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Abstract

Cone-beam computed tomography (CBCT) scans are commonly used in diagnosing and planning 

surgical or orthodontic treatment to correct craniomaxillofacial (CMF) deformities. Based on 

CBCT images, it is clinically essential to generate an accurate 3D model of CMF structures (e.g., 
midface, and mandible) and digitize anatomical landmarks. This process often involves two tasks, 

i.e., bone segmentation and anatomical landmark digitization. Because landmarks usually lie on 

the boundaries of segmented bone regions, the tasks of bone segmentation and landmark 

digitization could be highly associated. Also, the spatial context information (e.g., displacements 

from voxels to landmarks) in CBCT images is intuitively important for accurately indicating the 

spatial association between voxels and landmarks. However, most of the existing studies simply 

treat bone segmentation and landmark digitization as two standalone tasks without considering 

their inherent relationship, and rarely take advantage of the spatial context information contained 

in CBCT images. To address these issues, we propose a Joint bone Segmentation and landmark 

Digitization (JSD) framework via context-guided fully convolutional networks (FCNs). 

Specifically, we first utilize displacement maps to model the spatial context information in CBCT 

images, where each element in the displacement map denotes the displacement from a voxel to a 

particular landmark. An FCN is learned to construct the mapping from the input image to its 

corresponding displacement maps. Using the learned displacement maps as guidance, we further 

develop a multi-task FCN model to perform bone segmentation and landmark digitization jointly. 

We validate the proposed JSD method on 107 subjects, and the experimental results demonstrate 
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that our method is superior to the state-of-the-art approaches in both tasks of bone segmentation 

and landmark digitization.
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Cone-beam computed tomography; landmark digitization; bone segmentation; fully convolutional 
networks

1. Introduction

Craniomaxillofacial (CMF) deformities include acquired and congenital deformities of the 

head and the face. It is reported that approximately 16.8 million Americans require surgical 

or orthodontic treatment to correct CMF deformities based on computed tomography (CT) 

scans (De Vos et al., 2009). Due to nature of complex CMF anatomy, these treatments 

require an accurate and detailed pretreatment plan. Cone-beam CT (CBCT) scan is a 

commonly used imaging modality for this purpose because they have been widely used in 

doctors’ offices. Compared with the spiral multi-slide CT (MSCT) scan, CBCT scan also 

has the advantages of lower radiation exposure and cost (Loubele et al., 2009). To develop 

accurate treatment plans for patients, one essential step is to segment the CMF structures 

(e.g., midface and mandible) and digitize anatomical landmarks on CBCT images. However, 

due to severe image artifacts (e.g., imaging noise, inhomogeneity, and truncation), it is 

extremely challenging to accurately segment bony structures and digitize anatomical 

landmarks for CBCT images (Schulze et al., 2011; Loubele et al., 2006).

In current clinical practices, a gold standard is to manually perform bone segmentation and 

landmark digitization for CBCT images, which is very time-consuming and labor-intensive. 

In recent years, there have been reports on computer-aided methods for bone segmentation 

and landmark digitization with reasonable results in generating patient-specific jaw 

reference models for CMF surgery (Shahidi et al., 2014; Cheng et al., 2011; Wang et al., 

2014; Zhang et al., 2016b). These methods can generally be divided into two categories: 1) 

multi-atlas based methods (Coupé et al., 2011; Rousseau et al., 2011; Wang et al., 2013; 

Shahidi et al., 2014), and 2) learning based methods (Cheng et al., 2011; Chen et al., 2014; 

Wang et al., 2014; Chen et al., 2015; Zhang et al., 2016b). In the first category, bone 

segmentation and landmark digitization are achieved by transferring the labeled regions and 

anatomical landmarks from multi-atlas images to the target image via image registration. 

