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Summary 

Initially, the global outbreak of COVID-19 caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) spared children from severe disease. However, after the initial wave 

of infections, clusters of a novel hyperinflammatory disease have been reported in regions with 

ongoing SARS-CoV-2 epidemics. While the characteristic clinical features are becoming clear, 

the pathophysiology remains unknown. Herein, we report on the immune profiles of eight 

Multisystem Inflammatory Syndrome in Children (MIS-C) cases. We document that all MIS-C 

patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with 

normal isotype-switching and neutralization capability. We further profiled the secreted immune 

response by high-dimensional cytokine assays, which identified elevated signatures of 

inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, 

and CDCP1) and mucosal immune dysregulation (IL-17A, CCL20, CCL28). Mass cytometry 

immunophenotyping of peripheral blood revealed reductions of mDC1 and non-classical 

monocytes, as well as both NK- and T- lymphocytes, suggesting extravasation to affected tissues. 

Markers of activated myeloid function were also evident, including upregulation of ICAM1 and 

FcgR1 in neutrophil and non-classical monocytes, well-documented markers in autoinflammation 

and autoimmunity that indicate enhanced antigen presentation and Fc-mediated responses. 

Finally, to assess the role for autoimmunity secondary to infection, we profiled the auto-antigen 

reactivity of MIS-C plasma, which revealed both known disease-associated autoantibodies (anti-

La) and novel candidates that recognize endothelial, gastrointestinal and immune-cell antigens. 

All patients  were treated with anti- IL6R antibody or IVIG, which led to rapid disease resolution 

tracking with normalization of inflammatory markers.  

One Sentence Summary: This study maps the cellular and serological immune dysfunction 

underlying a novel pediatric inflammatory syndrome associated with SARS-CoV-2. 

Keywords: pediatrics, SARS-CoV-2, COVID19, immune, dysfunction, autoimmunity, Kawasaki-

like, MIS-C, PIMS 
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Introduction 

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across the 

globe has led to an outbreak of life-threatening respiratory disease, termed COVID-19 (Zhou et 

al., 2020; Zhu et al., 2020). While adults have suffered the highest rates of morbidity and mortality 

of COVID-19, children were thought to be spared (Dong et al., 2020; Ludvigsson, 2020). Recently, 

however, cases of hyperinflammatory shock in children have been reported in regions with 

receding SARS-CoV-2 epidemics (Cheung et al., 2020; Jones et al., 2020; Klocperk et al., 2020; 

Rauf et al.; Riphagen et al., 2020; Toubiana et al., 2020; Verdoni et al., 2020; Whittaker et al., 

2020).   

Initially, the syndrome was considered an atypical form of Kawasaki disease (KD), an acute 

systemic vasculitis in young children, given the presence of fever, rash, conjunctivitis, 

mucocutaneous involvement and cardiac complications (Kawasaki, 1967; Kawasaki et al., 1974). 

However, it has become evident that shock, gastrointestinal symptoms, and coagulopathy, which 

are rarely seen in classic KD, are prominent features of this unique syndrome (Cheung et al., 

2020; Jones et al., 2020; Klocperk et al., 2020; Rauf et al.; Riphagen et al., 2020; Toubiana et al., 

2020; Verdoni et al., 2020; Whittaker et al., 2020). Furthermore, Black and older children appear 

disproportionately affected, in contrast to the association of young children of Asian descent with 

KD (Holman et al., 2010; Nakamura et al., 2010).  Recognizing these patterns, the World Health 

Organization (WHO) and other reporting bodies have termed the novel disease multisystem 

inflammatory syndrome in children (MIS-C) or pediatric inflammatory multisystem syndrome 

(PIMS) (ECDC, 2020; WHO, 2020).  

The concentration of this disease to regions of high local SARS-CoV-2 transmission, but with an 

onset weeks after the peak COVID-19 caseload, suggests MIS-C is a secondary consequence of 

SARS-CoV-2 infection. Indeed, over 70% of MIS-C patients test positive for serum antibodies 

against SARS-CoV-2 and test negative for the presence of viral RNA (Cheung et al., 2020; Jones 
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et al., 2020; Klocperk et al., 2020; Rauf et al.; Riphagen et al., 2020; Toubiana et al., 2020; Verdoni 

et al., 2020; Whittaker et al., 2020). Aside from this association, the pathophysiology of MIS-C 

remains largely unexplored. Here, we investigate the immune responses of MIS-C cases, profiling 

the innate and adaptive underpinnings of the aberrant immune activation.   

