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Abstract

We propose a definition of saliency by considering what the visual system is trying to optimize 

when directing attention. The resulting model is a Bayesian framework from which bottom-up 

saliency emerges naturally as the self-information of visual features, and overall saliency 

(incorporating top-down information with bottom-up saliency) emerges as the pointwise mutual 

information between the features and the target when searching for a target. An implementation of 

our framework demonstrates that our model’s bottom-up saliency maps perform as well as or 

better than existing algorithms in predicting people’s fixations in free viewing. Unlike existing 

saliency measures, which depend on the statistics of the particular image being viewed, our 

measure of saliency is derived from natural image statistics, obtained in advance from a collection 

of natural images. For this reason, we call our model SUN (Saliency Using Natural statistics). A 

measure of saliency based on natural image statistics, rather than based on a single test image, 

provides a straightforward explanation for many search asymmetries observed in humans; the 

statistics of a single test image lead to predictions that are not consistent with these asymmetries. 

In our model, saliency is computed locally, which is consistent with the neuroanatomy of the early 

visual system and results in an efficient algorithm with few free parameters.
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Introduction

The surrounding world contains a tremendous amount of visual information, which the 

visual system cannot fully process (Tsotsos, 1990). The visual system thus faces the problem 

of how to allocate its processing resources to focus on important aspects of a scene. Despite 

the limited amount of visual information the system can handle, sampled by discontinuous 

fixations and covert shifts of attention, we experience a seamless, continuous world. Humans 

and many other animals thrive using this heavily downsampled visual information. Visual 

attention as overtly reflected in eye movements partially reveals the sampling strategy of the 

visual system and is of great research interest as an essential component of visual cognition. 

Psychologists have investigated visual attention for many decades using psychophysical 

experiments, such as visual search tasks, with carefully controlled stimuli. Sophisticated 

mathematical models have been built to account for the wide variety of human performance 

data (e.g., Bundesen, 1990; Treisman & Gelade, 1980; Wolfe, Cave, & Franzel, 1989). With 

the development of affordable and easy-to-use modern eye-tracking systems, the locations 

that people fixate when they perform certain tasks can be explicitly recorded and can 

provide insight into how people allocate their attention when viewing complex natural 

scenes. The proliferation of eye-tracking data over the last two decades has led to a number 

of computational models attempting to account for the data and addressing the question of 

what attracts attention. Most models have focused on bottom-up attention, where the 

subjects are free-viewing a scene and salient objects attract attention. Many of these saliency 

models use findings from psychology and neurobiology to construct plausible mechanisms 

for guiding attention allocation (Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985; Wolfe et 

al., 1989). More recently, a number of models attempt to explain attention based on more 

mathematically motivated principles that address the goal of the computation (Bruce & 

Tsotsos, 2006; Chauvin, Herault, Marendaz, & Peyrin, 2002; Gao & Vasconcelos, 2004, 

2007; Harel, Koch, & Perona, 2007; Kadir & Brady, 2001, Oliva, Torralba, Castelhano, & 

Henderson, 2003; Renninger, Coughlan, Verghese, & Malik, 2004; Torralba, Oliva, 

Castelhano, & Henderson, 2006; Zhang, Tong, & Cottrell, 2007). Both types of models tend 

to rely solely on the statistics of the current test image for computing the saliency of a point 

in the image. We argue here that natural statistics (the statistics of visual features in natural 

scenes, which an organism would learn through experience) must also play an important role 

in this process.

In this paper, we make an effort to address the underlying question: What is the goal of the 

computation performed by the attentional system? Our model starts from the simple 

assumption that an important goal of the visual system is to find potential targets and builds 

up a Bayesian probabilistic framework of what the visual system should calculate to 

optimally achieve this goal. In this framework, bottom-up saliency emerges naturally as self-
information. When searching for a particular target, top-down effects from a known target 

emerge in our model as a log-likelihood term in the Bayesian formulation. The model also 

dictates how to combine bottom-up and top-down information, leading to pointwise mutual 
information as a measure of overall saliency. We develop a bottom-up saliency algorithm 

that performs as well as or better than state-of-the-art saliency algorithms at predicting 

human fixations when free-viewing images. Whereas existing bottom-up saliency measures 
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are defined solely in terms of the image currently being viewed, ours is instead defined 

based on natural statistics (collected from a set of images of natural scenes), to represent the 

visual experience an organism would acquire during development. This difference is most 

notable when comparing with models that also use a Bayesian formulation (e.g., Torralba et 

al., 2006) or self-information (e.g., Bruce & Tsotsos, 2006). As a result of using natural 

statistics, our model provides a straightforward account of many human search asymmetries 

that cannot be explained based on the statistics of the test image alone. Unlike many models, 

our measure of saliency only involves local computation on images, with no calculation of 

global image statistics, saliency normalization, or winner-take-all competition. This makes 

our algorithm not only more efficient, but also more biologically plausible, as long-range 

connections are scarce in the lower levels of the visual system. Because of the focus on 

learned statistics from natural scenes, we call our saliency model SUN (Saliency Using 

Natural statistics).

Previous work

In this section we discuss previous saliency models that have achieved good performance in 

predicting human fixations in viewing images. The motivation for these models has come 

from psychophysics and neuroscience (Itti & Koch, 2001; Itti et al., 1998), classification 

optimality (Gao & Vasconcelos, 2004, 2007), the task of looking for a target (Oliva et al., 

2003; Torralba et al., 2006), or information maximization (Bruce & Tsotsos, 2006). Many 

models of saliency implicitly assume that covert attention functions much like a spotlight 

(Posner, Rafal, Choate, & Vaughan, 1985) or a zoom lens (Eriksen & St James, 1986) that 

focuses on salient points of interest in much the same way that eye fixations do. A model of 

saliency, therefore, can function as a model of both overt and covert attention. For example, 

although originally intended primarily as a model for covert attention, the model of Koch 

and Ullman (1985) has since been frequently applied as a model of eye movements. Eye 

fixations, in contrast to covert shifts of attention, are easily measured and allow a model’s 

predictions to be directly verified. Saliency models are also compared against human studies 

where either a mix of overt and covert attention is allowed or covert attention functions on 

its own. The similarity between covert and overt attention is still debated, but there is 

compelling evidence that the similarities commonly assumed may be valid (for a review, see 

Findlay & Gilchrist, 2003).

Itti and Koch’s saliency model (Itti & Koch, 2000, 2001; Itti et al., 1998) is one of the 

earliest and the most used for comparison in later work. The model is an implementation of 

and expansion on the basic ideas first proposed by Koch and Ullman (1985). The model is 

inspired by the visual attention literature, such as feature integration theory (Treisman & 

Gelade, 1980), and care is taken in the model’s construction to ensure that it is 

neurobiologically plausible. The model takes an image as input, which is then decomposed 

into three channels: intensity, color, and orientation. A center-surround operation, 

implemented by taking the difference of the filter responses from two scales, yields a set of 

feature maps. The feature maps for each channel are then normalized and combined across 

scales and orientations, creating conspicuity maps for each channel. The conspicuous 

regions of these maps are further enhanced by normalization, and the channels are linearly 

combined to form the overall saliency map. This process allows locations to vie for 
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conspicuity within each feature dimension but has separate feature channels contribute to 

saliency independently; this is consistent with the feature integration theory. This model has 

been shown to be successful in predicting human fixations and to be useful in object 

detection (Itti & Koch, 2001; Itti et al., 1998; Parkhurst, Law, & Niebur, 2002). However, it 

can be criticized as being ad hoc, partly because the overarching goal of the system (i.e., 

what it is designed to optimize) is not specified, and it has many parameters that need to be 

hand-selected.

