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Abstract

Facial expressions are crucial to human social communication, but the extent to which they are 

innate and universal versus learned and culture dependent is a subject of debate. Two studies 

explored the effect of culture and learning on facial expression understanding. In Experiment 1, 

Japanese and U.S. participants interpreted facial expressions of emotion. Each group was better 

than the other at classifying facial expressions posed by members of the same culture. In 

Experiment 2, this reciprocal in-group advantage was reproduced by a neurocomputational model 

trained in either a Japanese cultural context or an American cultural context. The model 

demonstrates how each of us, interacting with others in a particular cultural context, learns to 

recognize a culture-specific facial expression dialect.
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The scientific literature on innate versus culture-specific expression of emotion is large and 

lively. Over a hundred years ago, Darwin (1872/1998) argued for innate production of facial 

expressions based on cross-cultural comparisons. Landis (1924), however, found little 

agreement between participants. Woodworth (1938) and Schlosberg (1952) found structure 

in the disagreement in interpretation, proposing a low-dimensional similarity space 

characterizing affective facial expressions.

Starting in the 1960s, researchers found more support for facial expressions as innate, 

universal indicators of particular emotions. Tomkins and colleagues articulated the theory of 

basic emotions that could be reliably read from facial expressions (Tomkins, 1962–1963; 

Tomkins & McCarter, 1964). Ekman and colleagues found cross-cultural consistency in 

forced choice attribution of emotion to carefully posed expressions in both literate and 

preliterate cultures (Ekman, 1972; Ekman et al., 1987; Ekman, Sorensen, & Friesen, 1969).

Today, researchers disagree on the precise degree to which our interpretation of facial 

expressions of emotion is universal versus culture-specific (Ekman, 1994, 1999b; Fridlund, 

1994; Izard, 1994; Russell, 1994, 1995), but there appears to be consensus that universal 

factors interact to some extent with culture-specific learning to produce differences between 

cultures. A number of modern theories (Ekman, 1999a; Russell, 1994; Russell & Bullock, 

1986; Scherer, 1992) attempt to account for these universals and culture-specific variations.

Cultural Differences in Facial Expression Interpretation

The early cross-cultural studies on facial expression recognition focused mainly on the 

question of universality and the psychophysiological underpinnings of emotion. Few sought 

to analyze and interpret the cultural differences that came up in those studies. However, a 

steadily increasing number of studies have focused on the factors underlying cultural 

differences. These studies either compare the facial expression judgments made by 

participants from different cultures or attempt to find the relevant dimensions of culture 

predicting observed cultural differences. Much of the research was framed by Ekman’s 

“neuro-cultural” theory of emotion (Ekman, 1972), in which universal motor programs for 

emotional facial expressions might have different elicitors, display rules, and/or 

consequences because of culture-specific learning.

Ekman (1972) and Friesen (1972) proposed display rules as one of the main aspects of 

emotional facial expression production and interpretation that vary across cultures. An 

example would be that in some cultures, one should not show displeasure in the workplace. 

Matsumoto and colleagues have found display rule differences among ethnic groups in the 

United States (Matsumoto, 1993) and are developing methods to assess individual-level 

display rule differences (Matsumoto, Yoo, Hirayama, & Petrova, 2005).

Along with display rules, researchers have also proposed different decoding rules as a source 

of cross-cultural variability in facial expression interpretation (Huang, Tang, Helmeste, 

Shiori, & Someya, 2001; Matsumoto & Ekman, 1989). For example, members of some 

cultural groups might avoid attributing negative emotions to other people to increase social 

harmony. Thus far, only limited experimental support for the theory has been found.
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Another approach to understanding cultural differences in facial expression production and 

interpretation is to correlate observed differences with dimensions of cultural variability, 

such as Hofstede’s (1983, 2001) power distance, individualism, masculinity, and uncertainty 
avoidance, or Matsumoto and colleagues’ status differentiation (Matsumoto et al., 2002). 

Several studies have found these dimensions diagnostic for explaining differences between 

broad cultural groups and individuals (Gudykunst & Ting-Toomey, 1988; Matsumoto, 1990; 

Matsumoto et al., 2002; Matsumoto, Kudoh, & Takeuchi, 1996; Matsumoto, Takeuchi, 

Andayani, Kouznetsova, & Krupp, 1998; Tanako & Osaka, 1999).

One of the confounding factors in studies of emotion across cultures is the effect of 

language. Matsumoto and Ekman (1989) found no effect of label language in Japanese and 

American multiscalar intensity ratings, but Matsumoto and Assar (1992) found that bilingual 

Indian students’ emotion judgments were more accurate with English labels than with 

corresponding Hindi labels.

Other researchers have explored cross-cultural differences in interpretations of cultural 

artifacts depicting faces (Lyons et al., 2000) and the possibility that, rather than identical 

motor programs for facial expressions, each culture might develop its own emotional dialect 
containing variations on a universal theme (Elfenbein & Ambady, 2002b, 2003b; Elfenbein, 

Beaupré, Lévesque, & Hess, 2007).

Encoder-Decoder Distance

Perhaps the most controversial recent attempt to explain cultural variability in facial 

expression production and interpretation is the encoder-decoder distance hypothesis. 

Elfenbein and Ambady (2002b) performed a meta-analysis of the data on cross-cultural 

recognition of emotional expressions across different modalities in studies from 1931–2001. 

Their main conclusion was that emotions are generally better recognized when posed and 

judged by members of the same culture. Over 168 studies, participants judging posers from 

their own culture were an average of 9.3% more accurate than judges from other cultures. 

This apparent in-group advantage decreased for cultures with more exposure to each other, 

but was generally unaffected by factors like experimental methodology and the type of 

emotional stimuli used. There were also two interesting situations in which the patterns were 

reversed. First, in most of the analyzed studies that included minority ethnic groups within a 

nation, members of the minority groups tended to have an out-group advantage when 

observing emotions in majority group members (minorities were more accurate when 

judging emotions posed by the majority group than vice versa). Also, in a few of the 

analyzed studies (Biehl et al., 1997; Matsumoto & Assar, 1992; Matsumoto & Ekman, 

1988), members of imitated cultures tended to have an out-group advantage when the 

imitators were from different cultures. For example, Americans tended to be more accurate 

than Japanese when judging the Japanese posers in the Japanese and Caucasian Facial 

Expressions of Emotion (JACFEE) data set (Matsumoto & Ekman, 1988), in which both 

Japanese and Caucasian posers precisely imitate the same prototypical expressions posed 

according to Facial Action Coding System (FACS) standards defined by Americans.
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According to Elfenbein and Ambady, display rule and decoding rule theories, which hold 

that cultural differences in facial expression interpretation arise from differing levels of 

appropriateness of particular expressions and appraisals in particular situations, cannot by 

themselves explain the in-group advantage. In a dynamic two-way interaction, matched 

display and decoding rules could certainly lead to more effective communication. However, 

in experiments with static emotional stimuli, judges do not have this opportunity. Instead, 

when a judge is asked to interpret the same expression by posers from different cultures, 

under display rule and decoding rule accounts, the effect of judge culture should be the same 

across all poser cultures. The fact that in-group advantages arise even when stimuli are 

prerecorded independent of the rater’s identity and even in studies with balanced designs, in 

which raters from two or more cultures each judge stimuli from the other’s culture, indicates 

that the groups are either processing expressions from different cultures differently or are 

applying different criteria when judging them. That this apparent affinity between poser and 

judge seems to be an important factor underlying emotional expression interpretation led 

Elfenbein and Ambady to postulate that in general, recognition accuracy decreases with 

physical or cultural distance between the encoder and decoder. Supporting this theory, 

another study (Elfenbein & Ambady, 2003a) found that cultural distance between poser and 

encoder was a better predictor of emotion recognition discrepancies than a static view of 

Hofstede’s dimensions of cultural variability (Hofstede, 1983, 2001). The critical factor 

could be that judges learn the subtleties of their in-group’s expressive style, or the equivalent 

of the “other-race effect” observed in face recognition (O’Toole, Deffenbacher, Valentin, & 

Abdi, 1994), except that the cue for the in-group advantage might be the subtleties of the 

expressions themselves, rather than race.

Matsumoto (2002) criticizes Elfenbein and Ambady’s conclusions on several grounds. First, 

many of the studies in the meta-analysis used unbalanced stimulus sets, and that makes it 

difficult to draw any conclusions from the results. An advantage on an unbalanced data set 

could simply reflect better overall decoding of emotional signals rather than a better 

understanding of the poser group’s emotional communication. Second, even when the 

studies had balanced stimulus sets, the stimuli were usually not constructed to have 

equivalent emotion-signaling properties. If the emotions signaling properties of the two 

stimulus sets are not equivalent, then the experimenter cannot determine the relative 

contribution of the poser’s culture and the differences in the signals. In the case of facial 

expressions of emotion, if a data set contains facial expressions from two cultures but the 

actual set of muscle movements associated with the emotion categories are different, any 

differences in interpretation between the two cultures could be the result of different 

decoding by different cultures, or the result of the differences in the stimuli themselves. 

Matsumoto therefore recommends normalizing stimuli so that the physical properties of the 

stimuli related to emotion are exactly equal, and only the cultural identification signal is 

different. Third, signal clarity was not controlled. Clarity can be affected by the intensity of 

an emotional expression, by adding noise, or decreasing presentation time. Matsumoto 

claims that as clarity decreases, accuracy also decreases, so that individual differences, 

correlated with personality traits, tend to emerge. He concludes that clear stimuli should not 

be grouped with unclear stimuli when estimating effect sizes.
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To date, the only cross-cultural stimulus set meeting Matsumoto’s validity criteria is the 

Japanese and Caucasian Facial Expressions of Emotion (JACFEE), a set of facial expression 

stimuli including reliably recognized expressions of happiness, sadness, fear, anger, surprise, 

disgust, and contempt posed by both Japanese and Caucasian models (Matsumoto & Ekman, 

1988). The JACFEE contains 56 photographs: eight examples of each of the seven emotion 

categories portrayed by 56 different posers. The eight examples of each emotional 

expression were coded using the Facial Action Coding System (FACS; Ekman & Friesen, 

1978) to ensure that every expression involved the exact same set of muscle contractions at 

the same level of intensity. The data set is also balanced so that half of the posers are 

Caucasian and half Japanese and so that half of the posers are men and half are women. 

Matsumoto (2002) cites experiments, using JACFEE, in which no in-group advantage was 

found, as evidence that in-group advantages in other experiments are merely artifacts of 

flawed experimental methods.