 

Results  

Clinical history  

We report eight children from the New York City region that presented to our institution between 

late-April and early-May 2020 with hyperinflammatory disease fulfilling WHO MIS-C criteria. The 

median age was 11.5 years, and the gender distribution was equal. Patients that reported ethnicity 

were of Hispanic (71%) or Black (29%) ancestry. Two patients had a history of asthma and 

another psychiatric disorders; otherwise, children were previously healthy. All patients initially 

presented with fever and abdominal symptoms (pain, emesis, or diarrhea). Rash, conjunctivitis, 

mucocutaneous disease, and hypotension were variably present. None, however, experienced 

inflammatory manifestations of the extremities, as in KD. On admission, all patients demonstrated 

signs of coagulopathy as evidenced by elevated fibrin degradation products (D-dimer), PT, PTT 

and/or thrombocytopenia. Cardiac dysfunction manifested in all patients during hospitalization. 

Troponin and brain natriuretic protein (BNP) were elevated in all but one patient, with variable 

electrocardiogram (ECG) changes in three patients. ECG revealed coronary artery dilation or 

aneurysm in five children. Half of the patients developed respiratory complications, consisting of 

either reactive airway disease, pleural effusion or pneumonia, although respiratory symptoms 

were mild. All patients were treated within one day of admission with intravenous immunoglobulin 

(IVIG), or tocilizumab (TCZ), except P3, for whom IVIG was withheld (Table 1, timeline 

Supplemental Figure 1A and B).  On investigation of SARS-CoV-2 exposure, no patient reported 

a recent history of upper respiratory infection.  When tested during admission, 25% of MIS-C 
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patients were positive by polymerase chain reaction (PCR) for nasopharyngeal SARS-CoV-2 

RNA. There was no evidence of other infectious agents. In one of the patients (P4), the mother 

had a confirmed SARS-CoV-2 infection three weeks prior to admission. Among the patients 

negative by PCR, one child (P6) had tested positive four weeks previously when he presented 

with appendicitis. This last case remains the most direct evidence that SARS-CoV-2 infection can 

precipitate MIS-C weeks later.    

The anti-SARS-CoV-2 antibody repertoire resembles the convalescent response   

Given the suspected association to prior SARS-CoV-2 infection, we performed enzyme-linked 

immunosorbent assay (ELISA) for presence of serum antibodies against the SARS-CoV-2 

spike protein using an FDA-approved protocol (Amanat et al., 2020). All MIS-C patients were 

seropositive regardless of PCR status (Figure 1A). To better understand the profile of this anti-

SARS-CoV-2 response, we explored the isotypes and subclasses of the immunoglobulins specific 

to SARS-CoV-2 S protein. As a comparator, we included sera from children and adults with acute 

SARS-CoV-2 infection requiring hospitalization, as well as sera from convalescent adults after 

mild confirmed infection. Consistent with prior infection, MIS-C plasma showed elevated IgG with 

low levels of IgM antibody, as observed in the convalscent response. Among the IgG responses, 

IgG1 predominated, with a detectable but lower IgG3 response—again resembling convalescent 

sera. Uniquely, however, MIS-C patients showed higher levels of IgA and lower levels of IgM 

antibodies, relative to convalescent plasma, approximating IgA levels of acute infection (Figure 1 

A-B). To determine whether this serological response in the absence of clinically apparent

respiratory infection was, in fact, effectively antiviral, we assayed neutralization of live SARS-

CoV2 infection by patient plasma in vitro. All MIS-C patent plasma was capable of neutralization, 

with potency similar to convalescent reponses. In both ELISA and neutralization assays, PCR+ 

MIS-C patients and PCR- MIS-C patients were indistinguishable (Figure 1C), suggesting that the 
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positive PCR results reflect a receding infection. Indeed, recent studies document that while PCR 

assays can remain positive beyond three weeks after symptom onset, infectious virus cannot be 

detected (La Scola et al., 2020; Wölfel et al., 2020; Zheng et al., 2020). To estimate the average 

time between initial infection and MIS-C onset, we determined the temporal delay between peak 

COVID-19 and MIS-C admissions at our institution. Our proxy measurement revealed an 

approximate five week difference (Figure 1D), which is consistent with the documented SARS-

CoV2 exposure of P4 and the infection of P6 three and four weeks prior to presentation with MIS-

C, respectively. 

 

Cytokine profiling indicates myeloid cell chemotaxis and mucosal inflammation. 