Several saliency algorithms are based on measuring the complexity of a local region 

(Chauvin et al., 2002; Kadir & Brady, 2001; Renninger et al., 2004; Yamada & Cottrell, 

1995). Yamada and Cottrell (1995) measure the variance of 2D Gabor filter responses across 

different orientations. Kadir and Brady (2001) measure the entropy of the local distribution 

of image intensity. Renninger and colleagues measure the entropy of local features as a 

measure of uncertainty, and the most salient point at any given time during their shape 

learning and matching task is the one that provides the greatest information gain conditioned 

on the knowledge obtained during previous fixations (Renninger et al., 2004; Renninger, 

Verghese, & Coughlan, 2007). All of these saliency-as-variance/entropy models are based on 

the idea that the entropy of a feature distribution over a local region measures the richness 

and diversity of that region (Chauvin et al., 2002), and intuitively a region should be salient 

if it contains features with many different orientations and intensities. A common critique of 

these models is that highly textured regions are always salient regardless of their context. For 

example, human observers find an egg in a nest highly salient, but local-entropy-based 

algorithms find the nest to be much more salient than the egg (Bruce & Tsotsos, 2006; Gao 

& Vasconcelos, 2004).

Gao and Vasconcelos (2004, 2007) proposed a specific goal for saliency: classification. That 

is, a goal of the visual system is to classify each stimulus as belonging to a class of interest 

(or not), and saliency should be assigned to locations that are useful for that task. This was 

first used for object detection (Gao & Vasconcelos, 2004), where a set of features are 

selected to best discriminate the class of interest (e.g., faces or cars) from all other stimuli, 

and saliency is defined as the weighted sum of feature responses for the set of features that 

are salient for that class. This forms a definition that is inherently top-down and goal 

directed, as saliency is defined for a particular class. Gao and Vasconcelos (2007) define 

bottom-up saliency using the idea that locations are salient if they differ greatly from their 

surroundings. They use difference of Gaussians (DoG) filters and Gabor filters, measuring 

the saliency of a point as the Kullback–Leibler (KL) divergence between the histogram of 

filter responses at the point and the histogram of filter responses in the surrounding region. 

This addresses a previously mentioned problem commonly faced by complexity-based 

models (as well as some other saliency models that use linear filter responses as features): 

these models always assign high saliency scores to highly textured areas. In the Discussion 

section, we will discuss a way that the SUN model could address this problem by using non-

linear features that model complex cells or neurons in higher levels of the visual system.

Oliva and colleagues proposed a probabilistic model for visual search tasks (Oliva et al., 

2003; Torralba et al., 2006). When searching for a target in an image, the probability of 

interest is the joint probability that the target is present in the current image, together with 
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the target’s location (if the target is present), given the observed features. This can be 

calculated using Bayes’ rule:

p(O = 1, L |F , G) =
1

p(F |G)
bottom‐up saliency

as defined by
Torralba et al.

p(F |O = 1, L, G)p(L |O = 1, G)p(O = 1|G),
(1)

where O = 1 denotes the event that the target is present in the image, L denotes the location 

of the target when O = 1, F denotes the local features at location L, and G denotes the global 

features of the image. The global features G represent the scene gist. Their experiments 

show that the gist of a scene can be quickly determined, and the focus of their work largely 

concerns how this gist affects eye movements. The first term on the right side of Equation 1 

is independent of the target and is defined as bottom-up saliency; Oliva and colleagues 

approximate this conditional probability distribution using the current image’s statistics. The 

remaining terms on the right side of Equation 1 respectively address the distribution of 

features for the target, the likely locations for the target, and the probability of the target’s 

presence, all conditioned on the scene gist. As we will see in the Bayesian framework for 

saliency section, our use of Bayes’ rule to derive saliency is reminiscent of this approach. 

However, the probability of interest in the work of Oliva and colleagues is whether or not a 

target is present anywhere in the test image, whereas the probability we are concerned with 

is the probability that a target is present at each point in the visual field. In addition, Oliva 

and colleagues condition all of their probabilities on the values of global features. 

Conditioning on global features/gist affects the meaning of all terms in Equation 1, and 

justifies their use of current image statistics for bottom-up saliency. In contrast, SUN focuses 

on the effects of an organism’s prior visual experience.

Bruce and Tsotsos (2006) define bottom-up saliency based on maximum information 

sampling. Information, in this model, is computed as Shannon’s self-information, −log p(F), 

where F is a vector of the visual features observed at a point in the image. The distribution of 

the features is estimated from a neighborhood of the point, which can be as large as the 

entire image. When the neighborhood of each point is indeed defined as the entire image of 

interest, as implemented in (Bruce & Tsotsos, 2006), the definition of saliency becomes 

identical to the bottom-up saliency term in Equation 1 from the work of Oliva and 

colleagues (Oliva et al., 2003; Torralba et al., 2006). It is worth noting, however, that the 

feature spaces used in the two models are different. Oliva and colleagues use biologically 

inspired linear filters of different orientations and scales. These filter responses are known to 

correlate with each other; for example, a vertical bar in the image will activate a filter tuned 

to vertical bars but will also activate (to a lesser degree) a filter tuned to 45-degree-tilted 

bars. The joint probability of the entire feature vector is estimated using multivariate 

Gaussian distributions (Oliva et al., 2003) and later multivariate generalized Gaussian 

distributions (Torralba et al., 2006). Bruce and Tsotsos (2006), on the other hand, employ 

features that were learned from natural images using independent component analysis 

(ICA). These have been shown to resemble the receptive fields of neurons in primary visual 

cortex (V1), and their responses have the desirable property of sparsity. Furthermore, the 
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features learned are approximately independent, so the joint probability of the features is just 

the product of each feature’s marginal probability, simplifying the probability estimation 

without making unreasonable independence assumptions.

The Bayesian Surprise theory of Itti and Baldi (2005, 2006) applies a similar notion of 

saliency to video. Under this theory, organisms form models of their environment and assign 

probability distributions over the possible models. Upon the arrival of new data, the 

distribution over possible models is updated with Bayes’ rule, and the KL divergence 

between the prior distribution and posterior distribution is measured. The more the new data 

forces the distribution to change, the larger the divergence. These KL scores of different 

distributions over models combine to produce a saliency score. Itti and Baldi’s 

implementation of this theory leads to an algorithm that, like the others described here, 

defines saliency as a kind of deviation from the features present in the immediate 

neighborhood, but extending the notion of neighborhood to the spatiotemporal realm.

Bayesian framework for saliency

We propose that one goal of the visual system is to find potential targets that are important 

for survival, such as food and predators. To achieve this, the visual system must actively 

estimate the probability of a target at every location given the visual features observed. We 

propose that this probability, or a monotonic transformation of it, is visual saliency.