Elfenbein and Ambady (2002b), in reply, offer an alternative set of criteria for establishing 

an in-group advantage. First, evidence for an in-group advantage is strongest when it is 

found in balanced studies. Second, emotional stimuli should be created inside the cultural 

context with posers from the culture and preferably with experimenters from the same 

culture. Third, emotional stimuli should be elicited from the participants rather than 

instructed or imitated based on “preselected theoretical models.” The authors argue that 

signal equivalence (Matsumoto’s second criterion for establishing an in-group advantage) is 

actually a culture eraser, eliminating any possibility of finding and understanding cultural 

differences in interpretation of emotional expressions.

Understanding Cultural Differences Through Computational Modeling

We approach the problem of understanding cultural differences both through traditional 

human studies, in which participants from different cultures are asked to interpret facial 

expression stimuli for emotional content, and through computational modeling studies, in 

which hypotheses about the mechanisms underlying observed human behavioral patterns are 

tested by manipulating a computational model. Consider a situation in which one person 

seeks to further understand another by observing his or her facial expressions and inferring 

an underlying emotion. If we assume a set of n discrete, mutually exclusive, and exhaustive 

emotions C = {c1, c2, …, cn}, we can formalize the observer’s task as a Bayesian a 

posteriori estimation problem: at each point in time t, given an observation (facial image) xt, 

estimate the posterior probabilities P(ci|xt), the probability of each category given a face. 

Using Bayes’ rule, these estimates can be computed based on the product of two quantities, 

the likelihoods and the priors. The likelihood P(xt|ci) is the probability of seeing a particular 

facial expression given the emotion being expressed. This is sometimes called the 

“appearance model”—a probabilistic description of how each emotional expression is 

expected to appear. The prior P(ci) is the probability of a particular emotion being expressed, 

that is, the frequency of an emotion in a particular cultural context. We assume that our 

observer learns the likelihood gradually, over the course of a lifetime, but that the priors are 

more dynamic, with a baseline depending on past experience and modulation according to 

the current context. Computing the probability of each category given the input this way is 
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called Bayesian inference, which is optimal in the sense that an observer choosing the 

highest probability category is least likely to make an error in judgment.

There is solid evidence linking perception and decision making with Bayes-optimal 

inference, particularly in psychophysics. Bayesian models have long been used for 

functional descriptions of perceptual performance (see, e.g., Knill & Richards, 1996, for an 

overview). More recently, theoretical and experimental work on population coding has 

provided detailed accounts of how probability distributions can be represented and posterior 

probability calculations can be performed in the nervous system (Ma, Beck, Latham, & 

Pouget, 2006).

We implement this model through a simple neural network (Figure 1) called EMPATH 

(Dailey, Cottrell, Padgett, & Adolphs, 2002) that is trained to categorize facial expressions 

from photographs into the six basic emotions. The network starts with images and processes 

them in a neutrally plausible way, using a model of the receptive fields of neurons in primary 

visual cortex, followed by a network that looks for correlations between these neural 

outputs, forming a more compact representation that encodes facial expression and shape. 

This is followed by a simple nonlinear perceptron, trained to activate one of six different 

outputs corresponding to the six basic emotions. If none of the outputs are sufficiently 

activated (as explained below), then the face is classified as neutral. Through (supervised) 

training on many examples pairing facial images with emotion labels, this network changes 

its connection strengths to produce the correct output for each input.

In Bayesian terms, with the correct training rules, the model will directly estimate P(ci|xt) 

(Bishop, 1995). That is, the activation level of the six output units will converge on these 

probabilities. Treating the model as a Bayesian probability estimator leads to clear 

correspondences in the model for encoder-decoder distance, decoding rules, and display 

rules.

First, we can model encoder-decoder distance by manipulating the level of exposure of the 

model to the facial expressions of different cultures during training. Because the model’s 

appearance model P(ci|xt) depends entirely on the model’s “experience,” that is, what 

images it is trained upon, if the model is trained primarily on natural Japanese expressions, 

its classifications will depend on the appearance of the Japanese facial expressions, which in 

turn are determined to some extent by the cultural variation in Japanese expressions. If the 

model is then asked to classify prototypical American expressions, it will respond to these 

based upon its experience, just as we imagine Japanese subjects do. A model trained 

primarily on Japanese-style facial expressions will have a high distance to American 

encoders, and vice versa. Because we have complete control over the model’s training 

environment, we can fit the training environment to the data by varying the percentage of 

different culture-specific datasets.

Second, we can model the way decoding rules within a culture affect facial expression 

interpretation as modulating the priors one applies in different situations. For example, in a 

hierarchical culture, it might be very rare for negative emotions to be expressed to a superior, 

in turn making an observer less likely to interpret a given expression as a negative emotion. 
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This type of influence is straightforward to model as a multiplicative factor on the network’s 

outputs:

P cult − context ci ∣ xt = P training ci ∣ xt
P cut − context ci

P training ci
(1)

The first factor on the right-hand side of the equation is what the network computes and 

represents what a person has learned over a lifetime, while the factor in braces, which 

corresponds to adjustments due to the social situation, can be fit to data. For example, in a 

situation where a superior is interacting with a subordinate, this factor could be low for 

negative expressions from the subordinate and correspondingly higher for the positive 

categories. We do not attempt to manipulate cultural context during an experiment, so we 

can make the simplifying assumption that these adjustments are constant over the 

experiment for participants from a particular culture, leading to an overall cultural bias in 

interpreting facial expressions in the experiment. Thus, even though the model is simply a 

network trained to categorize facial expressions, we can use it to model the way decoding 

rules in a particular culture manifest during an experiment.

Third, we can model the effects of display rules within a culture by manipulating the 

frequency with which the model is exposed to particular categories of facial expressions. For 

example, in a culture that discourages the display of negative emotions, we might expect that 

observers would see expressions of those emotions less frequently than expressions of 

positive emotions and would therefore be less accurate at classifying those expressions. To 

model this phenomenon, we could decrease the ratio of negative expressions to positive 

expressions in the model’s training set. The resulting model, after training, would very likely 

be less accurate at classifying negative expressions than positive expressions.

Finally, although we do not pursue it in this article, we can model the effects of language by 

using multiple, overlapping labels as outputs, based on, for example, a label elicitation study. 

In this case, the network’s interpretation as a Bayesian classifier is more complex, because 

of the allowance for multiple, nonmutually exclusive labels (the output activations no longer 

need to sum to one—rather, each output would correspond to the probability that that 

particular label could be applied to the input image). This extends the reach of the model, 

from one limited to the six basic emotions, to one that is more able to capture mixtures of 

multiple emotions. In any case, we leave this observation for future work, and concentrate 

here on the six emotions most widely studied in the literature.

In this article, we test the validity of EMPATH as a model for human interpretation of facial 

expressions, and we explore how well the aforementioned manipulations model the effects 

of culture on facial expression interpretation. To test the validity of the model, we first run 

an experiment that explicitly tests for in-group advantage, and then we use the data to test 

the model’s explanation.
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Experiments

Toward a further understanding of cultural differences in facial expression interpretation, we 

set out to answer two open questions in the debate on cross-cultural interpretation of facial 

expressions:

• To date, all of the balanced human studies comparing western and east Asian 

participants’ interpretation of emotional facial expressions have obtained out-
group effects, in which westerners are better able to interpret Asian emotional 

faces than are Asians. Does the lack of in-group effects in western and Asian 
interpretation of facial expressions falsify the encoder-decoder distance 
hypothesis for facial expressions?

• Thus far, the models that have been proposed to explain cross-cultural 

differences in facial expression interpretation have been abstract and interpretive 

rather than computational and predictive. Is it possible to explain cultural 
differences in facial expression interpretation in terms of a simple 
neurocomputational model such as that described in Figure 1?

To answer these questions, we performed two experiments: a human study using a new 

cross-cultural emotional expression stimulus set, and a computational modeling study 

exploring the interaction of universal emotional expressions with cultural learning.

In Experiment 1, we had participants in Japan and the United States rate the intensity of 

happiness, sadness, fear, anger, surprise, and disgust in a balanced set of emotional 

expressions meeting Elfenbein and Ambady’s (2002b) criteria for establishing in-group 

advantages, for comparison with the results previously obtained by Matsumoto and others 

using the JACFEE. The data set contains Japanese and Caucasian women posing facial 

expressions of happiness, sadness, anger, surprise, and disgust. To contrast judges’ 

interpretations of imitated American expressions versus expressions elicited in the poser’s 

cultural context, we included both Japanese stimuli from the JACFEE, in which Japanese 

posers imitated American expressions, and Japanese stimuli that were freely elicited by 

Japanese experimenters in Japan. The results of the human study exhibit a reciprocal in-

group advantage for Japanese and American participants, as predicted by the encoder-

decoder distance hypothesis. They thus support the view of the previously discussed signal 

equivalence requirement as a culture eraser.

In Experiment 2, we used the Bayesian model proposed above as embodied by EMPATH 

(Dailey et al., 2002) to explore possible computational explanations of the results of 

Experiment 1. We trained multiple EMPATH models to recognize facial expressions in a 

variety of different cultural contexts, then tested each model on the stimulus set created for 

Experiment 1. By “different cultural contexts” we mean different sets of facial expression 

images with different mixes of Japanese and American facial expressions. We found that 

models trained in a primarily Japanese cultural context best reproduced the Japanese 

participants’ pattern of responses, and that models trained in a primarily American cultural 

context best reproduced the American participants’ pattern of responses. These results thus 

support the hypothesis that our interpretation of facial expressions depends on the interaction 
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of a learning process that slowly tunes our estimates of class-conditional densities and a 

second process that adapts to the cultural decoding rules via different priors on emotion 

categories. The model provides a straightforward computational account of cultural 

differences in emotional expression recognition: they emerge naturally as a consequence of 

learning to interpret others’ expressions in a specific cultural context.

Experiment 1: Human Interpretation of Facial Expressions

In Experiment 1, we collected intensity ratings and forced-choice emotion classifications on 

Japanese and Caucasian female facial expressions.

Participants

U.S. participants—Fifty students (25 women and 25 men) at the University of California, 

San Diego, who had not grown up in Asia participated in the study. Their ages ranged from 

18 to 26 (mean 20). Eighteen described themselves as East Asian but not Japanese, 17 as 

Caucasian, 3 as Japanese, 2 as Indian, 2 as Middle Eastern, and 3 as other or mixed. Forty-

seven described the culture they grew up in as North American, 2 as Eastern European, and 

1 as Middle Eastern.

At the end of the experiment, the U.S. participants were given a brief questionnaire aimed at 

determining their exposure to Asian culture. The distribution of responses was as shown in 

Table 1. Reflecting the diversity of southern California, the U.S. participants’ responses 

indicate a moderately high degree of familiarity with Asian culture.