Within a day of admission, all patients received anti-IL6R therapy and all but one received IVIG 

treatment. We sampled their peripheral blood shortly thereafter, when clinical markers of 

inflammation, coagulopathy and cardiac dysfunction still remained elevated (Supplemental Figure 

1A). We performed high-dimensional cytokine profiling of 92 analytes using the O-link platform to 

define the secreted immune response in MIS-C patient plasma, and compare it to sera from, age-

matched healthy controls, a pool of ten adult healthy donors, or hospitalized pediatric cases of 

COVID-19 without MIS-C. The latter group included seven pediatric cases (from multiple 

timepoints) with underlying hemato-oncological disease, and one case of SARS-CoV-2  in an 

otherwise-healthy child. Overall, the patients with MIS-C presented with striking elevations in 

multiple cytokine families (Figure 2A). This signature was consistent across patients, as all MIS-

C samples grouped together by hierarchical clustering and PCA (Figure 2B). While some of these 

pro-inflammatory cytokines resembled that of acute SARS-CoV2 infection (IL-18), many of these 

cytokine elevations exceeded levels of acute infection, such as OPG and IL-10RA (Figure 2C). 

IL-6 demonstrated the largest fold-change increase, although the exogenous IL-6R blockade from 

tocilizumab is known to contribute, at least in part, to this effect (Nishimoto et al., 2008). 
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Interestingly, the MIS-C circulating immune profile was marked by cytokines and chemokines that 

recruit NK- cells and T-cells from the circulation and modulate their function such as CCL19, 

CXCL10 and CDCP1 (Figure 2D) (Vilgelm and Richmond, 2019). Likewise, mediators of 

neutrophil and monocyte chemotaxis (CCL3 and CCL4), as well as differentiation and activity 

(EN-RAGE and  CSF-1) were elevated in MIS-C (Figure 2E) (Foell et al., 2003; Maurer and Von 

Stebut, 2004; Stanley and Chitu, 2014; Vilgelm and Richmond, 2019). In turn, a profile of immune 

exhaustion and suppression was also evident, with stark upregulation of soluble PDL1, likely 

reflecting a host-driven compensatory response to the inflammation (Figure 2F). In concordance 

with the gastrointestinal disease of MIS-C, cytokines potentiating mucosal immunity were 

particularly prominent, both in regards to T-helper cell function (IL-17A) and mucosal chemotaxis 

(CCL20 and CCL28) (Figure 2F) (Mohan et al., 2020; Williams, 2006). Finally, endothelial 

dysfunction was suggested by elevation of VEGFA, akin to previous reports in KD (Figure 2A) 

(Kariyazono et al., 2004; Maeno et al., 1998).   

 

Mass cytometry uncovers mDC, non-classical monocytes, and lymphocyte activation and egress 

to the periphery 

Next, we performed CyTOF-based immunophenotyping on six MIS-C and five age-matched 

healthy controls. Overall, while both controls and MIS-C had similar subset distributions in 

peripheral blood (Figure 3A and Supplemental Figure 2 and 3A), the frequencies of select immune 

cell types were significantly altered. In the myeloid compartment, mDC1, non-classical monocytes 

and pDCs were significantly reduced (Figure 3B). Both CD56bright and CD56dim NK cells were also 

decreased in frequency (Figure 3C), as were the percentages of both αβ and γδ T lymphocytes 

(Figure 3D). Intrestingly, the relative distribution of naïve, central memory, effector memory or 

TEMRA subsets was normal within T-cells (Figure 3E and F). Likewise, B-cells were present with 

a normal frequency range and consisted of a typical distribution of naïve, memory and plasma 

cells (Supplemental Figure 3B and C). These findings suggests that no active peripheral B- or T- 
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expansion was underway at the time of sampling. Strikingly, the neutrophils and CD16+ 

monocytes in at least three MIS-C individuals demonstrated robust upregulation of CD54 (ICAM1) 

expression, indicative of APC activation and transendothelial migration (Figure 3G) (Pietschmann 

et al., 1998; Sheikh and Jones, 2008). Similarly, MIS-C patient neutrophils and CD16+ non-

classical monocytes demonstrated elevated CD64 (FcgR1) expression (Figure 3H), a common 

finding in autoimmune and autoinflammatory diseases (Li et al., 2009, 2010; Tanaka et al., 2009), 

including KD (Hokibara et al., 2016). However, these cells lacked signs of active type I IFN 

signaling, including CD169 and STAT1 phosphorylation upregulation, suggesting other cytokines 

are driving this activation (Supplemental Figure 3D and E). Instead, augmented levels of phospho-

STAT3 were noted, which may originate downstream of IL-6, given its robust elevation in MIS-C 

plasma (Figure 3I). Combined, these data suggest extravasation of T- and NK-lymphocytes, as 

well as activation and chemotaxis of neutrophils and nonclassical monocytes, likely contribute to 

the underlying disease pathogenesis.  