To formalize this, let z denote a point in the visual field. A point here is loosely defined; in 

the implementation described in the Implementation section, a point corresponds to a single 

image pixel. (In other contexts, a point could refer other things, such as an object; Zhang et 

al., 2007.) We let the binary random variable C denote whether or not a point belongs to a 

target class, let the random variable L denote the location (i.e., the pixel coordinates) of a 

point, and let the random variable F denote the visual features of a point. Saliency of a point 

z is then defined as p(C = 1 | F = fz, L = lz) where fz represents the feature values observed at 

z, and l represents the location (pixel coordinates) of z. This probability can be calculated 

using Bayes’ rule:

sz = p C = 1|F = fz, L = lz
= p F = fz, L = lz |C = 1 p(C = 1)

p F = fz, L = lz
. (2)

We assume1 for simplicity that features and location are independent and conditionally 

independent given C = 1:

p F = fz, L = lz = p F = fz p L = lz , (3)

1These independence assumptions do not generally hold (they could be relaxed in future work). For example, illumination is not 
invariant to location: as sunshine normally comes from above, the upper part of the visual field is likely to be brighter. But illumination 
contrast features, such as the responses to DoG (Difference of Gaussians) filters, will be more invariant to location changes.
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p F = fz, L = lz |C = 1
= p F = fz |C = 1 p L = lz |C = 1 . (4)

This entails the assumption that the distribution of a feature does not change with location. 

For example, Equation 3 implies that a point in the left visual field is just as likely to be 

green as a point in the right visual field. Furthermore, Equation 4 implies (for instance) that 

a point on a target in the left visual field is just as likely to be green as a point on a target in 

the right visual field. With these independence assumptions, Equation 2 can be rewritten as:

sz = p F = fz |C = 1 p L = lz |C = 1 p(C = 1)
p F = fz p L = lz

(5)

= p F = fz |C = 1
p F = fz

p L = lz |C = 1 p(C = 1)
p L = lz

(6)

= 1
p F = fz
Independent

of target
(bottom‐up saliency)

p F = fz |C = 1
Likelihood

p C = 1|L = lz
Location prior

Dependent on target
(top‐down knowledge)

.
(7)

To compare this probability across locations in an image, it suffices to estimate the log 

probability (since logarithm is a monotonically increasing function). For this reason, we take 

the liberty of using the term saliency to refer both to sz and to log sz, which is given by:

logsz = −logp F = fz
Self‐information

+ logp F = fz |C = 1
Log likelihood

+ logp C = 1|L = lz
Location prior

. (8)

The first term on the right side of this equation, −log p(F = fz), depends only on the visual 

features observed at the point and is independent of any knowledge we have about the target 

class. In information theory, −log p(F = fz) is known as the self-information of the random 

variable F when it takes the value fz. Self-information increases when the probability of a 

feature decreases—in other words, rarer features are more informative. We have already 

discussed self-information in the context of previous work, but as we will see later, SUN’s 

use of self-information differs from that of previous approaches.

The second term on the right side of Equation 8, log p(F = fz | C = 1), is a log-likelihood 

term that favors feature values that are consistent with our knowledge of the target. For 

example, if we know that the target is green, then the log-likelihood term will be much larger 

for a green point than for a blue point. This corresponds to the top-down effect when 

searching for a known target, consistent with the finding that human eye movement patterns 
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during iconic visual search can be accounted for by a maximum likelihood procedure for 

computing the most likely location of a target (Rao, Zelinsky, Hayhoe, & Ballard, 2002).

The third term in Equation 8, log p(C = 1 | L = lz), is independent of visual features and 

reflects any prior knowledge of where the target is likely to appear. It has been shown that if 

the observer is given a cue of where the target is likely to appear, the observer attends to that 

location (Posner & Cohen, 1984). For simplicity and fairness of comparison with Bruce and 

Tsotsos (2006), Gao and Vasconcelos (2007), and Itti et al. (1998), we assume location 

invariance (no prior information about the locations of potential targets) and omit the 

location prior; in the Results section, we will further discuss the effects of the location prior.

After omitting the location prior from Equation 8, the equation for saliency has just two 

terms, the self-information and the log-likelihood, which can be combined:

logsz = −logp F = fz
Self‐information

(bottom‐up saliency)

+ logp F = fz |C = 1
Log likelihood

(top‐down knowledge)
(9)

= log p F = fz |C = 1
p F = fz

(10)

= log p F = fz, C = 1
p F = fz p C = 1 .

Pointwise mutual information
(overall saliency)

(11)

The resulting expression, which is called the pointwise mutual information between the 

visual feature and the presence of a target, is a single term that expresses overall saliency. 

Intuitively, it favors feature values that are more likely in the presence of a target than in a 

target’s absence.

When the organism is not actively searching for a particular target (the free-viewing 
condition), the organism’s attention should be directed to any potential targets in the visual 

field, despite the fact that the features associated with the target class are unknown. In this 

case, the log-likelihood term in Equation 8 is unknown, so we omit this term from the 

calculation of saliency (this can also be thought of as assuming that for an unspecified target, 

the likelihood distribution is uniform over feature values). In this case, the overall saliency 

reduces to just the self-information term: log sz = −log p(F = fz). We take this to be our 

definition of bottom-up saliency. It implies that the rarer a feature is, the more it will attract 

our attention.

This use of −log p(F = fz) differs somewhat from how it is often used in the Bayesian 

framework. Often, the goal of the application of Bayes’ rule when working with images is to 

classify the provided image. In that case, the features are given, and the −log p(F = fz) term 

functions as a (frequently omitted) normalizing constant. When the task is to find the point 

most likely to be part of a target class, however, −log p(F = fz) plays a much more significant 
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role as its value varies over the points of the image. In this case, its role in normalizing the 

likelihood is more important as it acts to factor in the potential usefulness of each feature to 

aid in discrimination. Assuming that targets are relatively rare, a target’s feature is most 

useful if that feature is comparatively rare in the background environment, as otherwise the 

frequency with which that feature appears is likely to be more distracting than useful. As a 

simple illustration of this, consider that even if you know with absolute certainty that the 

target is red, i.e. p(F = red | C = 1) = 1, that fact is useless if everything else in the world is 

red as well.

When one considers that an organism may be interested in a large number of targets, the 

usefulness of rare features becomes even more apparent; the value of p(F = fz | C = 1) will 

vary for different target classes, while p(F = fz) remains the same regardless of the choice of 

targets. While there are specific distributions of p(F = fz | C = 1) for which SUN’s bottom-up 

saliency measure would be unhelpful in finding targets, these are special cases that are not 

likely to hold in general (particularly in the free-viewing condition, where the set of 

potential targets is largely unknown). That is, minimizing p(F = fz) will generally advance 

the goal of increasing the ratio p(F = fz | C = 1) / p(F = fz), implying that points with rare 

features should be found “interesting.”

Note that all of the probability distributions described here should be learned by the visual 

system through experience. Because the goal of the SUN model is to find potential targets in 

the surrounding environment, the probabilities should reflect the natural statistics of the 

environment and the learning history of the organism, rather than just the statistics of the 

current image. (This is especially obvious for the top-down terms, which require learned 

knowledge of the targets.)

In summary, calculating the probability of a target at each point in the visual field leads 

naturally to the estimation of information content. In the free-viewing condition, when there 

is no specific target, saliency reduces to the self-information of a feature. This implies that 

when one’s attention is directed only by bottom-up saliency, moving one’s eyes to the most 

salient points in an image can be regarded as maximizing information sampling, which is 

consistent with the basic assumption of Bruce and Tsotsos (2006). When a particular target 

is being searched for, on the other hand, our model implies that the best features to attend to 

are those that have the most mutual information with the target. This has been shown to be 

very useful in object detection with objects such as faces and cars (Ullman, Vidal-Naquet, & 

Sali, 2002).