Japanese participants—50 Japanese students (25 women and 25 men) from Tohoku 

University participated in the study. Their ages ranged from 19 to 27 years (mean & 21.1). 

All were natives of Japan, and all spoke Japanese as their primary language.

These participants answered a demographic questionnaire as shown in Table 2.

Overall, these responses indicate a high degree of exposure to westerners via popular 

culture, but little social interaction.

The multicultural diversity of the U.S. sample compared with the relative homogeneity of 

the Japanese sample might be seen as a confounding factor in the experiment. However, our 

aim is to compare how members of two different cultures interpret facial expressions. All of 

the Asian Americans included in the U.S. sample spent their youth in North America. 

Although they may have assimilated American culture to varying degrees, regardless of their 

genetic makeup, they share a similar cultural experience with our other U.S. participants, 

through school, social activity, popular culture, and so on. Furthermore, finding, say, a 

matched sample of Caucasian judges with little previous direct interaction with Asians 

would be nearly impossible in southern California, and even if it were possible, the group 

would not be representative of the culture. For these reasons, the only restriction we placed 

on our ethnically Asian subjects was that they should have grown up in North America.
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Method

Face stimuli—Experiment 1’s intent was to compare U.S. and Japanese responses to 

emotional facial expressions and test the hypothesis that cultural differences in facial 

expression interpretation emerge when the expressions are freely elicited in the poser’s own 

cultural context. For these purposes, we collected facial expression stimuli from the 

following sources:

1. JACFEE: Matsumoto and Ekman’s Japanese and Caucasian Facial Expressions of 

Emotion and Neutral Faces (1988) data set contains 112 photographs. Fifty-six are photos of 

posers portraying emotional expressions. Each of the 56 posers is a different individual. The 

remaining 56 photos are of the same 56 individuals portraying a neutral expression. The 56 

emotional stimuli include 2 Japanese women, 2 Japanese men, 2 Caucasian women, and 2 

Caucasian men for each of the 7 emotions happiness, sadness, fear, anger, surprised, disgust, 

and contempt. For a given emotional expression, every one of the eight photos has been 

FACS coded to ensure that they meet Ekman, Friesen, and Hager’s (2002) criteria for 

prototypical expressions of basic emotions and to ensure that for every image of the same 

facial expression, every poser is using exactly the same facial actions. Because the JACFEE 

stimuli were screened for facial expression criteria created by Americans in the United 

States, we call them “American” expressions regardless of whether the poser is Japanese or 

Caucasian.

2. The California Facial Expression database (CAFE): CAFE is a data set created at 

University of California, San Diego.1 CAFE is comprised of posers from southern California 

portraying happiness, sadness, fear, anger, surprise, and disgust, as well as neutral 

expressions. CAFE posers were first trained by a FACS expert in a short group session to 

portray each emotion. Then each poser sat for an individual photo session in which we asked 

them to portray each emotion in turn. Finally, the expert coded each photograph and 

screened out the faces not meeting FACS criteria for the emotion in question. Because the 

CAFE stimuli were screened against the same criteria as the JACFEE stimuli, we also call 

them “American” expressions. However, note that whereas all JACFEE stimuli for a 

particular emotion involve exactly the same facial actions, the CAFE posers were allowed to 

portray an emotion however they pleased, so long as the expression met the FACS expert’s 

criteria. This means there is more variability across the examples of a particular emotion in 

CAFE than there is in JACFEE.

3. The Japanese Female Facial Expressions (JAFFE) data set: The JAFFE (Lyons, 

Akamatsu, Kamachi, & Gyoba, 1998) data set contains 217 photos of 10 Japanese female 

models posing expressions of happiness, sadness, fear, anger, surprise, disgust, and 

neutrality.2 The expressions were posed without instruction by Japanese participants in 

Japan, and they were not screened against any standards for emotional facial expressions. 

We therefore call the JAFFE expressions “Japanese” expressions. Although the JAFFE 

stimuli are not screened against any emotional expression criteria, note that we did select the 

1See http://www.cse.ucsd.edu/~gary for details on obtaining CAFE.
2See http://www.kasrl.org/jaffe.html for details on obtaining JAFFE.
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specific subset of JAFFE for Experiment 1 according to an intensity criterion described 

below.

From these three sources, we built the face data set for Experiment 1. The stimuli consisted 

of 28 Japanese female and 28 Caucasian female posers portraying either a single emotional 

expression or remaining neutral. The Caucasian posers consisted of the 14 Caucasian 

women in JACFEE (Matsumoto & Ekman, 1988) and 14 randomly chosen Caucasian 

women from CAFE. The Japanese stimuli consisted of the 14 Japanese women in JACFEE, 

the 10 Japanese women in JAFFE portraying sad, afraid, angry, surprised, and disgusted 

expressions, as well as 4 additional Japanese female posers portraying happy and neutral 

expressions. The published JAFFE dataset only contains 10 posers, but during the JAFFE 

photo sessions, Lyons et al. (1998) also acquired photos of 4 additional posers portraying a 

subset of the expressions. We supplemented the 10 photos selected from JAFFE with neutral 

and happy expressions from these four posers. We selected the JAFFE stimuli that were 

rated most intense by Japanese participants in a separate pilot study (not reported here), 

subject to the constraint that each poser could only appear once in the data set. Figure 2 

shows the CAFE and JAFFE stimuli used for the experiment (the JACFEE stimuli cannot be 

reprinted because of copyright restrictions).

In anticipation of presenting the same face stimuli to humans and our computational model, 

we preprocessed all faces according to the requirements of the model. In each face, three 

points were manually located: the center of the pupil of each eye (the eyes are directed at the 

camera for all of the stimuli in our dataset) and the midpoint of the bottom of the poser’s top 

row of teeth. In faces without exposed teeth, the location of this point was estimated.3 Each 

image was then rotated to make the eyes level, linearly scaled in the horizontal direction so 

that the eyes were 128 pixels apart, then linearly scaled in the vertical direction so that the 

mouth and eyes were 136 pixels apart. The resulting image was then cropped to a size of 240 

× 292, with the left eye at row 88, column 56. Finally, the pixel values in each cropped 

image were then linearly transformed to a mean of 140 and a SD of 40.

Procedure—After a brief explanation of the experiment by an experimenter, the 56 stimuli 

were presented twice, in two blocks. In the first block, participants performed an intensity 

rating procedure in which the 56 facial expression stimuli were presented individually in 

random order on a computer screen. The participants were instructed to rate the intensity of 

happiness, sadness, fear, surprise, anger, and disgust conveyed by each image on a 1–5 scale 

using the mouse, with 5 being a “very strong display” and 1 being “none at all.” For the 

Japanese version of the experiment, we used the emotion labels Koufuku, Kanashimi, Osore, 

Odoroki, Ikari, and Ken’o, respectively.5 The order in which the emotion rating buttons were 

displayed in the graphical user interface was randomized for each participant but remained 

constant throughout the experiment. Participants were allowed to examine the face as long as 

3The bottom of the nose is another possible third landmark that is easier to localize, but we find that the top row of teeth gives slightly 
better results.
5These are the same labels used by Lyons, Akamatsu, Kamachi, and Gyoba (1998). Although most researchers do not publish the 
specific labels they use, ours are identical to those of Matsumoto (2005) except that he uses the label Yorokobi (a slightly more 
transient state of happiness) rather than Koufuku.
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they desired, and once they had rated the intensity of all six emotions, could then press a 

graphical button to advance to the next face.

In the second block, the 56 stimuli were again presented in a different random order, and the 

participants’ task was a 7-way forced choice decision for each stimulus. The forced-choice 

block followed the intensity rating procedure to prevent the participants from thinking of the 

stimuli as portraying one and only one emotion during the intensity rating procedure.

At the end of the experiment, participants answered the questions in the demographic 

questionnaires as previously described and listed in Tables 1 and 2.

Pilot Study

The Experiment 1 stimuli were balanced for poser race, posed expression, and judge culture, 

but we were concerned about the fact that 75% of the stimuli (the American-style 

expressions) were selected by a FACS criterion whereas the remaining 25% (the Japanese-

style expressions) were selected by an in-group maximum rated intensity criterion. To 

determine whether this imbalance might bias our participants’ responses, we performed a 

pilot study in which one group, “Group 1,” (20 U.S. and 20 Japanese participants) rated all 

56 of the stimuli in the design just described, and another group, “Group 2” (another 20 U.S. 

and 20 Japanese participants), rated a 28-stimulus subset of the data. The stimuli for Group 2 

were the 14 JACFEE Caucasian stimuli and the 14 JAFFE Japanese stimuli from the full 

data set. With this change, Group 2’s stimuli were balanced for poser race, posed expression, 

and judge culture, as well as expression style.

Other than the change in the stimulus set for Group 2, the pilot study’s procedure was 

identical to that previously described for Experiment 1. We subjected the pilot participants’ 

intensity ratings for the 28 stimuli in common for the two groups to a five-way analysis of 

variance with the following independent variables:

1. Judge culture (Japanese, American).

2. Judge group (Group 1 with 56 Stimuli or Group 2 with 28 stimuli).

3. Dataset (JACFEE vs. JAFFE).

4. Posed expression (happy, sad, Afraid, Angry, Surprised, Disgusted, neutral).

5. Rated emotion (happy, sad, Afraid, Angry, Surprised, disgusted).

We predicted no marginal effects or interactions due to the Group variable, and we indeed 

found no significant effects. We followed up on the null results with an analysis to ensure 

that the experiment was sufficiently powerful and that the confidence intervals on η2 using 

Fleishman’s (1980) method included η2 = 0. We concluded that the unbalanced ratio of 

American-style (FACS-selected) stimuli to Japanese-style (maximum intensity-selected) 

stimuli in Experiment 1 was unlikely to affect our participants’ responses, and continued 

with the experiment as described. The 40 Group 1 pilot participants’ data were analyzed 

with an additional 60 subjects in the Experiment 1 analyses described in the rest of this 

section.
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Predictions

Based on previous studies with JACFEE, we could make some general predictions for the 

main experiment. In the intensity rating block, we expected a Culture × Posed × Rated 

interaction (Japanese and U.S. participants should attribute different levels of intensity to 

some of the stimuli), and in the forced-choice rating block, we expected a Culture × Posed 

interaction (Japanese and U.S. participants should be more or less accurate on some posed 

expressions).