 

Identification of auto-antibodies in MIS-C 

The resolution of disease with IVIG and the delayed onset after SARS-CoV-2 infection suggest a 

pathological process involving adaptive immunity. We, therefore, tested the hypothesis that 

SARS-CoV-2 infection leads to a secondary auto-reactive humoral response. To characterize a 

potential auto-reactive antibody repertoire, we assessed plasma IgG and IgA reactivity to a human 

antigen microarray containing over 25,000 unique peptides. To exclude auto-reactive antibodies 

associated with IVIG treatment (Grüter et al., 2020; Van Der Molen et al., 2015), we first compared 

plasma from the patient who did not receive IVIG (P3) to plasma from a healthy control and an 

irrelevant disease control (a multiple myeloma patient). We required a 2-fold change increase in 

signal intensity between the MIS-C sera and control plasma. We evaluated the global overlap in 

enriched autoantibody profiles among MIS-C patients (Figure 4A and B). To generate high-
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confidence hits, we applied a more stringent cutoff (4-fold change) and only assessed auto-

reactive antibodies upregulated in the majority of MIS-C patients (Figure 4B and C).   

 

This analysis yielded 25 candidates for IgG autoantigens and 7 for IgA autoantigens (Figure 4C 

and D). Among this group, anti-La, a characteristic autoantigen of systemic lupus erythematosus 

and Sjogren’s disease, was enriched in both IgG and IgA libraries as compared to controls 

(Franceschini and Cavazzana, 2005). Likewise, IgG reactivity to aminoacyl-tRNA synthetase 

(WARS) were identified, similar to that observed in polymyositis and dermatomyositis 

(Mirrakhimov, 2015). These two candidates suggest that MIS-C may share some pathophysiology 

with classic autoimmune diseases.  Interestingly, most auto-reactive peptides noted to be 

enriched in our MIS-C patients carry no documented association with autoimmune disease. The 

tissue expression patterns of these antigens reveal enrichment in organ systems central to the 

pathology of MIS-C. Among these were peptides expressed in endothelial and cardiac tissue 

(P2RX4, ECE2 and CLEC14A), as well as antigens of the gastrointestinal tract (MUC4, MUC15 

and FOLH1). Curiously, immune cell mediators were particularly abundant, including CD244, 

IL13, IFNGR2, IL6R, and LAMP1. Whether antibody engagement with these proteins modulates 

the activity of immune cells or aids in immune complex formation needs to be determined. 

Plausibly, antibody-mediated inhibition of CD244, an inhibitory receptor on NK and T-Cells, could 

allow for breach of immune checkpoints. Future studies are required to confirm this association 

in MIS-C cohorts and assess the functional impact. w 

 

Anti-IL-6R therapy and IVIG resolve MIS-C 

Beginning on the day of admission, we monitored markers of inflammation (C-reactive protein, 

erythrocyte sedimentation rate, IL-6, IL-8, IL1-beta, TNF-alpha, ferritin), coagulopathy (D-dimer, 

prothrombin time, partial thromboplastin time, platelet count, fibrinogen) and cardiac injury 
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(troponin and BNP). Most patients were treated within the first day of admission. All received anti-

IL-6R antibody, and all but one received IVIG. Uniformly, these markers normalized rapidly 

(Supplemental Figure 1 and 2) with a median hospital stay of six days, and favorable outcomes. 

We continued to monitor these disease parameters on follow-up, noting that they continued to 

normalize without evident secondary consequences. 

 

Discussion 

Here, we evaluated the peripheral blood immune profiles of eight MIS-C cases. Despite the 

absence of clinically apparent upper respiratory infection, all children harbored antibodies against 

SARS-CoV-2. This antibody response demonstrated typical IgG class switching, loss of 

circulating IgM, and effective virus neutralization, resembling, but not identical to, serologies from 

convalescent COVID-19 adults. Their peripheral blood secretome exhibited drastic elevations of 

inflammatory mediators, indicative of lymphocyte and myeloid cell activation and chemotaxis 

towards the periphery. Among these cytokines, a clear mucosal immune signature was evident, 

in accordance with the prominent gastrointestinal clinical manifestations. Cellular analyses 

supported egress of nonclassical monocytes and mDC1s, as well as T and NK cells, from the 

periphery. Importantly, we identified IgG and IgA auto-antibody repertoires against endothelial, 

mucosal and immune antigens, together with strong neutrophil and monocyte upregulation of 

CD54 and CD64. The latter marker, also known as the high-affinity FcγR1, can engage 

autoantibodies and immune complexes to trigger potent inflammation and tissue injury (van der 

Poel et al., 2011; Tanaka et al., 2009). These results suggest that autoreactivity secondary to 

SARS-CoV-2 infection and the inflammatory innate immune response may be critical to the 

pathogenesis of MIS-C. 
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In 1967, Dr. Tomisaku Kawasaki described 50 pediatric patients with a previously unrecognized 

febrile illness that clustered both in time and geography (Kawasaki, 1967). Since this initial 

description, numerous studies have detailed the clinical features and biological manifestations of 

KD (Dietz et al., 2017). However, the underlying pathophysiology remains incompletely 

understood. Most mechanistic explanations arise from the association with viral infections. 