In the rest of this paper, we will concentrate on bottom-up saliency for static images. This 

corresponds to the free-viewing condition, when no particular target is of interest. Although 

our model was motivated by the goal-oriented task of finding important targets, the bottom-

up component remains task blind and has the statistics of natural scenes as its sole source of 

world knowledge. In the next section, we provide a simple and efficient algorithm for 

bottom-up saliency that (as we demonstrate in the Results section) produces state-of-the-art 

performance in predicting human fixations.
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Implementation

In this section, we develop an algorithm based on our SUN model that takes color images as 

input and calculates their saliency maps (the saliency at every pixel in an image) using the 

task-independent, bottom-up portion of our saliency model. Given a probabilistic formula 

for saliency, such as the one we derived in the previous section, there are two key factors that 

affect the final results of a saliency model when operating on an image. One is the feature 

space, and the other is the probability distribution over the features.

In most existing saliency algorithms, the features are calculated as responses of biologically 

plausible linear filters, such as DoG (difference of Gaussians) filters and Gabor filters (e.g., 

Itti & Koch, 2001; Itti et al., 1998; Oliva et al., 2003; Torralba et al., 2006). In Bruce and 

Tsotsos (2006), the features are calculated as the responses to filters learned from natural 

images using independent component analysis (ICA). In this paper, we conduct experiments 

with both kinds of features.

Below, we describe the SUN algorithm for estimating the bottom-up saliency that we 

derived in the Bayesian framework for saliency section, −log p(F = fz). Here, a point z 
corresponds to a pixel in the image. For the remainder of the paper, we will drop the 

subscript z for notational simplicity. In this algorithm, F is a random vector of filter 

responses, F = [F1, F2, …], where the random variable Fi represents the response of the ith 

filter at a pixel, and f = [f1, f2, …] are the values of these filter responses at this pixel 

location.

Method 1: Difference of Gaussians filters

As noted above, many existing models use a collection of DoG (difference of Gaussians) 

and/or Gabor filters as the first step of processing the input images. These filters are popular 

due to their resemblance to the receptive fields of neurons in the early stages of the visual 

system, namely the lateral geniculate nucleus of the thalamus (LGN) and the primary visual 

cortex (V1). DoGs, for example, give the well-known “Mexican hat” center-surround filter. 

Here, we apply DoGs to the intensity and color channels of an image. A more complicated 

feature set composed of a mix of DoG and Gabor filters was also initially evaluated, but 

results were similar to those of the simple DoG filters used here.

Let r, g, and b denote the red, green, and blue components of an input image pixel. The 

intensity (I), red/green (RG), and blue/yellow (BY) channels are calculated as:

I = r + g + b, RG = r − g,

BY = b − r + g
2 − min(r, g)

2 .
(12)

The DoG filters are generated by2

2Equation 13 is adopted from the function filter_DOG_2D, from Image Video toolbox for Matlab by Piotr Dollar. The toolbox can be 
found at http://vision.ucsd.edu/~pdollar/toolbox/doc/.
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DoG(x, y) = 1
σ2exp − x2 + y2

σ2

− 1
(1.6σ)2exp − x2 + y2

(1.6σ)2 ,
(13)

where (x, y) is the location in the filter. These filters are convolved with the intensity and 

color channels (I, RG, and BY) to produce the filter responses. We use four scales of DoG 

(σ = 4, 8, 16, or 32 pixels) on each of the three channels, leading to 12 feature response 

maps. The filters are shown in Figure 1, top.

By computing these feature response maps on a set of 138 images of natural scenes 

(photographed by the first author), we obtained an estimate of the probability distribution 

over the observed values of each of the 12 features. Note that the images used to gather 

natural scene statistics were different than those used in the experiments that we used in our 

evaluation. To parameterize this estimated distribution for each feature Fi, we used an 

algorithm proposed by Song (2006) to fit a zero-mean generalized Gaussian distribution, 

also known as an exponential power distribution, to the filter response data:

p(f; σ, θ) = θ
2σΓ 1

θ
exp − f

σ
θ

. (14)

In this equation, Γ is the gamma function, θ is the shape parameter, σ is the scale parameter, 

and f is the filter response. This resulted in one shape parameter, θi, and one scale parameter, 

σi, for each of the 12 filters: i = 1, 2, …, 12. Figure 1 shows the distributions of the four 

DoG filter responses on the intensity (I) channel across the training set of natural images and 

the fitted generalized Gaussian distributions. As the figure shows, the generalized Gaussians 

provide an excellent fit to the data.

Taking the logarithm of Equation 14, we obtain the log probability over the possible values 

of each feature:

logp Fi = fi = logθi − log2 − logσi

− logΓ 1
θi

− fi
σi

θi (15)

= − fi
σi

θi
+ const, (16)

where the constant term does not depend on the feature value. To simplify the computations, 

we assume that the 12 filter responses are independent. Hence the total bottom-up saliency 

of a point takes the form:
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logs = − logp(F = f) = ∑
i = 1

12
logp Fi = fi

= ∑
i = 1

12 fi
σi

θi
+ const.

(17)

Method 2: Linear ICA filters

In SUN’s final formula for bottom-up saliency (Equation 17), we assumed independence 

between the filter responses. However, this assumption does not always hold. For example, a 

bright spot in an image will generate a positive filter response for multiple scales of DoG 

filters. In this case the filter responses, far from being independent, will be highly correlated. 

It is not clear how this correlation affects the saliency results when a weighted sum of filter 

responses is used to compute saliency (as in Itti & Koch, 2001; Itti et al., 1998) or when 

independence is assumed in estimating probability (as in our case). Torralba et al. (2006) 

used a multivariate generalized Gaussian distribution to fit the joint probability of the filter 

responses. However, although the response of a single filter has been shown to be well fitted 

by a univariate generalized Gaussian distribution, it is less clear that the joint probability 

follows a multivariate generalized Gaussian distribution. Also, much more data are 

necessary for a good fit of a high-dimensional probability distribution than for one-

dimensional distributions. It has been shown that estimating the moments of a generalized 

Gaussian distribution has limitations even for the one-dimensional case (Song, 2006), and it 

is much less likely to work well for the high-dimensional case.

To obtain the linear features used in their saliency algorithm, Bruce and Tsotsos (2006) 

applied independent component analysis (ICA) to a training set of natural images. This has 

been shown to yield features that qualitatively resemble those found in the visual cortex 

(Bell & Sejnowski, 1997; Olshausen & Field, 1996). Although the linear features learned in 

this way are not entirely independent, they have been shown to be independent up to third-

order statistics (Wainwright, Schwartz, & Simoncelli, 2002). Such a feature space will 

provide a much better match for the independence assumptions we made in Equation 17. 

Thus, in this method we follow (Bruce & Tsotsos, 2006) and derive complete ICA features 

to use in SUN. It is worth noting that although Bruce and Tsotsos (2006) use a set of natural 

images to train the feature set, they determine the distribution over these features solely from 

a single test image when calculating saliency.

We applied the FastICA algorithm (Hyvärinen & Oja, 1997) to 11-pixel × 11-pixel color 

natural image patches drawn from the Kyoto image data set (Wachtler, Doi, Lee, & 

Sejnowski, 2007). This resulted in 11 × 11 × 3 − 1 = 362 features.3 Figure 2 shows the linear 

ICA features obtained from the training image patches.