For the forced-choice block in particular, theories make more specific predictions regarding 

the effect of the Dataset variable. According to Elfenbein and Ambady’s (2002a, 2002b) 

concept of in-group advantages, Japanese participants should be more accurate than U.S. 

participants at judging the expressions of Japanese posers posing Japanese expressions, and 

similarly, U.S. participants should be more accurate than Japanese participants at judging the 

expressions of American posers. However, previous balanced cross-cultural studies of 

Japanese and American interpretations of emotional facial expressions (Biehl et al., 1997; 

Matsumoto, 1992) have failed to find any such pattern. One explanation lies in these studies’ 

use of JACFEE. As previously discussed, JACFEE was specifically designed to eliminate 

any cultural differences in the emotion signal by ensuring that every stimulus for a given 

emotion category, regardless of poser culture, contains the exact same set of facial actions. 

Under the criterion of Elfenbein and Ambady, that in-group stimuli should be elicited within 

the poser’s own culture, the Japanese faces in JACFEE should not be treated as in-group 

stimuli for the Japanese judges. If a reciprocal in-group advantage does exist for Japanese 

and U.S. judges, it should manifest when the JAFFE posers (not the JACFEE Japanese 

posers) are treated as in-group members for Japanese judges.

Matsumoto explains cultural differences in facial expression interpretation in terms of three 

factors: display rules, decoding ability, and signal clarity. He does not rule out the possibility 

of in-group advantages in recognition, but suggests that they are unlikely when the emotion 

signal is clear, as in the JACFEE data set, and that they may be more prevalent when the 

emotion signal is less clear without being completely ambiguous, when judges “may rely on 

cues or processes that are idiosyncratic to their cultural group” (Matsumoto, 2002, p. 241). 

Under Matsumoto’s theory, any evidence of in-group advantage (a poser culture × judge 

culture interaction) would be small compared to the main effects of poser culture and judge 

culture and would be driven by stimuli with relatively weak clarity.

Results

Intensity rating results

We subjected the participants’ intensity ratings for the 56 stimuli to a 4-way analysis of 

variance with rated intensity as the dependent variable and the following predictor variables:

1. Judge Culture (Japanese, American)

2. Dataset (JAFFE, JACFEE Japanese, JACFEE Caucasian, CAFE)

3. Posed Expression (happy, sad, Afraid, Angry, Surprised, Disgusted, neutral)

4. Rated Emotion (happy, sad, Afraid, Angry, Surprised, disgusted)
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The results of the analysis of variance (ANOVA) are shown in Table 3. We see immediately 

that most of the variance in the intensity data is either explained by the Posed × Rated 

interaction (55.4%) or attributable to unmodeled factors such as individual judge differences 

and individual stimulus differences (35.0%). The large effect of the Posed × Rated 

interaction comes from the fact that, as expected, for most images, most participants rate the 

intensity of the posed expression as being higher than the other expressions.

The largest effect involving variables other than the posed and rated emotion is the Dataset × 

Posed × Rated interaction (different datasets have different intensity matrices). A visual 

inspection of the treatment means appeared to indicate that the participants’ rated intensity 

of the nominal emotion is generally higher for JACFEE than for CAFE or JAFFE. To 

quantify the support for this hypothesis, we did a separate one-way analysis of variance with 

the rated intensity of the nominal emotion as a dependent variable and the dataset as a 

predictor. We found a significant effect (F(3,4796) = 53.8, p < .001, η2 = .0326). Since this 

regrouping of the data is a post hoc comparison of linear combinations of cell means in the 

original analysis, we compared the rated intensities with a Scheffé correction (Keppel, 1991) 

to achieve αFW = .05 and found the following relative rated intensities:

JAFFE < CAFE < JACFEE Japanese
= JACFEE Caucasian

That is, for the nominal emotion for each stimulus, our participants attributed more intensity 

to JACFEE stimuli overall than to CAFE stimuli, and more intensity to CAFE stimuli than to 

JAFFE stimuli.

There were also significant interactions involving judge culture, though they were small (η2 

< .01). All of the differences can be summarized by the Culture × Dataset × Posed × Rated 

interaction. Of the four datasets, our Japanese and U.S. participants differed the most on 

JAFFE, as measured by the sum of squared differences between the two intensity matrices. 

First, we compared the two matrices cell-by-cell with 42 F-tests and a family wise Type I 

error rate αFW = .05 spread over the 42 comparisons (seven posed expressions × six rated 

expressions). We then compared the marginal responses (seven posed expressions + six rated 

expressions) with 13 F-tests and a family wise Type I error rate αFW = .05 spread over those 

13 comparisons. Finally, we compared the mean intensity for the two judge cultures over all 

of JAFFE with an F-test and a Type I error rate α = .05. A summary of these differences is 

shown in Figure 3. The cells and marginals that were significantly different across cultures 

are shaded. The Japanese participants attribute more anger to the JAFFE anger stimuli, and 

they also attribute more disgust to the stimuli overall. However, the American participants 

attribute more happiness to the JAFFE happy stimuli and more fear to the JAFFE surprise 

stimuli, and they also attribute more sadness to the stimuli overall.

To summarize the main results of the intensity rating block of Experiment 1, we found that

• Participants rated the nominal emotion as being less intense in JAFFE than in 

CAFE, and less intense in CAFE than in JACFEE.
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• Japanese participants attributed more anger to the angry JAFFE faces and more 

disgust to the JAFFE faces overall, but U.S. participants attributed more sadness 

to the JAFFE faces overall, more happiness to the happy JAFFE faces, and more 

fear to the surprised JAFFE faces.

We now turn our attention to the second block of Experiment 1, in which participants made a 

7-way forced-choice decision for each stimulus.

Forced-choice accuracy results—We coded each decision participants made in the 

forced-choice rating block as “correct” or “incorrect” based on the nominal posed expression 

for the stimulus, then performed a three-way analysis of variance with correctness as the 

dependent variable and the following predictor variables:

1. Judge Culture (Japanese, American)

2. Dataset (JAFFE, JACFEE Japanese, JACFEE Caucasian, CAFE)

3. Posed Expression (happy, sad, afraid, angry, surprised, disgusted, neutral)

The results of the ANOVA are shown in Table 4. Although most of the variance in accuracy 

is unexplained by the model, we do observe several statistically significant effects. The 

effects can be best understood by closely examining the Culture × Dataset × Posed 

interaction. We performed a post hoc analysis using the Tukey correction for all pairwise 

comparisons (Keppel, 1991) to maintain a family wise Type I error rate of αFW = .05.

Figure 4 shows the Culture × Dataset × Posed interaction in detail. The confidence intervals 

are for the cell means and include the between-subjects variance (Loftus, 2002).

The interaction can be further understood through separate consideration of the marginal 

Culture × Dataset and Culture × Posed interactions. For both interactions, we again used 

Tukey’s correction for all pairwise comparisons. The U.S. participants’ levels of accuracy 

for each data set were related as follows:

JAFFE < CAFE < Japanese JACFEE
= Caucasian JACFEE

For the Japanese participants, the accuracy levels were slightly different:

CAFE < JAFFE < JACFEE Japanese
= JACFEE Caucasian

The U.S. participants’ level of accuracy for each nominal emotion category was related as 

follows:

D < F = A = N = M = S < H, A < S

The pattern was again different for the Japanese participants:

F < D < A < M = N < S = H
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The Japanese participants were more accurate on the surprise stimuli, whereas the U.S. 

participants were more accurate on anger, sadness, and fear.

Qualitatively, examination of the results shown in Figure 4 indicates that our Japanese 

participants’ responses to the JACFEE Japanese stimuli are much more similar to their 

responses to the CAFE and JACFEE Caucasian stimuli than to their responses to the JAFFE 

stimuli. As previously discussed, this might mean that our Japanese participants regard the 

JAFFE posers as in-group members but the Japanese JACFEE posers as out-group members. 

To address this issue quantitatively, we regrouped the stimuli into an “American” style 

expression group containing the FACS-selected CAFE, Caucasian JACFEE, and Japanese 

JACFEE stimuli, and a “Japanese” style expression group containing only the JAFFE 

stimuli. To determine if the U.S. participants had an overall advantage for the American 

expressions and the Japanese participants had an overall advantage for the Japanese 

expressions, we performed a 2-way analysis of variance with the dependent measure being 

correctness and the predictors being (a) judge culture and (b) expression style (American or 

Japanese).

The results of the ANOVA are shown in Table 5. The Culture × Expression Style interaction 

is a small but significant effect, shown in detail in Figure 5a. The confidence intervals are for 

the cell means and include the between-subjects variance (Loftus, 2002). Because the 

regrouping and reanalysis is a post hoc comparison of linear combinations of cell means in 

the original design, we applied the Scheffé correction for all possible linear contrasts 

(Keppel, 1991). We found that the Japanese participants were more accurate than the U.S. 

participants on JAFFE, and the U.S. participants were more accurate than the Japanese 

participants on the FACS-selected stimuli.

Discussion

We consider each of the main findings of our Experiment 1 analysis in turn.

We first found that the JAFFE stimuli were rated as less intense overall than the CAFE 

stimuli, and the CAFE stimuli were rated as less intense overall than the JACFEE stimuli. In 

Matsumoto’s terms, this means that the JAFFE and CAFE stimuli have less signal clarity 

than the JACFEE stimuli, so we should expect to see more evidence of cultural differences 

on the JAFFE and CAFE stimuli.

Indeed, the differences between Japanese and American intensity ratings were largest for 

JAFFE. In most cases, the U.S. participants attributed more intensity to the JAFFE faces than 

did the Japanese participants. This is not surprising in light of previous findings (Ekman et 

al., 1987; Matsumoto & Ekman, 1989) that Americans attribute more intensity to emotional 

faces than Asians do. Ekman et al. (1987) found that participants from Japan, Hong Kong, 

and Indonesia tended to attribute less intensity to happiness, surprise, and fear in Caucasian 

faces than did Westerners. Matsumoto and Ekman (1989) similarly found that Americans 

tended to attribute more intensity to JACFEE faces than did Japanese participants, regardless 

of whether the face in question was Asian or Caucasian.
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More surprising in the current experiment is that the Japanese participants attributed more 

anger to the angry JAFFE faces and more disgust to the JAFFE faces overall. We attribute 

this to the fact that, in contrast to previous studies, we have Japanese judges rating Japanese-

style expressions. We reject the hypothesis that Japanese participants, because of decoding 

rules or other influences, are simply less likely to attribute intense emotion to others. The 

Japanese participants may be picking up on subtle culture-specific signals in the data.

In the forced-choice block of Experiment 1, as shown in Figure 5a, we found reciprocal in-

group advantages for Japanese participants judging Japanese-style expressions and U.S. 

participants judging American-style expressions. This study is the first to demonstrate an in-

group advantage for Japanese over Western participants using facial photograph stimuli. 