Namely, there is a significant increase in the incidence of PCR-positive tests for enteroviral, 

adenoviral, human rhinoviral and coronaviral infections in children presenting with KD relative to 

age-matched, healthy controls (Chang et al., 2014; Jordan-Villegas et al., 2010; Turnier et al., 

2015). Likewise, according to serologic and epidemiologic evidence, we observed that all MIS-C 

patients were previously exposed to SARS-CoV-2 approximately four to five weeks prior to 

presentation.  While MIS-C has been classified as a distinct syndrome by its clinical presentation, 

the overlapping features are striking, suggesting that MIS-C may lie along a spectrum of KD-like 

pathology. These differences may arise from the introduction of a novel virus to a population with 

completely naïve immunity, as in SARS-CoV-2. This distinction may underlie the later age at 

presentation for MIS-C relative to KD, as other viruses associated with KD are common infections 

of early childhood. Should a different experiment of nature have occurred whereby other KD-

associated viruses suddenly appeared in a naïve population, it is plausible that distinct clinical 

and laboratory features would also have manifested, linked to those viruses.  

 

The extent to which genetics impacts the development of MIS-C is currently unclear. Certainly, 

Black or Hispanic ethnicity appears to be a major risk factor, as observed in this study and others 

(Cheung et al., 2020; Jones et al., 2020; Klocperk et al., 2020; Rauf et al.; Riphagen et al., 2020; 

Toubiana et al., 2020; Verdoni et al., 2020; Whittaker et al., 2020). This enrichment diverges from 

KD, in which the incidence is significantly higher in children of Asian ancestry. Several genetic 

variants of moderate effect size, such as ITPKC, CD40, FCGR2A and BLK have been associated 

with KD (Onouchi, 2018). Interestingly, the risk among Asian children living in the United States 
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is reduced (Uehara and Belay, 2012), suggesting a role for environmental factors. Similarly, it is 

quite possible that environmental factors impact the ethnicity-based risk in MIS-C, as Black and 

Hispanic populations are more likely to be exposed to SARS-CoV2 (DiMaggio et al., 2020; Vahidy 

et al., 2020). This factor is especially relevant at our hospital, and other metropolitan centers, 

which serve patients from diverse backgrounds. Only detailed genetic analyses in large cohorts 

will determine the relative contribution of genetic factors, which in KD also remains mostly 

unexplained.  

 

Recurrence of KD is rare, and hopefully this will be the case for MIS-C as well. The presence of 

autoantibodies, as documented here, is concerning however. We postulate that these 

autoantibodies trigger immune complex formation and/or unleash an immune cell-driven attack 

against host tissues. These may arise by direct cross-reactivity between SARS-CoV-2 and self-

antigens, which, if true, will pose a risk for future vaccination strategies. Although the inflammation 

appears transient, these autoantibodies also raise concern for recurrence or predisposition to 

other disorders with autoimmune features. All these postulates need careful, methodical and well-

controlled experimental dissection. Until then, MIS-C remains scientifically puzzling, but 

therapeutically manageable. 
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Figure Legends 

Figure 1. Anti-SARS-CoV-2 humoral response in MIS-C patients. (A) Endpoint titers against 

SARS-CoV-2 spike protein in plasma from healthy donors, patients hospitalized for acute 

COVID-19, convalescent individuals, and MIS-C patients. (B) IgG subtypes. (C) Left: 

Neutralization of SARS-CoV-2 in Vero cells by plasma from MIS-C patients or a representative 

COVID positive control. Right: IC50 values for neutralization curves across the full dataset. (D) 

Admissions for COVID-19 and MIS-C, expressed as a relative proportion of total cases, 

respectively. Time indicates the delay between COVID-19 and MIS-C in the date of 50% total 

caseload.  

 

Figure 2. Cytokine profiling of plasma from MIS-C and pediatric COVID-19 patients. (A) 

Multiplex cytokine analysis by O-link ELISA, expressed as log2 fold-change over the mean 

healthy controls. (B). Principal component analysis. (C-G) Cytokines reaching statistical 

significance in MIS-C samples over healthy controls. 