Like the DoG features from method 1, the ICA feature responses to natural images can be 

fitted very well using generalized Gaussian distributions, and we obtain the shape and scale 

3The training image patches are considered as 11 × 11 × 3 = 363-dimensional vectors, z-scored to have zero mean and unit standard 
deviation, then processed by principal component analysis (where one dimension is lost due to mean subtraction).
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parameters for each ICA filter by fitting its response to the ICA training images. The 

formula for saliency is the same as in Method 1 (Equation 17), except that the sum is now 

over 362 ICA features (rather than 12 DoG features). The matlab code for computing 

saliency maps with ICA features is available at http://journalofvision.org/8/7/32/supplement/

supplement.html.

Some examples of bottom-up saliency maps computed using the algorithms from Methods 1 

and 2 are shown in Figure 3. Each row displays an original test image (from Bruce & 

Tsotsos, 2006) with human fixations overlaid as red crosses and the saliency maps on the 

image computed using Method 1 and Method 2. For comparison, the saliency maps 

generated by Itti et al. (1998) are included. For Method 1, we applied the DoG filters to 511 

× 681 images; for computational efficiency of Method 2, we downsampled the images by a 

factor of 4 before applying the ICA-derived filters. Figure 3 is included for the purpose of 

qualitative comparison; the next section provides a detailed quantitative evaluation.

Results

Evaluation method and the center bias

ROC area—Several recent publications (Bruce & Tsotsos, 2006; Harel et al., 2007; Gao & 

Vasconcelos, 2007; Kienzle, Wichmann, Schölkopf, & Franz, 2007) use an ROC area metric 

to evaluate eye fixation prediction. Using this method, the saliency map is treated as a binary 

classifier on every pixel in the image; pixels with larger saliency values than a threshold are 

classified as fixated while the rest of the pixels in that image are classified as non-fixated. 

Human fixations are used as ground truth. By varying the threshold, an ROC curve can be 

drawn and the area under the curve indicates how well the saliency map predicts actual 

human eye fixations. This measurement has the desired characteristic of transformation 

invariance, in that the area under the ROC curve does not change when applying any 

monotonically increasing function (such as logarithm) to the saliency measure.

Assessing performance in this manner runs into problems because most human fixation data 

sets collected with head-mounted eye tracking systems have a strong center bias. This bias 

has often been attributed to factors related to the setup of the experiment, such as subjects 

being centered with respect to the center of the screen and framing effects caused by the 

monitor, but also reflects the fact that human photographers tend to center objects of interest 

(Parkhurst & Niebur, 2003; Tatler, Baddeley, & Gilchrist, 2005). More recent evidence 

suggests that the center bias exists even in the absence of these factors and may be due to the 

center being the optimal viewpoint for screen viewing (Tatler, 2007). Figure 4 shows the 

strong center bias of human eye fixations when free-viewing color static images (data from 

Bruce & Tsotsos, 2006), gray static images (data from Einhäuser, Kruse, Hoffmann, & 

König, 2006), and videos (data from Itti & Baldi, 2006). In fact, simply using a Gaussian 

blob centered in the middle of the image as the saliency map produces excellent results, 

consistent with findings from Le Meur, Le Callet, and Barba (2007). For example, on the 

data set collected in (Bruce & Tsotsos, 2006), we found that a Gaussian blob fitted to the 

human eye fixations for that set has an ROC area of 0.80, exceeding the reported results of 

0.75 (in Bruce & Tsotsos, 2006) and 0.77 (in Gao & Vasconcelos, 2005) on this data set.
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KL divergence—Itti and colleagues make use of the Kullback–Leibler (KL) divergence 

between the histogram of saliency sampled at eye fixations and that sampled at random 

locations as the evaluation metric for their dynamic saliency (Itti & Baldi, 2005, 2006). If a 

saliency algorithm performs significantly better than chance, the saliency computed at 

human-fixated locations should be higher than that computed at random locations, leading to 

a high KL divergence between the two histograms. This KL divergence, similar to the ROC 

measurement, has the desired property of transformation invariance-applying a continuous 

monotonic function (such as logarithm) to the saliency values would not affect scoring (Itti 

& Baldi, 2006). In (Itti & Baldi, 2005, 2006), the random locations are drawn from a 

uniform spatial distribution over each image frame. Like the ROC performance 

measurement, the KL divergence awards excellent performance to a simple Gaussian blob 

due to the center bias of the human fixations. The Gaussian blob discussed earlier, trained on 

the (Bruce & Tsotsos, 2006) data, yields a KL divergence of 0.44 on the data set of Itti and 

Baldi (2006), exceeding their reported result of 0.24. Thus, both the ROC area and KL 

divergence measurements are strongly sensitive to the effects of the center bias.

Edge effects—These findings imply that models that make use of a location prior 

(discussed in the section on the SUN model) would better model human behavior. Since all 

of the aforementioned models (Bruce & Tsotsos, 2006; Gao & Vasconcelos, 2007; Itti & 

Koch, 2000; Itti et al., 1998) calculate saliency at each pixel without regard to the pixel’s 

location, it would appear that both the ROC area measurement and the KL divergence 

provide a fair comparison between models since no model takes advantage of this additional 

information.

However, both measures are corrupted by an edge effect due to variations in the handling of 

invalid filter responses at the borders of images. When an image filter lies partially off the 

edge of an image, the filter response is not well defined, and various methods are used to 

deal with this problem. This is a well-known artifact of correlation, and it has even been 

discussed before in the visual attention literature (Tsotsos et al., 1995). However, its 

significance for model evaluation has largely been overlooked.

Figure 5 shows the average of all of the image saliency maps using each of the algorithms of 

(Bruce & Tsotsos, 2006; Gao & Vasconcelos, 2007; Itti & Koch, 2001) on the data set of 

Bruce and Tsotsos (2006). It is clear from Figure 5 that all three algorithms have borders 

with decreased saliency but to varying degrees. These border effects introduce an implicit 

center bias on the saliency maps; “cool borders” result in the bulk of salience being located 

at the center of the image. Because different models are affected by these edge effects to 

varying degrees, it is difficult to determine using the previously described measures whether 

the difference in performance between models is due to the models themselves, or merely 

due to edge effects.4

Figure 6 illustrates the impact that varying amounts of edge effects can have on the ROC 

area evaluation score by examining the performance of dummy saliency maps that are all 1’s 

4When comparing different feature sets within the same model, edge effects can also make it difficult to assess which features are best 
to use; larger filters result in a smaller valid image after convolution, which can artificially boost performance.
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except for a border of 0’s. The map with a four-pixel border yields an ROC area of 0.62, 

while the map with an eight-pixel border has an area of 0.73. All borders are small relative 

to the 120 × 160 pixel saliency map, and for these measurements, we assume that the border 

points are never fixated by humans, which corresponds well with actual human fixation data. 

A dummy saliency map of all 1’s with no border has a baseline ROC area of 0.5.

The KL measurement, too, is quite sensitive to how the filter responses are dealt with at the 

edges of images. Since the human eye fixations are rarely near the edges of the test images, 

the edge effects primarily change the distribution of saliency of the random samples. For the 

dummy saliency maps used in Figure 6, the baseline map (of all 1’s) gives a KL divergence 

of 0, the four-pixel-border map gives a KL divergence of 0.12, and the eight-pixel-border 

map gives a KL divergence of 0.25.