Crucially, the grouping of posers was cultural, not racial. Consistent with Elfenbein and 

Ambady’s (2002b) criteria for establishing in-group advantages, the advantage was observed 

when, in the analysis, we treated the Japanese posers in JAFFE as in-group members for the 

Japanese judges and the Japanese posers in JACFEE as in-group members for the U.S. 

judges. For comparison, consider Figure 5b, in which we perform the same type of analysis, 

but group the stimuli by poser race rather than poser culture. When we combine the 

expressions of the Japanese posers in JACFEE with the JAFFE expressions, the Japanese 

participants’ advantage disappears. The JAFFE stimuli were freely elicited in a Japanese 

cultural context, whereas the JACFEE expressions were posed in an American cultural 

context. At the same time, consistent with Matsumoto’s (2002) suggestions about signal 

clarity and accuracy, we found that the JAFFE stimuli were rated less intense overall and 

that participants’ accuracy was lower on JAFFE than on JACFEE. However, the lower 

intensity of the JAFFE stimuli only resulted in lowered accuracy for the U.S. judges, not the 

Japanese judges. The Japanese judges were just as accurate on the JAFFE stimuli as on the 

CAFE and JACFEE stimuli (Figure 5a). Past studies using the Japanese JACFEE faces as in-

group stimuli for Japanese participants have failed to find in-group advantages and have 

been used to argue against a direct role for cultural learning in the interpretation of facial 

expressions (Matsumoto, 2002). In contrast, our results demonstrate that the requirement for 

posers from different cultures to portray the exact same set of facial muscle movements is, as 

Elfenbein and Ambady (2002a) put it, a “culture eraser.”

A closer examination of the Culture × Dataset × Posed interaction in Figure 4 shows that the 

in-group advantage for the Japanese participants is driven by their improved accuracy over 

U.S. participants on the JAFFE anger and disgust stimuli. Indeed, the four JAFFE stimuli for 

which the Japanese advantage was greatest were the four anger and disgust stimuli. Two of 

these stimuli are shown in Figure 6. The facial movement in these faces is clearly less 

intense than in the Japanese JACFEE faces, yet they nevertheless send a clear signal to a 

majority of the Japanese participants.

In the case of the JAFFE fear stimuli, however, the pattern is actually reversed—U.S. 

participants were more accurate than Japanese participants on the JAFFE fear stimuli. This 

is consistent with many studies finding reduced agreement among non-Westerners on fear 

stimuli. For example, Ekman and Friesen’s (1971) study with the Fore of New Guinea found 

that participants, when told a particular story about someone feeling fearful then asked to 

select the photograph consistent with the story, selected a surprise photo 67% of the time. In 
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another study asking Japanese and American participants to rate emotional intensity in the 

JACFEE faces (Matsumoto & Ekman, 1989), 50% of Japanese participants rated surprise 

most intense in the JACFEE fear faces. In our own data, 68% of the Japanese participants 

rated the intensity of surprise as equal to or greater than that of fear in the JACFEE fear 

faces. Similar results have been found in other studies, especially with JACFEE (Matsumoto, 

1992; Russell, Suzuki, & Ishida, 1993; Shioiri, Someya, Helmeste, & Tang, 1999). In the 

case of JAFFE, the models reported difficulty producing fear expressions, and some of the 

resulting faces are barely distinguishable from neutral. Nevertheless, on the set of JAFEE 

fearful faces selected for the current experiment, U.S. participants were more accurate than 

they were on other negative JAFFE expressions, and they were more accurate than Japanese 

participants. This consistent difficulty producing and recognizing fearful faces but not angry 

or disgusted faces may be partly explained by the fact that Japanese people report feeling 

less fear of strangers than Americans or Europeans (Scherer, Matsumoto, Wallbott, & 

Kudoh, 1988) and by Japan’s status-differentiating culture (Matsumoto et al., 2002) in 

which it might be appropriate to display negative emotions such as anger and disgust but not 

fear toward lower-status others.

Putting the intensity rating and forced choice data together, it is interesting to note that as 

rated intensity on the nominal emotion increases, so does accuracy—both the Japanese and 

Caucasian faces in JACFEE were rated more intense than the CAFE and JAFFE faces on the 

nominal emotion, and both Japanese and U.S. participants were more accurate at classifying 

the JACFEE stimuli than the CAFE or JAFFE stimuli. In terms of our computational model 

(Figure 1), this may mean that the JACFEE stimuli represent exemplars near peaks of the 

class-conditional likelihoods P(xt|ci). On this view, the peaks of the distributions would be 

relatively stable across cultures, whereas stimuli in regions far from the peaks would be 

rated less intense and lead to lower accuracy but would also allow for culture-specific 

variations on the larger theme.

Because JAFFE was acquired through free elicitation of emotional facial expressions from 

Japanese posers in a Japanese cultural context, it is very likely to include such culture-

specific variations in facial expression style, if they exist. This could explain the higher 

intensities that our Japanese participants attribute to the JAFFE anger stimuli, and it could 

also explain the reciprocal in-group advantage we obtain when we treat the JAFFE stimuli as 

in-group data for the Japanese participants and the JACFEE stimuli as in-group data for the 

U.S. participants, regardless of poser race.

The results of Experiment 1 thus suggest a strong role for learning facial expression styles 

within cultures. In Experiment 2, we use a computational model to explain the cultural 

differences observed in Experiment 1. We find that the participants’ pattern of responses can 

be explained as a consequence of learning to interpret others’ expressions in a specific 

cultural context, represented in the model first as a particular mix of facial expressions and 

expression styles during learning, and second as differing response biases being applied 

during interpretation.

Dailey et al. Page 18

Emotion. Author manuscript; available in PMC 2020 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experiment 2: Modeling Interpretation of Facial Expressions

In Experiment 1, we found several differences in the way Japanese and U.S. participants 

interpret emotional facial expressions. It is difficult, however, to determine the causes of 

these differences, because so many interacting factors contribute to the participants’ 

responses. In Experiment 2, we apply EMPATH (Dailey et al., 2002) toward a better 

understanding of the results of Experiment 1. With EMPATH, unlike our human participants, 

all of the factors contributing to a response are under our control and can be manipulated 

independently. To the extent that experimental manipulations produce patterns similar to the 

human data, we can infer analogous influences underlying human performance.

We do not manipulate all of the possible factors underlying our participants’ facial 

expression interpretations. We focus instead on factors that model the influence of culture-

specific display rules, encoder-decoder distance, and culture-specific decoding rules:

• To model culture-specific display rules, we manipulate judges’ previous 
experience with different categories of facial expressions.

• To model the effects of encoder-decoder distance, we manipulate judges’ 

previous experience with different styles of facial expressions.

• To model the effects of culture-specific decoding rules, we manipulate judges’ 

response biases for particular emotion categories.

We assume that a judge’s previous experience affects his or her sensitivity in detecting a 

particular emotional signal, and that different groups of judges may bring different response 

biases with them into the experiment, reflecting their expectations about the prevalence of 

emotions in the world and in the experimental context.

EMPATH is just a pattern classifier trained on a set of images containing facial expressions 

then tested on a different set of images containing posers never seen during training. By 

training, we mean that the model is presented with a face as input (which corresponds to 

presenting the face as a pattern of activation across a set of input units, like pixels in a 

camera), and attempts to classify that face into one of six categories by activating output 

nodes corresponding to the six categories. The output units are activated by weighted 

connections between the input and the output. If the model activates the wrong output, say 

“Happy,” when the face is in fact “Sad,” then the training algorithm adjusts the connection 

strengths between the inputs and the outputs in order to reduce the error in the output. So, in 

the example given, it would lower the connection strengths to the “Happy” output (the ones 

that led to it being incorrectly activated), and raise the connection strengths to the “Sad” 

output from the input stimulus. In this way, the model learns over many presentations to 

differentiate the facial expressions from one another. The detailed procedure is given in the 

Methods section.

To model two groups of participants’ differing previous experience with facial expressions, 

we can simply build two different classifiers with different training sets. To model a 

participant group’s response biases, we can first train our system with uniform priors over 

the categories and stimuli, then reweight its outputs according to different priors over the 
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categories in order to improve the fit to the data. The model can then respond as if it 

assumes, say, that happiness is twice as likely as sadness in the world.

Based on the results of Experiment 1, especially the reciprocal in-group advantage shown in 

Figure 5a, we hypothesize that more training on Japanese-style expressions might produce a 

model that behaves more like a Japanese participant on the test stimuli, and that more 

training on American-style expressions might produce a model that behaves more like a U.S. 

participant.

In the following sections, we describe our model, experimental methods, and modeling 

results, followed by a discussion of their implications for the human data.

Method

The model—EMPATH is shown schematically in Figure 1. It has been described in detail 

elsewhere (Dailey et al., 2002)6; here we describe it briefly. At the input level, stimuli are 

represented as cropped, aligned, grayscale images. At the next level, the perceptual level, we 

filter the image with a rigid grid of overlapping 2D Gabor filters (Daugman, 1985) in 

quadrature pairs at five scales and eight orientations. A Gabor filter is simply an oriented 

sinusoidal grating modulated by a Gaussian envelope. They act as edge detectors and have 

been shown to accurately model the receptive fields of simple cells in primary visual cortex 

(Jones & Palmer, 1987). When we combine paired sine-shaped and cosine-shaped filters at 

each location, scale, and orientation, we obtain a so-called Gabor magnitude representation 

that is often used as a simplifying model of the spatial responses of complex cells in the 

early visual system (Lades et al., 1993). At the next level, the gestalt level, the high-

dimensional Gabor representation is reduced to a lower-dimensional representation via 

principal components analysis (PCA), a commonly used optimal linear compression 

technique (see, e.g., Kirby & Sirovich, 1990; Turk & Pentland, 1991). At the final level, the 

category level, the input is classified into one of six categories corresponding to the six 

“basic” emotions originally portrayed in Ekman and Friesen’s (1976) Pictures of Facial 

Affect (POFA). The categorization is accomplished by a simple statistical model known as a 

generalized linear model in statistics or a perceptron in neural networks. The system is 

trained by error correction to predict the posterior probabilities P(ci|xj), where the ci are the 

categories happy, sad, afraid, angry, surprised, and disgusted, and xj is the gestalt-level 

representation of input stimulus j. In previous research we have found this model to provide 

straightforward explanations of participant behavior in experiments on facial expression 

perception and recognition.

