and barcodes with less than 100 UMI for the most abundant hashtag 

were filtered out. Donor identities were assigned using Seurat’s (v3.1.5)62 MULTIseqDemux 

(autoThresh = TRUE and maxiter = 10) with the UMI counts. Cell barcodes were classified into three 

categories: donor ID (singlet), Doublet, Negative enrichment. Singlet cells were then stringently re-

classified as doublet if the ratio of UMI counts between the top 2 barcodes was less than 3. All cells that 

were not classified as doublets or negative were used for downstream analysis. Cells from two COVID-

19 patients with mild disease (patient 28 and 48) were not identifiable in the downstream analyses due 

to the lack of cell hashtags.  

Single-cell RNA-Seq libraries (N = 15) were aggregated using Cell Ranger’s aggr function 

(v3.1.0). Analysis of the combined data was carried out in the R statistical environment using the 

package Seurat (v3.1.5). To filter out doublets and to eliminate cells with low-quality transcriptomes, 

cells were excluded if they were expressing < 800 or > 4400 unique genes, had < 1500 or > 20,000 

total UMI content, and > 10% of mitochondrial UMIs. The summary statistics for each single-cell 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 10, 2020. . https://doi.org/10.1101/2020.07.09.194027doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.194027
http://creativecommons.org/licenses/by-nc-nd/4.0/


transcriptome library are given in Extended Data Table 3 and show good quality data with no major 

differences in quality control metrics between batches (Extended Data Fig. 1c). Only transcripts 

expressed in at least 0.1% of the cells were included for further analysis. Using default settings in Seurat 

software, the filtered transcriptome data was then normalized (by a factor of 10,000) and log-

transformed per cell. The top variable genes with a mean expression greater than 0.01 counts per 

million (CPM) and explaining 25% of the total variance were selected using the Variance Stabilizing 

Transformation method62. The transcriptomic data was then further scaled by regressing the number of 

UMIs detected, and the percentage of mitochondrial counts per cell. Principal component analysis was 

performed using the top variable genes, and based on the standard deviation of the principal 

components portrayed as an “elbow plot”, the first 25 principal components (PCs) were selected for 

downstream analyses. Cells were clustered using the FindNeighbors, and FindClusters functions in 

Seurat with a resolution of 0.2. The robustness of clustering was verified by other clustering methods 

and by modifying the number of PCs and variable genes utilized for clustering. Analysis of clustering 

patterns of SARS-CoV-2-reactive CD8+ T cells across multiple batches revealed no evidence of strong 

batch effects (Extended Data Fig. 1d). Plots to visualize normalized UMI data were created using the 

Seurat package and custom R scripts. 

Single-cell differential gene expression analysis 

MAST package in R (v1.8.2)63 was used to perform pair-wise single-cell differential gene 

expression analysis after converting UMI data to log2(CPM+1). For genes to be considered differentially 

expressed, the following thresholds were used: Benjamini-Hochberg–adjusted P-value < 0.05 and a 

log2 fold change greater than 0.25. Cluster markers (transcripts enriched in a given cluster) were 

determined using the function FindAllMarkers from Seurat. 

Gene Set Enrichment Analysis and Signature Module Scores 

Signature lists were extracted from published data sets and databases. Gene names from 

murine datasets were converted to human gene names using the biomaRt R package. Gene lists were 
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then filtered to exclude genes that were expressed (CPM > 0) in < 2 % of the cells. Exhaustion 

consensus signature list was derived by considering genes that were present in > 3 exhaustion 

signature datasets23-31 (Extended Data Table 5). Genes that were present in cytotoxicity signatures23,64 

or viral activation signatures57 were then excluded from this consensus list. The R package fgsea was 

used to calculate the GSEA scores with the signal-to-noise ratio as a metric. Default parameters other 

than minSize = 3 and maxSize = 500 were used. Normalized enrichment scores were presented as 

enrichment plots. 

Signature scores were estimated with the Seurat’s AddModuleScore function, using default 

settings. For a given cell, each signature score is defined by the mean of the gene list of interest minus 

the mean expression of control gene lists. Control gene lists were sampled (size equal to the signature 

list) from bins defined based on the level of expression of the genes in the signature list. Signature gene 

lists used for analysis are provided in Extended Data Table 5. 

Single-cell trajectory analysis 

Monocle 3 (v0.2.1)65 was used to calculate the “branched” trajectory; settings included the 

number of UMI and percentage of mitochondrial UMI as the model formula, and taking the highly 

variable genes from Seurat for consistency. After using the PCA output from Seurat and allocating a 

single partition for all cells, the cell-trajectory was outlined on the UMAP generated from Seurat as well. 