However, it is often difficult to accurately perform nonlinear registration, thus eventually 

affecting the accuracy of bone segmentation and landmark digitization. In the second 

category, human-engineered features are first extracted from CBCT images, and then fed to 

a classifier or regressor for bone segmentation or landmark digitization. Since feature 

extraction and model training are performed separately in these learning based methods, the 

used features and the learned model may not necessarily be coordinated with each other, 

leading to sub-optimal performance.

Both tasks of bone segmentation and landmark digitization can be considered highly 

associated, because the anatomical landmarks generally lie on the boundaries of segmented 

bone regions. Based on this assumption, a number of learning based approaches have been 
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proposed by using the detected anatomical landmarks to aid the organ segmentation 

(Seghers et al., 2007; Wang et al., 2014), or employing the results of bone segmentation as 

guidance for landmark digitization (Zhang et al., 2016b). However, these methods still treat 

bone segmentation and landmark digitization as two independent tasks without considering 

their underlying association. Recently, multi-task learning has demonstrated promising 

performance in different areas (Zhang et al., 2014; Yim et al., 2015; Liu et al., 2015b; Li et 

al., 2016; Dai et al., 2016). Ranjan et al. (Ranjan et al., 2017) proposed a multi-task learning 

method using convolutional neural networks (CNN) for face detection, landmark 

localization, pose estimation, and gender recognition. This work demonstrated that 

exploiting the synergy among multiple tasks could boost the individual performance of each 

task. Motivated by the recent success of deep learning, we propose a joint bone 

segmentation and landmark digitization (JSD) framework via a context-guided fully 

convolutional network (FCN). To our knowledge, this is the first report on the integration of 

bone segmentation and landmark digitization into a unified deep learning framework. The 

preliminary work of this approach was reported on MICCAI 2017 (Zhang et al., 2017c). In 

this journal version, we offered new contributions in the following aspects: 1) investigating 

the learned segmentation maps of midface and mandible, as well as the heatmaps for 

landmarks, 2) illustrating the segmentation results and the landmark digitization results 

visually, 3) comparing our method with two additional state-of-the-art methods, 4) studying 

the computational costs, and 5) analyzing the influence of the size of sliding window.

Figure 1 illustrates the schematic diagram of our proposed JSD framework. For a CBCT 

image, we first estimate the displacements from the voxels to the landmarks via the first-

stage FCN (i.e., FCN1), to capture the spatial context information contained in the input 

image. Then, we simultaneously perform both bone segmentation and landmark digitization 

via the second-stage FCN (i.e., FCN2). In FCN2, the input contains both the displacement 

maps (estimated by FCN1) and the original image, while the output includes the 

segmentation maps and the heatmaps of landmarks. In this study, each element in the 

displacement map records the displacement from the certain voxel location to a respective 

landmark in a specific axis space, and hence the size of each displacement map is the same 

size as the input image.

The technical contributions of this work are summarized as follows. First, a displacement 

map is used to explicitly model the spatial context information in CBCT images. Second, 

using the estimated displacement maps as the guidance information, we introduce a joint 

deep learning framework for both bone segmentation and landmark digitization, through 

which the inherent association between these two tasks can be seamlessly incorporated into 

the learning process.

The rest of the paper is organized as follows. We first introduce relevant studies in Section 2. 

In Section 3, we describe the materials used in this study and present the proposed method in 

detail. In Section 4, we introduce the competing methods, experimental settings, 

experimental results, and influence of parameters. We further compare our method with 

previous studies and discuss the limitations and possible future work in Section 5. We finally 

conclude this paper in Section 6.
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2. Related Work

2.1. Bone Segmentation and Landmark Digitization

Since manual bone segmentation and landmark digitization for CBCT images is tedious and 

time-consuming, many computer-aided automatic approaches have been proposed in the 

previous studies (Shahidi et al., 2014; Cheng et al., 2011; Wang et al., 2014; Zhang et al., 

2016b; Liu et al., 2017), which is clinically significant. For instance, in multi-atlas (MA) 

based methods (Shahidi et al., 2014; Coupé et al., 2011; Rousseau et al., 2011; Wang et al., 

2013; Liu et al., 2016), the segmented bony regions (or landmark locations) are transferred 

from multi-atlas images to the target image via nonlinear image registration. This method is 

usually computationally expensive (i.e., taking hours) due to the required nonlinear 

registration between multi-atlas images and the target image. In addition, because of 

morphological variations among different subjects, it is also challenging to accurately 

perform bone segmentation and landmark digitization by simply using nonlinear registration 

results.