 

Figure 3. Immunophenotyping of MIS-C patient peripheral blood by mass cytometry. (A) 

Representative tSNE plots demonstrating the immune cell distribution in whole blood from age-

matched healthy controls and MIS-C patients. (B) Monocyte and dendritic cell sub-population 

frequencies quantified as percent of single cells. (C) NK-cell subsets. (D) T-Cell subsets. (E) 

Representative scatterplots for naive, central memory (CM), effector memory (EM), and T 

Effector Memory re-expressing CD45RA (TEMRA) cells in a representative healthy donor (top) 
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and MIS-C patient (bottom). (F) Quantification of T-cell subsets across samples. (G) CD54 and 

(H) CD64 expression in neutrophils and CD16+ monocytes, color-coded by the log2FC over 

healthy donor median signal intensity. (I) STAT3 phosphorylation across immune cell subtypes, 

expressed as log2FC. Abbreviations, 

 

Figure 4. Autoantibody detection unveils an autoreactive repertoire enriched in MIS-C patients. 

(A-B) Upset plots delineating the number of shared autoantibodies which were at least two-fold 

enriched when compared to controls for IgG and IgA. (C-D) Tile plots and heatmaps showing 

the presence or not, and quantile normalized quantity of IgG and IgA autoantigen reactive 

antibodies that were at least four-fold enriched when compared to controls and found in 4 

patients or more, inclusive of patient P3. 

 

Tables 

Table 1. Demographic and clinical features of MIS-C patients. Abbreviations, coronary artery 

(CA), major depressive disorder (MDD), post-traumatic stress disorder (PTSD), cardiomegaly 

(CM), mitral regurgitation (MR), left ventricle (LV), thrombocytopenia (TCP), reactive airway 

disease (RAD).  
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Table 1

P1 P2 P3 P4 P5 P6 P7 P8 Aggregate 

none none Asthma none Asthma none MDD, PTSD none 37.50%
WHO MIS-C Criteria

Fever Yes Yes Yes Yes Yes Yes Yes Yes 100%
Rash No Yes No Yes Yes No No No 37.50%
Conjunctivitis Yes Yes No No No No No Yes 37.50%
Mucocutaneous Yes Yes No Yes No No No No 37.50%
Extremity No No No No No No No No 0.00%
Gastrointestinal Pain

Emesis
Pain
Emesis

Pain Emesis
Diarrhea 

Diarrhea Pain Emesis
Diarhhea

Pain
Emesis

100%

Hypotension / shock Yes Yes No No No Yes Yes Yes 63%
Cardiac Abnormalities ↑ troponin

↑ BNP
CA dilation
MR

↑ troponin
↑ BNP

↑ troponin
↑ BNP
Prolonged- 
PR
CM

↑ troponin
↑ BNP

CA ectasia ↑ troponin
↑ BNP
CA dilation

↑ troponin
↑ BNP
CA aneurysm
Reduced LV 
function
Diffuse ST 
elevation

↑ troponin
↑ BNP
CA aneurysm
Reduced LV 
function
Prolonged QT

100%

Coagulopathy ↑ D-dimer
↑ PT
↑ PTT

↑ D-dimer
↑ PT
↑ PTT

↑ D-dimer
↑ PT
↑ PTT

↑ D-dimer
↑ PT
↑ PTT

↑ D-dimer ↑ D-dimer
↑ PT
↑ PTT

↑ D-dimer
↑ PT
↑ PTT

↑ D-dimer
↑ PT
↑ PTT

87.50%

Inflammatory Markers  ↑ ESR
↑ CRP
↑ PCT

↑ ESR
↑ CRP
↑ PCT

↑ ESR
↑ CRP

↑ ESR
↑ CRP
↑ PCT

↑ ESR
↑ CRP
↑ PCT

↑ ESR
↑ CRP
↑ PCT

↑ ESR
↑ CRP
↑ PCT

↑ ESR
↑ CRP
↑ PCT

100%

Other microbial cause No No No No No No No No 0%
CoV-2 PCR Neg NA Neg Pos Pos Neg Neg Neg 25%
Prior Cov-2 Exposure NA NA NA Mother PCR+ 

3 weeks prior
NA PCR+ 4 

weeks prior
NA NA 25%

CoV-2 Serology + + + + + + + + 100%
Scrotal pain
TCP
↑Trans-
aminases
RAD

TCP
↑Trans-
aminases
RAD

SOB
Pleural 
effusions
Thrombocyt
osis
↑Trans-
aminases

Thrombo-
cytosis
↑Trans-
aminases

SOB
Headache
Hypertension
Pneumonia
↑Trans-
aminases
RAD

Appendictis 4 
weeks prior
↑Trans-
aminases

Headache
Thrombo-
cytosis
↑Trans-
aminases

 Headache
↑Trans-
aminases
Hyper-
triglyceridemia

IVIG
TCZ x3
enoxaparin
ASA

IVIG x2
TCZ x2
enoxaparin
ASA

TCZ
enoxaparin
ASA

IVIG x1
TCZ x2
enoxaparin

IVIG x1
TCZ x1
enoxaparin

IVIG x1
TCZ x2
enoxaparin
ASA

IVIG x1
TCZ x1
enoxaparin

IVIG x1
TCZ x1
enoxaparin
ASA
hydrocortisone

8 6 6 5 3 8 6 5 6
Favorable Favorable Favorable Favorable Favorable Favorable Favorable Favorable Favorable