The ‘root’ was assigned using the get_earliest_principal_node function given in the package’s tutorial. 

T cell receptor (TCR) sequence analysis  

Single-cell libraries enriched for V(D)J TCR sequences were processed to get clonotype 

information for each independent sample with the vdj pipeline from Cell Ranger (v3.1.0 and human 

annotations reference GRCh38, v3.1.0, as recommended). Joint analysis of single-cell transcriptomes 

and TCR repertoires was performed by aggregating independent libraries through custom scripts. For 

this purpose, cell barcodes were matched between corresponding libraries from each type. Then, each 
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unique clonotype, a set of productive Complementarity-Determining Region 3 (CDR3) sequences as 

defined by 10x Genomics, was identified across all library annotations files. Finally, clone statistics, 

mainly clonotypes’ frequencies, and proportions were recalculated for the whole aggregation 

(considering only cells found in both modalities) so that previously-identified good quality cells were 

annotated with a specific clonotype ID and such clone statistics. Clone size was calculated as the 

number of cells expressing a given clonotype ID, and a clonotype was called as clonally expanded if 

this value was greater than 1 (clone size ≥ 2). Clone size was depicted on UMAP (per cell) or violin 

plots (per group, where color indicated clone size median of each group) using custom scripts, and 

clonotype sharing was presented using the tools from UpSetR66. 

Ingenuity Pathway Analysis (IPA) 

IPA was performed using the default setting (v01-16) on transcripts that were significantly 

increased in expression in cluster 0 cells from patients with severe COVID-19 illness compared to mild 

illness. The canonical pathway analysis was performed to elucidate the enriched pathways in this data 

set and to visualize and highlight the gene overlap between the given data set with a particular enriched 

pathway. The upstream regulator network analysis was used to identify and visualize the interactions 

between differentially expressed downstream target genes in a given dataset with a particular upstream 

regulator.  

Statistical Analysis 

Graphpad Prism 8.4.3 software was utilized for relevant data statistical analysis. Detailed 

information regarding statistical analysis, including test types and number of batches or samples is 

provided in the figure legends. P values are specified in the text or the figure legends. The data normality 

tests were performed, and for data that fell within Gaussian distribution, appropriate parametric 

statistical tests were performed. For those that did not conform to the equal variance-Gaussian 

distribution, appropriate non-parametric statistical tests were used. 
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Data Availability 

Scripts to obtain figures and tables provided in the manuscript are available in our repository on GitHub 

(https://github.com/vijaybioinfo/COVID19_2020). Sequencing data for this study has been deposited 

into the Gene Expression Omnibus under GSE153931.   
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FIGURE LEGENDS 

 

Figure 1. CD8+ T cell responses in COVID-19 illness 

a, Study design overview. b, Representative FACS plots displaying surface staining of CD137 and 

CD69 in post-enriched CD8+ memory T cells, stimulated for 24 hours with SARS-CoV-2 peptide pools, 

from COVID-19 patients with mild and severe illness (left), and summary of the number of cells sorted 

per million PBMC (right). c, Representative FACS plots (left) showing surface expression of PD-1 in 

CD8+ memory T cells ex vivo (without in vitro stimulation) and in CD137+CD69+ CD8+ memory T cells 

following stimulation, post-enrichment (CD137-based) and corresponding summary plots (right) 

showing proportion of PD-1 expressing cells in each study subject (P = 0.26, unpaired t-test); Data are 

displayed as mean +/- S.E.M (N=39). ***P<0.001 by Mann-Whitney test (b). 

 

Figure 2. Virus-reactive CD8+ T cells show transcriptomic heterogeneity 

a, Uniform manifold approximation and projection (UMAP) analysis that displays single-cell 

transcriptomic landscape of sorted CD137+CD69+ CD8+ memory T cells following 24 hours stimulation 

with virus-specific peptide pools. Seurat-based clustering of single cells colored based on cluster type. 

b, Heatmap showing expression of the most significantly enriched transcripts in clusters 0-6 (see 

Extended Data Table 4, Seurat marker gene analysis – comparison of a cluster of interest versus all 

other cells). Shown are a subset of the top 200 transcripts that have an adjusted P < 0.05, log2 fold 

change > 0.25, and >10% difference in the percentage of cells expressing the differentially expressed 

transcript between two groups compared. c, Graph showing average expression and percent 

expression of selected marker transcripts in each cluster; cells in cluster 7 that comprise <1% of all cells 

are not shown (b,c). d, UMAP is illustrating exhaustion, interferon (IFN) response, cytotoxicity, 