In contrast, learning based methods generally construct classifiers and regressors for bone 

segmentation and landmark detection, respectively, based on CBCT images. The commonly 

used classifiers/regressors for bone (or organ) segmentation and landmark digitization 

include random forest classifier (Cheng et al., 2011; Zhang et al., 2017a; Cuingnet et al., 

2012; Lindner et al., 2013; Mitra et al., 2014; Zhu et al., 2017), regression forest (Criminisi 

et al., 2010; Zhang et al., 2016b,a), sparse representation (Wang et al., 2014), and AdaBoost 

(Zhan et al., 2011). Although learning based approaches usually acquire better results than 

multi-atlas based methods, their performances are highly dependent on the feature 

representations for CBCT images. Since steps of human-engineered feature extraction and 

classifier/regressor training are independent to each other in these learning based methods, 

the final performances of bone segmentation and landmark digitization could be sub-

optimal.

2.2. Deep Learning Methods

There also have been reports on deep learning based methods in which both the feature 

learning and the classifier/regressor training are incorporated into a unified framework 

(Ronneberger et al., 2015; Payer et al., 2016; Lian et al., 2018b,a). For instance, 

Ronneberger et al. (Ronneberger et al., 2015) developed a U-Net framework to perform 

image segmentation, achieving remarkable performance in biomedical image segmentation. 

Payer et al. (Payer et al., 2016) proposed a fully convolutional network (FCN) for landmark 

heatmap regression and yielded good result in landmark localization using even the limited 

training data. Zhang et al. (Zhang et al., 2017b) developed a two-stage task-oriented deep 

learning method to jointly detect large-scale (e.g., 1000) landmarks in real time. 

Baumgartner et al. (Baumgartner et al., 2017) proposed a SonoNet for real-time localization 

of fetal standard scan planes in freehand ultrasound. Farag et al. (Farag et al., 2017) 

proposed a bottom-up strategy for pancreas segmentation by classifying image patches at 

different resolutions and cascading superpixels. Alansary et al. (Alansary et al., 2019) 

evaluated deep reinforcement learning for landmark localization, where several deep Q-

network architectures were employed for detecting landmarks in fetal head ultrasound and 
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adult brain and cardiac magnetic resonance imaging (MRI). The limitation of these methods 

is that they simply focus on one single task, i.e., image segmentation or landmark 

localization, without considering the inherent association between the two tasks. In 

particular, the two tasks of bone segmentation and landmark digitization for CBCT images 

are highly associated, since the majority of the anatomical landmarks lie on the boundaries 

of segmented bones.

Currently, several studies have focused on taking advantage of the inherent association of the 

tasks of bone segmentation and landmark digitization, and have achieved reasonable results 

(Wang et al., 2014; Zhang et al., 2016b). Wang et al. (Wang et al., 2014) proposed a 

landmark-guided sparse representation (LSR) method for bone segmentation, using the 

results of landmark digitization as guidance for segmenting CBCT images. Zhang et al. 
(Zhang et al., 2016b) developed an automated landmark digitization framework, called 

segmentation-guided partially joint regression forest (SPRF), with the aid of results of bone 

segmentation for CBCT images. Recently, Torosdagli et al. (Torosdagli et al., 2018) 

proposed a dental CBCT analysis framework using deep geodesic learning, achieving state-

of-the-art performance in both mandible segmentation and landmark digitization. 

Specifically, the mandible segmentation was segmented with a segmentation network, and 

then a geodesic learning network was proposed with the distance transform based on the 

segmentation. Finally, typical landmarks were localized using a classification model, and all 

the others were further estimated using a recurrent neural network(RNN). Unfortunately, 

these methods still treat the tasks of bone segmentation and landmark digitization separately. 