Face stimuli—In addition to the 56 test stimuli used in Experiment 1, we assembled a 

large collection of training images from several sources:

1. JAFFE: we used all 217 images of the 10 Japanese female posers in JAFFE for training 

EMPATH. Ten of these stimuli had also been used to test human participants in Experiment 

6The system is also similar to one proposed by Lyons, Budynek, and Akamatsu (1999).
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1, but we ensured that no classifiers were both trained and tested on the same individuals 

(see the “Training procedure” section below for training and testing details).

2. CAFE: During video sessions, according to the FACS expert trainer, 11 of 60 posers (5 

female, 6 male) met FACS criteria for all 6 emotional expressions. Seventyseven images of 

these 11 posers were selected for training EMPATH. Two of these 11 posers’ faces were also 

used with the human participants in Experiment 1, but as with JAFFE, we again ensured that 

no classifiers were both trained and tested on these individuals. The 11 posers included 7 

Caucasians, 2 east Asians (one of Korean descent and one of Chinese descent), and 2 of 

unknown descent (most likely from the Pacific region).

3. JACFEE: We used all 48 happy, sad, afraid, angry, surprised, and disgusted stimuli as 

well as the 56 neutral stimuli from JACFEE/JACNeuF (Matsumoto & Ekman, 1988). (Only 

the 8 JACFEE stimuli portraying contempt were left out.) The posers included 28 different 

Japanese and 28 different Caucasian individuals, half female and half male. The 28 female 

posers in JACFEE were also used with the human participants in Experiment 1, but we again 

ensured that no classifiers were both trained and tested on the same individuals.

4. Cohn-Kanade: Because the JAFFE, CAFE, and JACFEE data sets are relatively small, 

to improve the robustness and accuracy of the trained EMPATH classifiers, we selected an 

additional set of 48 examples of Caucasians portraying happy, sad, afraid, angry, surprised, 

and disgusted expressions from the publicly released version of the Cohn-Kanade database 

(Kanade, Cohn, & Tian, 2000). This database consists of 97 posers performing various 

combinations of facial action units in 481 video sequences of varying length beginning from 

a neutral expression. We selected stills from the endpoints of 48 sequences. Because not all 

of the sequences in the database portray facial actions meeting FACS criteria for the 

emotional facial expressions, and few of the posers portray all 6 basic emotional 

expressions, our 48-image subset of the Cohn-Kanade database contains 19 unique actors.

Each stimulus was coded according to three variables:

• Racial group: “Japanese” in the case of JACFEE Japanese andJAFFE, or “non-

Japanese” in the case of CAFE, JACFEE Caucasian, and Cohn-Kanade;

• Expression style: “American” in the case of CAFE, JACFEE, and Cohn-Kanade, 

or “Japanese” in the case of JAFFE;

• Posed emotion: Happy, sad, afraid, angry, surprised, disgusted, or neutral.

Stimulus normalization—To create a consistent dataset for EMPATH to learn from, we 

rotated, scaled, and cropped all 462 JAFFE, CAFE, JACFEE, and Cohn-Kanade training and 

testing images as already described for Experiment 1. One additional preprocessing step was 

necessary due to the variability in lighting conditions and backgrounds across the four 

databases. Statistical learning methods have difficulty generalizing to examples from a 

distribution that is systematically different from the training distribution. Lighting 

differences are an example of this, so we attempted to ensure that the face sets had similar 

pixel distributions in the face region with a simple histogram equalization technique. For 
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each image, we masked off the face outline, including the hairline, and computed the 

cumulative distribution of the pixel values within the unmasked face interior. From these 

distributions we computed the average distribution over all the faces then mapped each 

face’s interior pixel values to the mean distribution. In other (unpublished) work, we have 

found this technique to be useful when a classifier is trained on one database and expected to 

generalize to other databases.

EMPATH training—Our first task was to produce a version of EMPATH able to classify 

the 56-stimulus test set for Experiment 1 with a high level of accuracy, so that we would 

then have some freedom to manipulate the parameters to better fit the Japanese and 

American human data.

However, we should not train the classifier on the same data that was shown to participants 

in Experiment 1. Because the raters had never seen the faces before, their task was to 

generalize their prior knowledge of facial expressions to a new set of faces. To accurately 

model the experiment, then, our classifiers should similarly not be tested on the same data 

they are trained on. But if we were to exclude all 56 test individuals from the classifier’s 

training set, there would not be enough stimuli left to achieve good classification accuracy. 

To solve this problem, we partitioned the 56-stimulus test set into 14 sets, each containing 4 

of the Experiment 1 stimuli: 1 from JAFFE, 1 from CAFE, 1 Japanese face from JACFEE, 

and 1 Caucasian face from JACFEE. We further constrained each partition to contain no 

more than one example of each emotional expression, but otherwise, the partitions were 

chosen arbitrarily.

For each of the 14 partitions of the test set, we trained 10 different classifiers with different 

random training sets, for a total of 140 classifiers. The training set for each classifier was 

chosen at random, subject to the constraint that none of the four individuals in the 

classifier’s test set could be used during training. Because for a given classifier, only four 

posers were removed from the pool of possible training stimuli, each classifier could be 

trained on a large number of stimuli without contaminating the test. This technique, called 

cross-validation, is a common way to test machine learning algorithms when training data is 

limited.

After the training and test set for a particular EMPATH classifier is selected, we further 

reserve some of the training data as a hold out set. This is because iterative learning methods 

such as gradient descent tend to overlearn the training set; using a hold out set to determine 

when to stop training prevents this. We select a different random hold out set for every 

classifier.

For our baseline EMPATH model, we used the following breakdown for the training and 

hold out sets:

• Hold out set: 1 random individual (7 expressions each) from CAFE, 1 random 

individual (7 expressions each) from JAFFE, and 7 random stimuli (7 different 

expressions) from JACFEE, for a total of 21 stimuli.
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• Training set: 8 random individuals (7 expressions each) from CAFE, 8 random 

individuals (7 expressions each) from JAFFE, 42 random stimuli (6 examples of 

each of 7 expressions) from JACFEE, and all 48 Cohn-Kanade stimuli, for a total 

of 202 stimuli.

Once the test set, hold out set, and training set are fixed for a particular EMPATH classifier, 

processing can begin as shown in Figure 1. Each input-level (image) pattern is processed to 

obtain a high-dimensional perceptual-level representation, the previously described Gabor 

magnitude representation of the image. Each element of the 40,600 perceptual-level pattern 

is z-scored to a mean of 0 and a variance of 1 over the entire data set so that each element 

has an equal opportunity to contribute. We then compute the principal component 

eigenvectors of the training set and determine k, the number of eigenvectors required to 

account for 85% of the training data’s variance (typically, k is approximately 120). We then 

project all of the perceptual-level data (training set, hold out set, and test set) onto the 

subspace spanned by the top k principal component eigenvectors then z-score the 

projections, again using the means and variances calculated over the training set. These k-

dimensional projections are EMPATH’s gestalt-level representations of the training, hold 

out, and test images.

Finally, a standard single layer, six-output, feed-forward neural network is trained to 

minimize error on the training set until accuracy on the hold out set is maximized. We use 

stochastic gradient descent and the cross-entropy error criterion (Bishop, 1995). After each 

neural network is trained, we save its weights and test its generalization to its test set. That 

is, for each test set item xj, we obtain predictions P(ci|xj), with c1 = H (happy), c2 = M (sad), 

c3 = F(afraid), c4 = A (angry), c5 = S (surprised), and c6 = N (neutral). EMPATH does not 

explicitly represent neutral faces with a separate category; rather, neutrality is assumed to be 

an absence of any emotional expression. To accomplish this, the training target for an 

emotional face is a binary vector, for example

0 0 1 0 0 0

for a Fearful Face, and the Training Target for Neutral Faces Is the Uniform Vector

1
6

1
6

1
6

1
6

1
6

1
6

The final output of the training procedure is a 560 × 6 matrix of classifier responses, because 

there are 56 test stimuli and 10 classifiers tested on each test stimulus.

The use of binary targets is suboptimal in the sense that some faces are more representative 

of a given emotion than others. Better agreement with the human data could in principle be 

obtained by training the model on human responses. In that case, though, we would be 

“building in” the biases of one particular group of participants. Binary targets avoid that 

issue, so that any emergent agreement between network and human responses can be 

attributed to perceptual properties of the stimuli rather than the way the networks were 

trained.
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Prior experience manipulation—Based on previous experiments with EMPATH, we 

expected the baseline model just described to perform fairly well at classifying the test 

stimuli from Experiment 1. However, the particular mix of facial expression categories, 

poser races, and expression styles we chose was to an extent arbitrary, reflecting the 

availability of data more so than any prior theories about the composition of our human 

participants’ “training sets.” Given the results of Experiment 1, we hypothesized that the 

Japanese participants had more prior exposure to expressions like those in JAFFE, that U.S. 

participants had more prior exposure to expressions like those in JACFEE and CAFE, and 

that the two participant groups had different prior exposure to some facial expression 

categories. To determine the extent to which these kinds of factors might produce model 

“participants” more like our Japanese or U.S. human participants, we performed separate 

experiments with different mixtures of expressions, poser races, and expression styles.

Recall that we model the effects of display rules by modulating EMPATH’s exposure to 

different categories of emotions and that we model cultural distance by modulating 

EMPATH’s exposure to different styles of expressions. We also added exposure to different 

races as an additional variable to see if it had an effect. The baseline model was trained on 

most of the data available to us without repeating any < poser, emotion > pairs in any of the 

training sets, so all of our manipulations took the form of subsampling one or more 

categories of stimuli during model training. We defined the following parameter space to 

model participants’ differing prior experience:

• Exposure to happy faces: eH ϵ {.5, .75, 1.0}

• Exposure to sad faces: eM ϵ {.5, .75, 1.0}

• Exposure to afraid faces: eF ϵ {.5, .75, 1.0}

• Exposure to angry faces: eA ϵ {.5, .75, 1.0}

• Exposure to surprised faces: eS ϵ {.5, .75, 1.0}

• Exposure to disgusted faces: eD ϵ {.5, .75, 1.0}

• Exposure to Japanese faces (JACFEE Japanese, JAFFE):eJR ϵ {.5, .6, .7, .8, .9, 

1.0}

• Exposure to non-Japanese faces (JACFEE Caucasian, CAFE, Cohn-Kanade): eNJ 

ϵ {.5, .6, .7, .8, .9, 1.0}

• Exposure to American-style expressions (JACFEE, CAFE, Cohn-Kanade): eAS ϵ 
{.5, .6, .7, .8, .9, 1.0}

• Exposure to Japanese-style expressions (JAFFE): eJS ϵ {.5, .6, .7, .8, .9, 1.0}

These 10 parameters allow for 944,784 possible mixtures of training set patterns. An 

exposure level of 1.0 means all of the patterns in a category for the baseline model are 

retained in the manipulated training set. An exposure level ec < 1.0 < 1.0 for category c 
means when a pattern is selected for inclusion in a classifier’s training set, if it is in category 

c, we only use the pattern with probability ec. For example, if eJS = .5, each classifier will be 

trained on an average of 28 JAFFE faces rather than 56.
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Response bias and neutral threshold manipulation—Recall that we model 

decoding rules by modulating EMPATH’s response bias for each emotion. Response bias is 

a shift in the criterion one uses to make a decision. To model this shift mathematically, we 

assume it reflects a change in one’s estimate of the prior probability P(ci) of seeing a given 

emotion category ci. A participant’s actual response will of course also depend on the visual 

stimulus. We assume participants’ intensity and forced-choice responses are functions of 

their estimates of P(ci|xj), the posterior probability of emotion class ci given a stimulus xj. 