While this dummy example presents a somewhat extreme case, we have found that in 

comparing algorithms on real data sets (using the ROC area, the KL divergence, and other 

measures), the differences between algorithms are dwarfed by differences due to how 

borders are handled. Model evaluation and comparisons between models using these metrics 

are common throughout the saliency literature, and these border effects appear to distort 

these metrics such that they are of little use.

Eliminating border effects—Parkhurst and Niebur (2003) and Tatler et al. (2005) have 

pointed out that random locations should be drawn from the distribution of actual human eye 

fixations. In this paper, we measure the KL divergence between two histograms: the 

histogram of saliency at the fixated pixels of a test image and the histogram of saliency at 

the same pixel locations but of a randomly chosen image from the test set (effectively 

shuffling the saliency maps with respect to the images). This method of comparing models 

has several desired properties. First, it avoids the aforementioned problem that a static 

saliency map (such as a centered Gaussian blob) can receive a high score even though it is 

completely independent of the input image. By shuffling the saliency maps, any static 

saliency map will give a KL divergence of zero—for a static saliency map, shuffling has no 

effect, and the salience values at the human-fixated pixels are identical to those from the 

same pixel locations at a random image. Second, shuffling saliency maps also diminishes the 

effect of variations in how borders are handled since few eye fixations are located near the 

edges. These properties are also true of Tatler’s version of the ROC area metric described 

previously—rather than compare the saliency of attended points for the current image 

against the saliency of unattended points for that image, he compares the saliency of 

attended points against the saliency in that image for points that are attended during different 

images from the test set. Like our modified KL evaluation, Tatler’s ROC method compares 

the saliency of attended points against a baseline based on the distribution of human 

saccades rather than the uniform distribution. We assess SUN’s performance using both of 

these methods to avoid problems of the center bias.

The potential problem with both these methods is that because photos taken by humans are 

often centered on interesting objects, the center is often genuinely more salient than the 

periphery. As a result, shuffling saliency maps can bias the random samples to be at more 

salient locations, which leads to an underestimate of a model’s performance (Carmi & Itti, 
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2006). However, this does not affect the validity of this evaluation measurement for 

comparing the relative performance of different models, and its properties make for a fair 

comparison that is free from border effects.

Performance

We evaluate our bottom-up saliency algorithm on human fixation data (from Bruce & 

Tsotsos, 2006). Data were collected from 20 subjects free-viewing 120 color images for 4 

seconds each. As described in the Implementation section, we calculated saliency maps for 

each image using DoG filters (Method 1) and linear ICA features (Method 2). We also 

obtained saliency maps for the same set of images using the algorithms of Itti et al. (1998), 

obtained from Bruce and Tsotsos,5 Bruce and Tsotsos (2006), implemented by the original 

authors,6 and Gao and Vasconcelos (2007), implemented by the original authors. The 

performance of these algorithms evaluated using the measures described above is 

summarized in Table 1. For the evaluation of each algorithm, the shuffling of the saliency 

maps is repeated 100 times. Each time, KL divergence is calculated between the histograms 

of unshuffled saliency and shuffled saliency on human fixations. When calculating the area 

under the ROC curve, we also use 100 random permutations. The mean and the standard 

errors are reported in the table.

The results show that SUN with DoG filters (Method 1) significantly outperforms Itti and 

Koch’s algorithm ( p < 10−57) and Gao and Vasconcelos’ (2007) algorithm ( p < 10−14), 

where significance was measured with a two-tailed t-test over different random shuffles 

using the KL metric. Between Method 1 (DoG features) and Method 2 (ICA features), the 

ICA features work significantly better ( p < 10−32). There are further advantages to using 

ICA features: efficient coding has been proposed as one of the fundamental goals of the 

visual system (Barlow, 1994), and linear ICA has been shown to generate receptive fields 

akin to those found in primary visual cortex (V1) (Bell & Sejnowski, 1997; Olshausen & 

Field, 1996). In addition, generating the feature set using natural image statistics means that 

both the feature set and the distribution over features can be calculated simultaneously. 

However, it is worth noting that the online computations for Method 1 (using DoG features) 

take significantly less time since only 12 DoG features are used compared to 362 ICA 

features in Method 2. There is thus a trade off between efficiency and performance in our 

two methods. The results are similar (but less differentiated) using the ROC area metric of 

Tatler et al. (2005).

SUN with linear ICA features (Method 2) performs significantly better than Bruce and 

Tsotsos’ algorithm ( p = 0.0035) on this data set by the KL metric, and worse by the ROC 

metric, although in both cases the scores are numerically quite close. This similarity in 

performance is not surprising, for two reasons. First, since both algorithms construct their 

feature sets using ICA, the feature sets are qualitatively similar. Second, although SUN uses 

5The saliency maps that produce the score for Itti et al. in Table 1 come from Bruce and Tsotsos (2006) and were calculated using the 
online Matlab saliency toolbox (http://www.saliencytoolbox.net/index.html) using the parameters that correspond to (Itti et al., 1998). 
Using the default parameters of this online toolbox generates inferior binary-like saliency maps that give a KL score of 0.1095 
(0.00140).
6The results reported in (Bruce & Tsotsos, 2006) used ICA features of size 7 × 7. The results reported here, obtained from Bruce and 
Tsotsos, used features of size 11 × 11, which they say achieved better performance.
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the statistics learned from a training set of natural images whereas Bruce and Tsotsos (2006) 

calculate these statistics using only the current test image, the response distribution for a 

low-level feature on a single image of a complex natural scene will generally be close to 

overall natural scene statistics. However, the results clearly show that SUN is not penalized 

by breaking from the standard assumption that saliency is defined by deviation from one’s 

neighbors; indeed, SUN actually performs at the state of the art. In the next section, we’ll 

argue why SUN’s use of natural statistics is actually preferable to methods that only use 

local image statistics.

Discussion

In this paper, we have derived a theory of saliency from the simple assumption that a goal of 

the visual system is to find potential targets such as prey and predators. Based on a 

probabilistic description of this goal, we proposed that bottom-up saliency is the self-

information of visual features and that overall saliency is the pointwise mutual information 

between the visual features and the desired target. Here, we have focused on the bottom-up 

component. The use of self-information as a measure of bottom-up saliency provides a 

surface similarity between our SUN model and some existing models (Bruce & Tsotsos, 

2006; Oliva et al., 2003; Torralba et al., 2006), but this belies fundamental differences 

between our approach and theirs. In this section, we explain that the core motivating 

intuitions behind SUN lead to a use of different statistics, which better account for a number 

of human visual search asymmetries.

Test image statistics vs. natural scene statistics

Comparison with previous work—All of the existing bottom-up saliency models 

described in the Previous work section compute saliency by comparing the feature statistics 

at a point in a test image with either the statistics of a neighborhood of the point or the 

statistics of the entire test image. When calculating the saliency map of an image, these 

models only consider the statistics of the current test image. In contrast, SUN’s definition of 

saliency (derived from a simple intuitive assumption about a goal of the visual system) 

compares the features observed at each point in a test image to the statistics of natural 

scenes. An organism would learn these natural statistics through a lifetime of experience 

with the world; in the SUN algorithm, we obtained them from a collection of natural images.