‘unhelped’, and glycolysis signature scores for each cell. e, Gene Set Enrichment Analysis (GSEA) for 

the indicated signature genes comparing each cluster with the rest of the cells. Heatmap shows 

summary of the normalized enrichment scores for each cluster. Gray color indicates that the signature 
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does not reach statistical significance (P >0.05) in a given cluster. f, Violin plots showing expression of 

representative exhaustion, IFN response, cytotoxicity marker transcripts (LAG3, MX1, GZMB, 

respectively) in cluster 1 compared to an aggregation of remaining cells (Rest). The color indicates 

percentage of cells expressing indicated transcript. g, UMAPs are depicting CD8+ memory T cells for 

individual virus-specific pool stimulation conditions (top panel). Each group of virus-reactive cells was 

randomly downsampled to ensure equal representation, corresponding pie charts, displaying 

proportions of virus-reactive cells in individual clusters (bottom panel). 

 

Figure 3. Exhausted SARS-CoV-2-reactive CD8+ T cells are increased in mild COVID-19 illness 

a, Single-cell TCR sequence analysis of SARS-CoV-2-reactive cells showing the sharing of TCRs 

between cells from individual clusters (rows, connected by lines). Bars (top) indicate the number of cells 

intersecting indicated clusters (columns). b, UMAP is showing the clone size of SARS-CoV-2-reactive 

cells from COVID-19 patients. c, Single-cell trajectory analysis showing the relationship between cells 

in different clusters (line). d, Unsupervised clustering of all COVID-19 patients (mild and severe illness) 

based on the proportion of SARS-CoV-2-reactive CD8+ T cells present in each cluster per patient. The 

symbol * below represents patient 8. Clusters 4, 6, and 7 that had a very low frequency of cells in 

COVID-19 patients (<1% cells per cluster in total) are not shown here, full details provided in Extended 

Data Table 3. e, Bar chart comparing the proportion of cells in cluster 1 from COVID-19 patients with 

mild and severe illness. Data are displayed as mean +/- S.E.M (N=37, 2 subjects without hashtag data 

were not included for donor-specific analysis).  f, Volcano plot showing genes differentially expressed 

(adjusted P < 0.05, mean CPM >0, log2 fold change >0.25) in cluster 1 cells between COVID-19 patients 

with severe and mild disease. g, Violin, and dot plots comparing the expression of indicated transcripts 

in cluster 1 cells between COVID-19 patients with mild and severe disease. h, Plot displaying the 

expression of several key transcription factors in cluster 1 cells from COVID-19 patients with severe 

and mild illness. i, Violin plots showing the degree of CD8+ T cell-clonal expansion in cluster 1 cells 

between COVID-19 patients with mild and severe disease. *P<0.05, ****P<0.0001 by Mann-Whitney 

tests (e,i).  
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Figure 4. Pro-survival features in SARS-CoV-2-reactive CD8+ T cells from patients with severe 

COVID-19 illness 

a, Plot shows fold change values of differentially expressed genes (adjusted P < 0.05, mean CPM >0, 

log2 fold change >0.25) in cluster 0 (x-axis) and 2 (y-axis) when comparing COVID-19 patients with 

severe and mild illness. A positive value indicates that the particular gene has increased expression in 

patients with severe disease relative to patients with mild disease in a given cluster, while a negative 

value indicates the opposite. b-d, Ingenuity pathway analysis (IPA) of genes with increased expression 

(adjusted P <0.05, log2 fold change >0.25) in cluster 0 cells between COVID-19 patients with severe 

versus mild illness; b, Top 16 canonical pathways with significant enrichment; c, Upstream regulatory 

network analysis of genes in NF-NB pathway; d, Transcripts encoding components in the 4-1BB and 

OX40 signaling pathway. e, Violin plots showing the degree of CD8+ T cell-clonal expansion in cluster 

0 and 2 between COVID-19 patients with mild and severe disease. **** P <0.0001 by Mann-Whitney 

test.  

 

 

Extended Data Figure Legends  

 

Extended Data Figure 1. CD8+ T cell responses in COVID-19 illness 

a, Gating strategy to sort: lymphocytes size-scatter gate, single cells (Height vs Area forward scatter 

(FSC)), live, CD3+CD8+ memory (CD45RA+CCR7+ naïve cells excluded) activated CD137+ CD69+ cells. 