The posterior and prior are related by Bayes’ rule: given stimulus xj, the posterior 

probability of emotion ci is

P ci ∣ xj = P xj ∣ ci P ci
P xj

(2)

where P(xj|ci) is the class-conditional probability of the stimulus and P(ci) and P(xj) are 

priors for emotion i and stimulus j. Our classifiers estimate P(ci|xj) directly under the 

assumption of training priors Pold(ci). These priors are uniform for our baseline model, but 

they differ from the uniform distribution whenever some of the emotion exposure parameters 

ec introduced in the previous section are less than 1. In either case, to obtain an estimate P(ci|

xj) under different priors, we simply normalize each of the classifier’s outputs by a factor 

bi =
Pnew ci

old

P ci . As will be explained below, we fit the parameters bi directly to the human 

data using least squares.

Because Experiment 1 included a forced-choice decision including a seventh category 

choice (neutral), we needed to model participants’ seven-way forced choice decisions based 

on six posterior category probability estimates. The simplest way to accomplish this is with 

a winner-takes-all model, in which we assume participants calculate P(ci|xj) based on some 

set of priors then find the category c* with the highest posterior probability

c* = argmax
ci

biP ci ∣ xj (3)

Then, we assume participants apply the decision rule

Category xj = c* if bc ⋅ P c* ∣ xj > θN,
Neutral otherwise

(4)

The threshold θN is a free parameter. If the estimated probability of the most probable class, 

say “surprise,” is greater than θN, we respond with the emotional category “surprise,” but 

otherwise, the estimated probability of the surprise category is too small, and we respond 

with the “neutral” category decision.

Winner-takes-all is a straightforward way to model an individual participant’s forced choice 

responses. But in fact, we want to model the entire population’s decisions, not just a single 

participant’s, so instead of winner-takes-all, we form the vector
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V i xj 7 × 1 =

bHP H ∣ xj
bMP M ∣ xj
bFP F ∣ xj
bAP A ∣ xj
bsP S ∣ xj
bDP D ∣ xj

θN

(5)

representing the value of each possible decision, then apply the multinomial logit choice 

model

P ci ∣ xj = eβV i(xj)

∑keβV k(xj) (6)

for the entire population’s seven-way forced choice behavior.

Altogether, with six response bias factors bH, …, bD, the neutral threshold θN, and the logit 

gain parameter 2, we have a total of eight parameters that must be fitted to the human data. 

However, there are only seven intrinsic parameters, since the final vector of decision 

probabilities is constrained to sum to 1.

Results

Baseline model—We first trained the baseline model consisting of 140 classifiers using 

most of the available training data, as previously described. We found that k, the number of 

gestalt-level dimensions accounting for 85% of the variance at the perceptual level, was 

approximately 120, though k varied somewhat for different random training sets.

The ensemble’s winner-takes-all test set accuracy on the 48 emotional stimuli from 

Experiment 1 was 88.3%. With a neutral threshold θN = .33, the ensemble’s winner-take-all 

accuracy in the 7-way decision over all 56 stimuli was 82.7%. In principle, it would be 

possible to estimate the neutral threshold automatically using hold out data, but we did not 

do so, since we planned to fit the threshold directly to the human data later. The model’s 

forced choice accuracy was quite good compared to the human participants in Experiment 1: 

the Japanese participants’ accuracy was 75.6%, and the U.S. participants’ accuracy was 

81.6%.

In a preliminary analysis of the model’s winner-takes-all performance in comparison with 

human participants, we found one serious outlier. One of the two CAFE stimuli portraying 

surprise (stimulus ID 033_s1) was classified as surprise by 89% of our human participants 

(both U.S. and Japanese), but all 10 of the EMPATH classifiers tested on this stimulus 

classified it as a fearful face. Indeed, the participants saw weak fear in the image (rated 

intensity of 2.16 compared to 4.53 for surprise), but EMPATH saw this stimulus as more 

similar to the fearful stimuli in its training set than to the surprise stimuli in its training set.7 

This was the only stimulus for which EMPATH’s modal response was different from that of 
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the human participants. To prevent this outlier from adversely skewing our parameter 

estimates, we excluded it from all of the analyses reported below.

Using the unfitted model’s estimates of P(ci|xj) for the 6 emotion categories and 55 test 

stimuli, we fit the 8 parameters of the decision model (Equation 6) to the Japanese and U.S. 

participants’ accuracy data separately, using the BFGS quasi-Newton algorithm 

implemented in Matlab (The Mathworks, Inc., 2002). The optimization’s objective was to 

find the parameters minimizing the sum squared difference between the predicted and 

observed human accuracies on each of the seven categories happy, sad, afraid, angry, 

surprised, disgusted, and neutral. Note that even though the number of parameters exceeds 

the number of data points to be fit, the parameters interact nonlinearly, so in general there is 

no solution and error minimization still applies.

Both the “Japanese” and “American” versions of the baseline model fit their human 

populations’ per-emotion accuracies fairly closely; the model fit to the Japanese data 

achieved a root mean squared error (RMSE) of .0102, and the model fit to the American data 

achieved a RMSE of .0923. However, the pair of models did not exhibit the in-group effect 

found in Experiment 1 and shown in Figure 5a. Thus, in our model, decoding rules are not 

by themselves sufficient to explain the in-group advantage observed in Experiment 1. In the 

next section, we show how the previously described training set manipulations (aimed at 

modeling display rules and encoder-decoder distance) do indeed lead to models that do 

exhibit the in-group advantages from Experiment 1.

Training set manipulation—We performed a search in the previously described 10-

dimensional space describing the mixture of expressions, styles, and races comprising 

EMPATH’s training set. The objective of this search was to find the training set mixture best 

predicting the Judge Culture × Expression Style interaction (Figure 5a) after the 8-parameter 

response bias model was fit to the subjects’ marginal emotion category accuracies. The 

training mixture search procedure was to begin at the baseline model, do a line search along 

every variable, choose the best fit so far, and repeat. We measured the difference between 

model and participants by the root mean squared difference between the participants’ and 

model’s performance on two categories of stimuli: the American-style stimuli in JACFEE 

and CAFE and the Japanese-style stimuli in JAFFE. The pair of models best predicting these 

category means should exhibit the in-group advantages observed in Experiment 1, and the 

composition of the training sets for these two models should reflect differences in the prior 

experience of the corresponding participant populations.

The results of the search are shown in Table 6. The “Baseline Japanese” and “Baseline 

American” refer to the baseline model described above, with response biases fit to the 

Japanese or American per-emotion accuracy data.

So that we could perform the same ANOVA on the model as we did on the human data, we 

used the Japanese and American models’ posterior probability estimates to generate 100 

7This may be because of a less pronounced jaw drop (AU 26) in picture 033_s1 compared with the other surprise stimuli. Also, the 
wrinkles on this poser’s forehead because of AUs 1 and 2 have a curved appearance, which EMPATH could confuse with the effects of 
the brows coming together (AU 4) as is typical in fearful expressions.
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model Japanese and 100 model American participants’ responses to the stimuli. This is done 

by flipping a 7-sided weighted coin 100 times for each stimulus. The American model 

participants’ mean accuracies for each of the 55 test stimuli fit the American human 

participants’ mean accuracies with r2 = .2654; the Japanese model participants’ means fit the 

human means with r2 = .2986. We compared the models with the same analysis of variance 

performed in Table 5 and Figure 5a. The results of the model analysis are shown in Table 7 

and Figure 5c. As expected, given the results of Table 6, our model Japanese participants 

were more accurate on the Japanese-style expressions, and our model American participants 

were more accurate on the American-style expressions.

Discussion

In the introduction to this article, we described three factors that potentially affect facial 

expression interpretation in different cultures: encoder-decoder distance, display rules, and 

decoding rules.

We model encoder-decoder distance by manipulating the amount of training our model has 

on a specific culture’s expressions. More training corresponds to lower distance, and less 

training corresponds to greater distance. A model trained on fewer American style 

expressions than another model would have a higher encoder-decoder distance for 

American-style expressions, and a model trained on fewer Japanese style expressions would 

have a higher encoder-decoder distance for Japanese-style expressions. Indeed, referring to 

Table 6, we see that the best model of the Japanese raters and the best model of the U.S. 

raters differ along the encoder-decoder distance dimension. The Japanese models were each 

trained, on average, on 54 Japanese style faces (100% of the JAFFE training data with 75% 

subsampling of the angry faces) and 92.4 American style faces (60% of the non-Japanese 

faces and 100% of the JACFEE Japanese faces with 75% subsampling of the angry faces), 

whereas the American models were each trained, on average, on 30.2 Japanese style faces 

(90% · 60% of the JAFFE training data) and 143.9 American style faces.

Overall, then, the Japanese models were trained on 78.8% more Japanese-style faces than 

the American models, and the American models were Trained on 55.7% more American-

style faces than the Japanese models. These results are consistent with the hypothesis that 

different cultures evolve different styles of emotional expression, each a dialect of a 

universal language.

We model display rules by manipulating the frequency of each emotion category in the 

training sets for each model population. Referring to Table 6, the best model of the U.S. 

raters had a uniform mixture of emotion categories in its training set, while the best model of 

the Japanese raters had a training set mixture in which the angry faces were subsampled at a 

rate of 75%. The model thus suggests that the Japanese participants have had less prior 

exposure to angry faces than their American counterparts. This would be consistent with the 

concept of display rules discouraging the expression of negative emotions in Japanese 

culture (see, e.g., Matsumoto et al., 1998). Looking more closely at the behavioral data, we 

see that Japanese participants were less accurate than U.S. participants on anger overall, but 

they were more accurate than U.S. participants on the JAFFE anger stimuli. When the anger 

stimulus is posed by a Japanese person in a Japanese cultural context (as was the case for the 
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JAFFE stimuli), Japanese participants readily detect the anger signal and classify the 

stimulus as angry. Combined with the modeling data, this suggests that authentic Japanese-

style anger expressions are rare but highly salient. If Japanese culture is indeed status 

differentiating (Matsumoto et al., 2002), detecting anger coming from higher-status others 

would be very important.