SUN’s formula for bottom-up saliency is similar to the one in the work of Oliva and 

colleagues (Oliva et al., 2003; Torralba et al., 2006) and the one in (Bruce & Tsotsos, 2006) 

in that they are all based on the notion of self-information. However, the differences between 

current image statistics and natural statistics lead to radically different kinds of self-

information. Briefly, the motivation for using self-information with the statistics of the 

current image is that a foreground object is likely to have features that are distinct from the 

features of the background. The idea that the saliency of an item is dependent on its 

deviation from the average statistics of the image can find its roots in the visual search 

model proposed in (Rosenholtz, 1999), which accounted for a number of motion pop-out 

phenomena, and can be seen as a generalization of the center-surround-based saliency found 

in Koch and Ullman (1985). SUN’s use of natural statistics for self-information, on the other 
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hand, corresponds to the intuition that since targets are observed less frequently than 

background during an organism’s lifetime; rare features are more likely to indicate targets. 

The idea that infrequent features attract attention has its origin in findings that novelty 

attracts the attention of infants (Caron & Caron, 1968; Fagan, 1970; Fantz, 1964; Friedman, 

1972) and that novel objects are faster to find in visual search tasks (for a review, see Wolfe, 

2001). This fundamental difference in motivation between SUN and existing saliency 

models leads to very different predictions about what attracts attention.

In the following section, we show that by using natural image statistics, SUN provides a 

simple explanation for a number of psychophysical phenomena that are difficult to account 

for using the statistics of either a local neighborhood in the test image or the entire test 

image. In addition, since natural image statistics are computed well in advance of the test 

image presentation, in the SUN algorithm the estimation of saliency is strictly local and 

efficient.

Visual search asymmetry—When the probability of a feature is based on the 

distribution of features in the current test image, as in previous saliency models, a 

straightforward consequence is that if all items in an image are identical except for one, this 

odd item will have the highest saliency and thus attract attention. For example, if an image 

consists of a number of vertical bars with one bar that is slightly tilted from the vertical, the 

tilted bar “pops out” and attracts attention almost instantly (Treisman & Gormican, 1988); 

see Figure 7, top left, for an illustration. If, on the other hand, an image consists of a number 

of slightly-tilted-from-vertical bars with one vertical bar, saliency based on the statistics of 

the current image predicts the same pop-out effect for the vertical bar. However, this simply 

is not the case, as humans do not show the same pop-out effect: it requires more time and 

effort for humans to find a vertical bar within a sea of tilted bars (Treisman & Gormican, 

1988); see Figure 7, bottom left, for an illustration. This is known in the visual search 

literature as a search asymmetry, and this particular example corresponds to findings that 

“prototypes do not pop out” because the vertical is regarded as a prototypical orientation 

(Treisman & Gormican, 1988; Treisman & Souther, 1985; Wolfe, 2001).

Unlike saliency measures based on the statistics of the current image or of a neighborhood in 

the current image, saliency based on natural statistics readily predicts this search asymmetry. 

The vertical orientation is prototypical because it occurs more frequently in natural images 

than the tilted orientation (van der Schaaf & van Hateren, 1996). As a result, the vertical bar 

will have smaller salience than the surrounding tilted bars, so it will not attract attention as 

strongly.

Another visual search asymmetry exhibited by human subjects involves long and short line 

segments. Saliency measures based on test image statistics or local neighborhood statistics 

predict that a long bar in a group of short bars (illustrated in the top row of Figure 8) should 

be as salient as a short bar in a group of long bars (illustrated in the bottom row in Figure 8). 

However, it has been shown that humans find a long bar among short bar distractors much 

more quickly than they find a short bar among long bars (Treisman & Gormican, 1988). 

Saliency based on natural statistics readily predicts this search asymmetry, as well. Due to 

scale invariance, the probability distribution over the lengths of line segments in natural 
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images follows the power law (Ruderman, 1994). That is, the probability of the occurrence 

of a line segment of length v is given by p(V = v) ∝ 1/v. Since longer line segments have 

lower probability in images of natural scenes, the SUN model implies that longer line 

segments will be more salient.

We can demonstrate that SUN predicts these search asymmetries using the implemented 

model described in the Implementation section. Figures 7 and 8 show saliency maps 

produced by SUN with ICA features (Method 2). For ease of visibility, the saliency maps 

have been thresholded. For the comparison of short and long lines, we ensured that all line 

lengths were less than the width of the ICA filters. The ICA filters used were not explicitly 

designed to be selective for orientation or size, but their natural distribution is sensitive to 

both these properties. As Figures 7 and 8 demonstrate, SUN clearly predicts both search 

asymmetries described here.

Visual search asymmetry is also observed for higher-level stimuli such as roman letters, 

Chinese characters, animal silhouettes, and faces. For example, people are faster to find a 

mirrored letter in normal letters than the reverse (Frith, 1974). People are also faster at 

searching for an inverted animal silhouette in a sea of upright silhouettes than the reverse 

(Wolfe, 2001) and faster at searching for an inverted face in a group of upright faces than the 

reverse (Nothdurft, 1993). These phenomena have been referred to as “the novel target is 

easier to find.” Here, “novel” means that subjects have less experience with the stimulus, 

indicating a lower probability of encounter during development. This corresponds well with 

SUN’s definition of bottom-up saliency, as items with novel features are more salient by 

definition.

If the saliency of an item depends upon how often it has been encountered by an organism, 

then search asymmetry should vary among people with different experience with the items 

involved. This seems to indeed be the case. Modified/inverted Chinese characters in a sea of 

real Chinese characters are faster to find than the reverse situation for Chinese readers, but 

not for non-Chinese readers (Shen & Reingold, 2001; Wang, Cavanagh, & Green, 1994). 

Levin (1996) found an “other-race advantage” as American Caucasians are faster to search 

for an African American face among Caucasian faces than to search for a Caucasian face 

among African American faces. This is consistent with what SUN would predict for 

American Caucasian subjects that have more experience with Caucasian faces than with 

African American faces. In addition, Levin found that Caucasian basketball fans who are 

familiar with many African American basketball players do not show this other-race search 

advantage (Levin, 2000). These seem to provide direct evidence that experience plays an 

important role in saliency (Zhang et al., 2007), and the statistics of the current image alone 

cannot account for these phenomena.

Efficiency comparison with existing saliency models

Table 2 summarizes some computational components of several algorithms previously 

discussed. Computing feature statistics in advance using a data set of natural images allows 

the SUN algorithm to compute saliency of a new image quickly compared with algorithms 

that require calculations of statistics on the current image. In addition, SUN requires strictly 
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local operations, which is consistent with implementation in the low levels of the visual 

system.

Higher-order features

The range of visual search asymmetry phenomena described above seem to suggest that the 

statistics of observed visual features are estimated by the visual system at many different 

levels, including basic features such as color and local orientation as well as higher-level 

features. The question of exactly what feature set is employed by the visual system is 

beyond the scope of this paper. In the current implementation of SUN, we only consider 

linear filter responses as features for computational efficiency. This use of linear features 

(DoG or linear ICA features) causes highly textured areas to have high saliency, a 

characteristic shared with complexity-based algorithms (Chauvin et al., 2002; Kadir & 

Brady, 2001; Renninger et al., 2004; Yamada & Cottrell, 1995). In humans, however, it is 

often not the texture itself but a change in texture that attracts attention. Saliency algorithms 

that use local region statistics, such as (Gao & Vasconcelos, 2007), address this problem 

explicitly.