Other Clinical Features

Treatment

Admission duration (days)
Outcome 

Comorbidities

Male Female Male Female Male Male Female Female 50% MaleGender

Note: All patients are between the ages of  3 - 20
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STAR Methods 

Sample collection 

Written informed consent for all individuals in this study was provided in compliance with an 

institutional review board protocol. Acutely-ill and convalescent patients were recruited at the 

Mount Sinai Health System. Healthy volunteers were age-matched to the extent possible, 

including a 3 year-old female, 6 year-old female, 7 year old male, 12 year-old male, and 19 year-

old female. For cytokine assays, an additional healthy volunteer pool was generated from adult 

sera. From each patient, blood was drawn into a Cell Preparation Tube with sodium heparin (BD 

Vacutainer) and serum separating tubes (SST) processed immediately. Whole blood was fixed 

using Proteomic Stabilizer PROT1 (SmartTube) and frozen at -80C. Peripheral blood 

mononuclear cells and plasma/sera was isolated by centrifugation and subsequently stored at -

80oC until use. 

 

Serology and neutralization 

The development and protocol for the SARS-CoV-2 spike antigen is described elsewhere in detail 

(Amanat 2020). Briefly, sera from each time point were tested in each patient using serial 

4 × dilutions from 1/100 to 1/6,400 for reactivity to full-length SARS-CoV-2 recombinant protein 

(0.5 µg/mL). Titers were extrapolated based on a cutoff established from a pool of healthy donor 

sera, and assays were validated using positive control sera for each antigen present on each 

plate. Results were considered significant if titers were ≥ 100. To assess the distribution of 

different immunoglobulin isotypes, assays were performed separately with anti-human IgA-AP 

antibody, anti-human IgM-AP antibody, anti-human IgG1 Fc-AP, anti-human IgG2 Fc-AP, anti-

human IgG3 hinge-AP and anti-human IgG4 Fc-AP. Endpoint titers were calculated by the last 

dilution before reactivity dropped below an optical density threshold defined by the OD of a healthy 

donor pool. 
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Microneutralization assay 

Heat-inactivated plasma samples were serially diluted in complete media (10% 10× minimal 

essential medium (Gibco), 2 mM L-glutamine, 0.1% sodium bicarbonate (wt/vol; Gibco), 10 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; Gibco), 100 U ml–1 penicillin, 

100  ug/ml–1 streptomycin (Gibco) and 0.2% bovine serum albumin (MP Biomedicals). Diluted 

plasma was then incubated in a 1:1 volumetric ratio with SARS-CoV-2 virus (USA-WA1/2020; 

GenBank: MT020880) at a concentration of 100 TCID50 (50% tissue culture infectious dose) in 

1× MEM for 1 hour at room temperature. This virus–serum mixture was then added to Vero E6 

cells (ATCC) plated in a 96-well cell culture plate and incubated at 37 °C for 1 hour. The 

supernatant was then removed, and the diluted plasma samples were re-added for 48 hours at 

37 °C. The infected cells were then fixed with 10% paraformaldehyde (Polysciences) for 24 hours 

at 4 °C. Following fixation, the cells were washed, permeabilized with 0.1% Triton X-100, blocked 

in a 3% milk solution (American Bio) and stained with a monoclonal antibody to anti-SARS 

nucleoprotein (Amanat 2020) and subsequently a goat anti-mouse IgG–HRP (Rockland 

Immunochemicals). A reaction with SIGMAFAST OPD (Sigma–Aldrich) was carried out and the 

OD at 490nm was measured. A threshold value of the mean optical density value of blank wells 

plus three standard deviations was established and used to determine the microneutralization 

titer. Microneutralization assays were performed in a facility with a biosafety level of 3. 

Multiplex cytokine analysis 

For analysis of circulating cytokines, we used the O-link proteomics inflammation panel, which 

consists of 92 inflammation-related proteins quantified by an antibody-mediated proximity 

extension-based assay. Analytes with normalized protein expression values below the limit-of-

detection in >75% of samples were excluded from further analysis. For the remainder of analytes, 

any sample under the limit of detection was assigned a value of the limit-of-detection divided by 

the square root of 2. The log2 fold-change over the median healthy control protein expression 
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was then calculated, and the Benjamini-Hochberg procedure was used to adjust P values for 

multiple testing. 