We model decoding rules by manipulating the model’s response biases (priors) for each 

emotion category at classification time. Referring again to Table 6, in the optimal response 

bias results, we see that the Japanese model places large priors on sadness and anger, 

compared to its training set, whereas the American model places large priors on happiness, 

sadness, fear, and anger. The result that the Japanese model has a high response bias on 

anger is particularly interesting in light of the display rule results just mentioned. The best 

model of the Japanese raters is one that sees angry expressions rarely during training but is 

also one that monitors for angry expressions actively at classification time. This is again 

consistent with the theory of Japanese culture as status differentiating (Matsumoto et al., 

2002). Furthermore, the result that the Japanese model has high response biases for both 

anger and sadness might indicate monitoring for negative expressions as a deviation from the 

norm in a homogeneity-sensitive (Triandis, 1995) or interdependent (Markus & Kitayama, 

1991) society.

Taken together, the results of our manipulations lead us to the conclusion that no one theory 

or factor accounts for cultural differences in facial expression interpretation. Rather, 

encoder-decoder distance, display rules, decoding rules, and other factors we did not model 

no doubt interact in a holistic way to produce a pattern of systematic differences among 

cultures. Our modeling experiments are a step toward untangling and understanding these 

interacting effects.

As an example of the interdependence of the factors underlying cross cultural differences in 

facial expression interpretation, consider the cultural differences in recognition of fearful 

expressions found in our behavioral data and many other experiments in the literature. The 

Japanese model raters are inaccurate on fearful expressions compared to the American 

model raters because of (a) the perceptual similarity between fear and other negative 

expressions, (b) the overall smaller training set, and (c) a relatively low response bias for 

fear. Since fearful expressions are perceptually similar to other negative expressions, a large 

number of examples are required to train a model to distinguish them. As the training set 

size decreases (note from Table 6 that the Japanese models are trained on fewer faces 

overall, due to subsampling of non-Japanese and angry faces) the models’ performance on 

fear degrades faster than it does on easier expressions. These effects are exacerbated by the 

low response bias for fear, also shown in Table 6. Extrapolating from the model to the 

human population, we would say that in Japan, fearful expressions are neither frequent 

enough nor salient enough to warrant monitoring for them. This is in contrast to the 

previously discussed results on anger and sadness—anger and sadness expressions are surely 

more important than fearful expressions in day-to-day social communication, and this may 

be even more so in a culture which is more status differentiating (Matsumoto et al., 2002) 

and less fearful (Scherer et al., 1988) than western cultures. Our results point to the need for 
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further study of the relationship between expression and recognition of fear and its role in 

social communication across cultures.

Finally, we should point out that although the Model U.S. and Japanese participants 

exhibited the same interaction between judge culture and expression style as the human 

participants, at a more detailed level, there were also differences between the models and 

humans. On a per-stimulus basis, the American model only accounted for 26.5% of the 

variance in the U.S. participant data, and the Japanese model only accounted for 30.0% of 

the variance in the Japanese participant data. As an example, from the human data shown in 

Figure 4, we might expect that our model of the Japanese raters would be less accurate at 

classifying the JAFFE fear faces than our model of the American raters. However, in the 

experiment it turned out that both model populations classified the two JAFFE fear stimuli in 

the test set with 100% accuracy. Similarly, as previously explained, one of the CAFE 

surprise stimuli had to be dropped from the analysis because 100% of the models classified 

it as fear. In general, the model participants perform more similarly to each other than 

human participants do. This is because ultimately, all of our models are trained on different 

subsets of the same training set containing less than 400 images. Obtaining model 

populations with performance as diverse as human populations would require a much larger 

and more diverse training set, mirroring the diversity of individual human experience.

Conclusion

In this article, we have proposed a new computational model and methodology for analysis 

of cross-cultural differences in interpretation of emotional facial expressions. The model is 

based on Bayes-optimal inference using a set of class-conditional probability distributions 

and a set of priors, both of which are modified through experience and context.

In two experiments, we have demonstrated reciprocal in-group advantages for Japanese and 

American judges of emotional facial expressions and shown, with the model, how the 

differences might arise in different cultural learning environments.

The Japanese in-group advantage occurs when the Japanese stimuli in JACFEE are analyzed 

as out-group stimuli rather than in-group stimuli. This is consistent with Matsumoto and 

colleagues’ null results in testing for in-group advantages with JACFEE (Matsumoto, 2002); 

however, by contrast, our findings also support the view that cultural differences in 

emotional expression are best studied with stimuli elicited as naturally and freely as possible 

within the poser’s cultural context (Elfenbein & Ambady, 2002a).

Is it actually possible for the Japanese participants to determine, consciously or 

unconsciously, that the JACFEE Japanese stimuli portray out-group members and treat them 

as such? The answer might be yes; in a recent study, Marsh, Elfenbein, and Ambady (Marsh, 

Elfenbein, & Ambady, 2003) found that American participants were not only above chance 

at classifying the nationality (Japanese or American) of the ethnically Japanese posers in 

JACFEE, but also more accurate at the task when using the JACFEE emotional images as 

opposed to the corresponding neutral stimuli from the same posers. This result was obtained 

even though the JACFEE emotional stimuli were originally carefully prepared to eliminate 

any trace of individuality in the expressions.
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Comparing the training set mixtures for our best Japanese and best American EMPATH 

models, we found that the Japanese pattern of responses is reproduced by EMPATH when it 

is trained on fewer non-Japanese faces, fewer angry faces, more Japanese faces, and more 

Japanese-style expressions. This is a satisfying explanation of the results of Experiment 1. 

But more generally, it is a parsimonious explanation of the culturally dependent aspects of 

facial expression recognition in that only a few factors (prior exposure to expression styles, 

emotion categories, and racial groups, along with differing response biases) are necessary to 

explain the subtle differences in facial expression interpretation between cultures. We find 

that while many aspects of production of facial expressions may be innate and universal 

across cultures, there are subtle differences in the gestures used in different cultures, and the 

system responsible for recognizing and interpreting those facial gestures is strongly 

dependent on learning. As the recognition system learns through experience in the context of 

a specific culture, subtle differences in expression lead to systematic differences in 

interpretation across cultures. Our results thus indicate that learning such culture-specific 

variations in facial gestures is the critical factor underlying the in-group advantage in 

emotional expression recognition.

We have found that EMPATH is a powerful tool for exploring hypotheses about human 

behavior in facial expression experiments. In future research, we hope to employ it toward a 

more detailed understanding of the critical facial features humans use to make judgments 

about emotion in faces and the subtle differences in facial expression styles.
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Figure 1. 
EMPATH schematic.
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Figure 2. 
Stimuli for Experiment 1. (a) Images from California Facial Expression database (CAFE). 

(b) Images are from Japanese Female Facial Expressions (JAFFE). Not shown are 28 images 

from Japanese and Caucasian Facial Expressions of Emotion (JACFEE), which cannot be 

reprinted because of copyright restrictions.4

4The JACFEE images not shown are E35, E36, E43, E44, E27, E28, E4, E3, E51, E52, E19, E20, N18, N21, E39, E40, E47, E48, 
E31, E32, E7, E8, E55, E56, E23, E24, N45, and N53.
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Figure 3. 
Average intensity matrices for Japanese and American subjects on the Japanese Female 

Facial Expressions (JAFFE) stimuli used in Experiment 1. Rows correspond to the posed 

emotion and columns correspond to the rated emotion. Emotion labels H = happy; M = sad; 

F = afraid; A = angry; S = surprised; and D = disgusted. Significantly different means are 

shaded in both matrices. Japanese subjects attribute more disgust to the stimuli, and 

American subjects attribute more sadness and fear to the stimuli.
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Figure 4. 
Culture × Dataset × Posed interaction in Experiment 1. Dataset labels CC = CAFE 

(Caucasians); JC = Japanese and Caucasian Facial Expressions of Emotion (JACFEE; 

Caucasians); JJ = JACFEE (Japanese); AF = Japanese Female Facial Expressions (JAFFE; 

Japanese). Error bars denote 95% confidence intervals.
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Figure 5. 
In-group advantages in Experiments 1 and 2. Error bars represent 95% confidence intervals. 

Significantly different with Scheffé correction and αFW = .05. (a) Culture × Expression 

Style interaction in Experiment 1. Japanese participants exhibit an in-group advantage on 

Japanese expressions, and U.S. participants exhibit an in-group advantage on American 

expressions. (b) The reciprocal in-group advantage is not found in an equivalent analysis by 

poser race. Japanese and U.S. participants are equally accurate on expressions of Japanese 

posers; U.S. participants exhibit an advantage over Japanese participants on expressions of 

Caucasian posers. (c) Culture × Expression style interaction in Experiment 2. Model 

participants exhibit the same reciprocal in-group advantages shown in (a).
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Figure 6. 
Images for which Japanese and American accuracy differed the most in Experiment 1. (a) A 

Japanese Female Facial Expressions (JAFFE) angry face. The mean anger intensity rating 

was 2.97 compared with 3.62 for angry faces overall. 82% of Japanese participants and 34% 

of American participants correctly classified the face as “angry.” (b) A JAFFE disgusted 

face. The mean disgust intensity was 3.07 compared with 3.86 for disgusted faces overall. 

66% of Japanese participants and 18% of American participants correctly classified the face 

as “disgusted.”
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Table 4

Analysis of Variance on Accuracy of Forced Choice Responses in Experiment 1

Source df ƞ2 F P

Culture 1 .0054 38.73 <.001

Dataset 3 .0124 29.44 <.001

Posed 6 .1034 123.10 <.001

Culture × Dataset 3 .0086 20.58 <.001

Culture × Posed 6 .0147 17.47 <.001

Dataset × Posed 18 .0451 17.92 <.001

Culture × Dataset × Posed 18 .0347 13.77 <.001

Error 5544 .7758 (0.13)

Note. Values enclosed in parentheses represent mean square errors.
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Table 7

Analysis of Variance of Model In-Group Advantages in Experiment 2

Source df ƞ2 F P

Culture 1 .0002 2.04 .153

Expression style 1 .0023 25.52 <.001

Culture × Expression style 1 .0041 45.98 <.001

Error 10.996 .9909     (.1771)

Note. Values enclosed in parentheses represent mean square errors.
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