Surface expression of activation markers was analyzed on CD8+ memory T cells. b, Representative 

FACS plots (left) showing surface expression of CD38 and HLA-DR in CD8+ memory T cells ex vivo 

and in CD137+CD69+ CD8+ memory T cells following 24 hours of stimulation, post-enrichment (CD137-

based), and summary of proportions of cells expressing CD38 (N=39, P=0.24 by Mann-Whitney test)) 

and HLA-DR (N=34, P=0.11 by Mann-Whitney test) in CD137+CD69+ CD8+ memory T cells following 

stimulation and post-enrichment (CD137-based) in COVID-19 patients with mild and severe disease 
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(right); Data are mean +/- S.E.M. c, Number of genes recovered for each 10X library sequenced. d, 

Distribution of cells in each cluster for the 6 batches of SARS-CoV2-reactive CD8+ T cells from COVID-

19 patients (right panel). 

 

Extended Data Figure 2. Virus-reactive CD8+ T cells show transcriptomic heterogeneity 

 a, Violin plots showing enrichment patterns of exhaustion, interferon (IFN) response, cytotoxicity, 

‘unhelped’, and glycolysis gene signatures for each cluster. Color indicates signature scores. b, Violin 

plots showing expression of exhaustion and cytotoxicity gene markers in cluster 1 compared to an 

aggregation of remaining cells (Rest). c, Scatter plots (top panel) displaying co-expression of IFNG and 

TNF, IFNG and CCL4, XCL1 and XCL2 transcripts in virus-reactive CD8+ memory T cells in cluster 4 

compared to the rest of the cells (Rest). Numbers indicate the percentage of cells in each quadrant. 

Violin plots (bottom panel) showing expression of indicated transcripts in cluster 4 compared to an 

aggregation of remaining cells (Rest). d, Violin plot showing expression of ZNF683 in cluster 6 

compared to an aggregation of remaining cells (Rest). Color indicates percentage of cells expressing 

indicated transcript. 

 

Extended Data Figure 3. Exhausted SARS-CoV-2-reactive CD8+ cells are increased in mild 

COVID-19 illness 

a, Plot depicting correlation of the proportion of cells in cluster 1 per COVID-19 patients (y-axis, percent) 

and the interval between symptom onset to blood collection (x-axis, days). R=0.3 (Pearson correlation), 

P<0.07 (ns). b, Gene Set Enrichment Analysis (GSEA) of Interferon response, Cytotoxicity, and 

Exhaustion signatures in cluster 1 cells between COVID-19 patients with severe versus mild illness. c, 

Violin plots depicting several IFN response genes in cluster 1 cells from COVID-19 patients with mild 

and severe illness. d, Scatter plot displaying co-expression of TNF and CSF2 transcripts in cluster 1 

cells from COVID-19 patients with mild and severe illness. Numbers indicate the percentage of cells in 

each quadrant. e, Violin plots comparing the expression of indicated transcripts between BHLHE40-

expressing and non-expressing cells in cluster 1 from COVID-19 patients with severe disease.  
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Extended Data Figure 4. Pro-survival features in SARS-CoV-2-reactive CD8+ T cells from patients 

with severe COVID-19 

a, Bar charts comparing the proportion of cells in cluster 0 (P = 0.29 by Mann-Whitney test) and 2 (P = 

0.13 by Mann-Whitney test) from COVID-19 patients with mild and severe disease. Data are displayed 

as mean +/- S.E.M (N=37).  b, Ingenuity pathway analysis (IPA) of genes with increased expression 

(adjusted P <0.05, log2 fold change >0.25) in cluster 0 cells between COVID-19 patients with severe 

versus mild illness; transcripts encoding components of apoptosis signaling pathway are shown.  

 

 

EXTENDED DATA TABLES 

Extended Data Table 1. Human subject details 

Extended Data Table 2. Summary of all FACS data 

Extended Data Table 3. Single-cell sequencing quality controls and subject-specific cell 
numbers 

Extended Data Table 4. Single-cell cluster enriched transcripts  

Extended Data Table 5. Gene lists utilized for Gene Set Enrichment Analysis and Signature 
Module Scores 

Extended Data Table 6. Subject-specific TCR clonotype data 

Extended Data Table 7. Cluster-specific TCR clonotype data  

Extended Data Table 8. Single-cell differential gene expression analysis 

Extended Data Table 9. Ingenuity Pathway Analysis 
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