Mass cytometry 

Frozen stabilized blood samples were thawed according to the manufacturer’s recommended 

protocol, then washed with barcode permeabilization buffer (Fluidigm). Samples were uniquely 

barcoded with Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm), washed and pooled together. An Fc-

block and a heparin-block were then performed to prevent non-specific binding. Cells were then 

incubated with an antibody cocktail for surface markers to identify major immune populations. All 

antibodies were purchased with pre-conjugated or conjugated in-house with X8 MaxPar 

conjugation kits (Fluidigm).  After surface staining, the samples were methanol-permeabilized, 

washed, heparin-blocked and stained with a cocktail of antibodies against intracellular targets, 

including markers of phosphorylation and signaling. After washing, cells were then incubated in 

freshly diluted 2.4% formaldehyde containing 125nM Ir Intercalator (Fluidigm), 0.02% saponin 

and 30 nM OsO4 (ACROS Organics) for 30 minutes at room temperature. Samples were then 

washed and acquired immediately.  

For acquisition, samples were washed with PBS+0.2% BSA, PBS, and then CAS buffer 

(Fluidigm). The final solution in CAS buffer consisted of 1 million cells per mL and a 1/20 dilution 

of EQ beads (Fluidigm). Following routine instrument optimization, samples were acquired at a 

rate of <300 events per second on a Helios mass cytometer (Fluidigm) with a modified wide-bore 

injector (Fluidigm). FCS files were then normalized and concatenated with Fluidigm acquisition 

software, and deconvoluted with a Matlab-based debarcoding application (“Palladium-based 

mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm”). 

FCS files were analyzed using Cytobank. Cell events were identified as Ir191/193-positive and 

Ce140-negative events. Doublets were excluded on the basis of Mahalanobis distance and 
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barcode separation and with the Gaussian parameters acquired with Helios CyTOF software. 

Downstream data analysis was performed on Cytobank, by both tSNE analysis and biaxial gating 

of immune populations. Statistical significance for cell population frequencies between healthy 

controls and patients were determined by the Benjamini-Hochberg procedure to correct for 

multiple testing. 

 

Auto-antibody specificity analysis 

Seromic profiling of autoantibodies  was conducted as previously described (Gnjatic et al., 2010). 

These assays used the CDI HuProt array. Seven MIS-C plasma samples and 3 additional controls 

samples were run in parallel. CDI digital image output was manually aligned and flagged for 

artifacts. To minimize non-specific, background signal, median fluorescent values were calculated 

and subtracted from digital images. Final signal intensities were determined by replicate 

averaging and a quantile normalization was applied. Due to disparity of computational packages 

dedicated protein microarray analysis, we treated quantile normalized data in an approach akin 

to RNA-chip microarray analysis. Quantile normalized matrices were read into R statistical 

environment (4.0.1) and analyzed using the DESeq2 and limma R packages. Pair-wise contrasts 

between each MIS-C patient versus the controls and an irrelevant disease control were conducted 

and differentially enriched antigen lists were generated. To control for noise and filter low intensity 

signals, antigens required to have a normalized signal intensity of 86 (the 75th percentile of total 

signal) or greater in at least one patient to be tested. Lists were further filtered to only include 

antigens that exhibited a 4-fold enrichment compared to control samples for heatmap 

visualization. Overlap of enriched samples were visualized by the UpSetR package and tile plot 

and heat map visualizations were drawn by the ggplot2 software. All code and scripts will be made 

available upon request. 
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Supplementary Information 

Supplementary Figure Legends 

Figure S1 (Related to Table 1). MIS-C disease course and sample collection. (A) Timeline of 

admission, treatment, sample collection and discharge. (B) Laboratory markers of inflammation, 

coagulopathy and cardiac dysfunction in response to IVIG and/or TCZ treatment. Dotted lines 

represent normal limits. 

 

Figure S2 (Related to Table 1). White blood cell count and differential in response to TCZ and 

IVIG treatment. (Left) Percentage values of immune cell types during treatment course to TCZ 

and IVIG across all MIS-C patients. (Right) Absolute counts of immune cell types during treatment 

course to TCZ and IVIG across all MIS-C patients. Dotted lines represent normal limits. 

 

Figure S3 (Related to Figure 3). Mass cytometry of peripheral blood immune cells. (A) Immune 

cell frequencies expressed as the log2 fold change over the mean of healthy controls. (B). B-cell 

frequency as percent of single cells. (C). Expression of CD169, an interferon-stimulated gene, in 

monocytes. (E) Relative STAT1 phosphorylation.  
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