Our SUN model could resolve this problem implicitly by using a higher-order non-linear 

feature space. Whereas linear ICA features learned from natural images respond to 

discontinuities in illumination or color, higher-order non-linear ICA features are found to 

respond to discontinuity in textures (Karklin & Lewicki, 2003; Osindero, Welling, & Hinton, 

2006; Shan, Zhang, & Cottrell, 2007). Figure 9 shows an image of birthday candles, the 

response of a linear DoG filter to that image, and the response of a non-linear feature 

inspired by the higher-order ICA features learned in (Shan et al., 2007). Perceptually, the 

white hole in the image attracts attention (Bruce & Tsotsos, 2006). Whereas the linear 

feature has zero response to this hole, the higher-order feature responds strongly in this 

region. In future work, we will explore the use of the higher order features from (Shan et al., 

2007). These higher-order features are completely determined by the same natural statistics 

that form the basis of our model, thus avoiding the danger that feature sets would be selected 

to fit the model to the data.

Conclusions

Based on the intuitive assumption that one goal of the visual system is to find potential 

targets, we derived a definition of saliency in which overall visual saliency is the pointwise 

mutual information between the observed visual features and the presence of a target, and 

bottom-up saliency is the self-information of the visual features. Using this definition, we 

developed a simple algorithm for bottom-up saliency that can be expressed in a single 

equation (Equation 17). We applied this algorithm using two different set of features, 

difference of Gaussians (DoG) and ICA-derived features, and compared the performance to 

several existing bottom-up saliency algorithms. Not only does SUN perform as well as or 

better than the state-of-the-art algorithms, but it is also more computationally efficient. In the 

process of evaluation, we also revealed a critical flaw in the methods of assessment that are 

commonly used, which results from their sensitivity to border effects.
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In its use of self-information to measure bottom-up saliency, SUN is similar to the 

algorithms in (Bruce & Tsotsos, 2006; Oliva et al., 2003; Torralba et al., 2006), but stems 

from a different set of intuitions and is calculated using different statistics. In SUN, the 

probability distribution over features is learned from natural statistics (which corresponds to 

an organism’s visual experience over time), whereas the previous saliency models compute 

the distribution over features from each individual test image. We explained that several 

search asymmetries that may pose difficulties for models based on test image statistics can 

be accounted for when feature probabilities are obtained from natural statistics.

We do not claim that SUN attempts to be a complete model of eye movements. As with 

many models of visual saliency, SUN is likely to function best for short durations when the 

task is simple (it is unlikely to model well the eye movements during Hayhoe’s sandwich-

making task (Hayhoe & Ballard, 2005), for instance). Nor is the search for task-relevant 

targets the sole goal of the visual system-once the location of task- or survival-relevant 

targets are known, eye movements also play other roles in which SUN is unlikely to be a key 

factor. Our goal here was to show that natural statistics, learned over time, play an important 

role in the computation of saliency.

In future work, we intend to incorporate the higher-level non-linear features described in the 

Discussion section. In addition, our definition of overall saliency includes a top-down term 

that captures the features of a target. Although this is beyond the scope of the present paper, 

we plan to examine top-down influences on saliency in future research; preliminary work 

with images of faces shows promise. We also plan to extend the implementation of SUN 

from static images into the domain of video.
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Figure 1. 
Four scales of difference of Gaussians (DoG) filters were applied to each channel of a set of 

138 images of natural scenes. Top: The four scales of difference of Gaussians (DoG) filters 

that were applied to each channel. Bottom: The graphs show the probability distribution of 

filter responses for these four filters (with σ increasing from left to right) on the intensity (I) 
channel collected from the set of natural images (blue line), and the fitted generalized 

Gaussian distributions (red line). Aside from the natural statistics in this training set being 

slightly sparser (the blue peak over 0 is slightly higher than the red peak of the fitted 

function), the generalized Gaussian distributions provide an excellent fit.
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Figure 2. 
The 362 linear features learned by applying a complete independent component analysis 

(ICA) algorithm to 11 × 11 patches of color natural images from the Kyoto data set.
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Figure 3. 
Examples of saliency maps for qualitative comparison. Each row contains, from left to right: 

An original test image with human fixations (from Bruce & Tsotsos, 2006) shown as red 

crosses; the saliency map produced by our SUN algorithm with DoG filters (Method 1); the 

saliency map produced by SUN with ICA features (Method 2); and the maps from (Itti et al., 

1998, as reported in Bruce & Tsotsos, 2006) as a comparison.
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Figure 4. 
Plots of all human eye fixation locations in three data sets. Left: subjects viewing color 

images (Bruce & Tsotsos, 2006); middle: subjects viewing gray images (Einhäuser et al., 

2006); right: subjects viewing color videos (Itti & Baldi, 2006).
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Figure 5. 
The average saliency maps of three recent algorithms on the stimuli used in collecting 

human fixation data by Bruce and Tsotsos (2006). Averages were taken across the saliency 

maps for the 120 color images. The algorithms used are, from left to right, Bruce and 

Tsotsos (2006), Gao and Vasconcelos (2007), and Itti et al. (1998). All three algorithms 

exhibit decreased saliency at the image borders, an artifact of the way they deal with filters 

that lie partially off the edge of the images.

Zhang et al. Page 29

J Vis. Author manuscript; available in PMC 2020 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Illustration of edge effects on performance. Left: a saliency map of size 120 × 160 that 

consists of all 1’s except for a four-pixel-wide border of 0’s. Center: a saliency map of size 

120 × 160 that consists of all 1’s except for an eight-pixel-wide border of 0’s. Right: the 

ROC curves of these two dummy saliency maps, as well as for a baseline saliency map (all 

1’s). The ROC areas for these two curves are 0.62 and 0.73, respectively. (The baseline ROC 

area is 0.5.)
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Figure 7. 
Illustration of the “prototypes do not pop out” visual search asymmetry (Treisman & 

Gormican, 1988). Here we see both the original image (left) and a saliency map for that 

image computed using SUN with ICA features (right). Top row: a tilted bar in a sea of 

vertical bars pops out-the tilted bar can be found almost instantaneously. Bottom row: a 

vertical bar in sea of tilted bars does not pop out. The bar with the odd-one-out orientation in 

this case requires more time and effort for subjects to find than in the case illustrated in the 

image in the top row. This psychophysical asymmetry is in agreement with the calculated 

saliency maps on the right, in which the tilted bars are more salient than the vertical bars.
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Figure 8. 
Illustration of a visual search asymmetry with line segments of two different lengths 

(Treisman & Gormican, 1988). Shown are the original image (left) and the corresponding 

saliency map (right) computed using SUN with ICA features (Method 2). Top row: a long 

bar is easy to locate in a sea of short bars. Bottom row: a short bar in a sea of long bars is 

harder to find. This corresponds with the predictions from SUN’s saliency map, as the 

longer bars have higher saliency.
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Figure 9. 
Demonstration that non-linear features could capture discontinuity of textures without using 

a statistical model that explicitly measures the local statistics. Left: the input image, adapted 

from (Bruce & Tsotsos, 2006). Middle: the response of a linear DoG filter. Right: the 

response of a non-linear feature. The non-linear feature is constructed by applying a DoG 

filter, then non-linearly transforming the output before another DoG is applied (see Shan et 

al., 2007, for details on the non-linear transformation). Whereas the linear feature has zero 

response to the white hole in the image, the non-linear feature responds strongly in this 

region, consistent with the white region’s perceptual salience.
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