Multi-task learning has achieved impressive performance to assist each correlated task. For 

example, Xu et al. (Xu et al., 2018) proposed a multi-task model for landmark detection and 

view classification in abdominal ultrasound images. Liu et al. (Liu et al., 2018) proposed a 

joint classification and regression CNN model, and achieved promising results in computer-

aided brain disease diagnosis. Cao et al. (Cao et al., 2018) performed joint hippocampus 

segmentation and clinical score regression to boost the performance of both tasks. Motivated 

by all these studies, we propose a joint bone segmentation and landmark digitization 

framework via fully convolutional networks. Experimental results on 107 subjects 

demonstrate the effectiveness of the proposed method.

3. Materials and Methods

In this section, we first introduce the materials used in this study, and then present the 

proposed method in detail.

3.1. Data Description

This study was approved by Institute Review Board prior to the data collection, and the 

clinical target is to help clinicians plan surgical or orthodontic treatment to correct 

craniomaxillofacial (CMF) deformities. There are a total of 77 CBCT images (with the 

spatial resolution of 0.40 × 0.40 × 0.40 mm3 or 0.30 × 0.30 × 0.30 mm3) from patients with 

non-syndromic dentofacial deformities. According to different types of deformities, those 

patients with dentofacial deformities were categorized into three classes. 1) Skeletal Class I, 

where the mandible is retrognathic caused by mandibular retrusion, maxillary protrusion or 
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the combination. 2) Skeletal Class II, where the mandible is prognathic caused by 

mandibular protrusion, or maxillary retrusion, or the combination. 3) Skeletal Class III, 

where the profile is orthognathic by either double-jaw protrusion, retrusion or vertical 

deformity. Among these 77 patients, 20 patients were Skeletal Class I, 21 were Skeletal 

Class II, and 36 were Skeletal Class III. Considering that the number of CBCT images is 

limited, to augment the training samples, we further employ an additional dataset with 30 

MSCT images (0.488 × 0.488 × 1.25 mm3) from normal control subjects which were 

collected in an unrelated study. In this work, we use these MSCT images as additional 

training data for network optimization in the experiments.

To obtain the ground-truth results of bone segmentation, two experienced CMF surgeons 

manually segmented all CBCT and MSCT images into midface and mandible, using the 

Mimics software (Materialise, Leuven, Belgium). In addition, as shown in Fig. 1(right), the 

most clinically relevant 15 anatomical landmarks (Zhang et al., 2016b; Wang et al., 2014) 

were also manually digitized by the same CMF surgeons, including N, Or-R, Or-L, UR2, 

UL2, UR1, UL1, LR2, LL2, LR1, LL1, Go-R, Go-L, Pg, and Me.

3.2. Displacement Estimation via FCN1

Similar to (Pfister et al., 2015), we adopt the displacement maps to model the context 

information of an input image. Different from (Pfister et al., 2015), given a 3D image Xn 

with V voxels, we represent a displacement map by a 3D volume of the same size as Xn, 

where each element denotes the displacement from a voxel to a certain landmark in a 

specific axis space. Since the Euclidean distance can only provide the distance (magnitude) 

information that cannot be used to estimate the actual positions of landmarks, we use 3L 
displacement maps to capture both orientation and distance information. That is, for the l-th 

landmark in Xn, there are 3 displacement maps (i.e., Dn
l, x, Dn

l, y, and Dn
l, z) corresponding to x, 

y, and z axes, respectively. Given L landmarks, we have 3L displacement maps for each 

image.

To construct the mapping function between an input image and its 3L displacement maps, 

we develop a first-stage fully convolutional network (i.e., FCN1), with its architecture shown 

in Fig. 2 (left). Using a set of training images and their corresponding target displacement 

maps, FCN1 (with a U-Net architecture (Ronneberger et al., 2015)) is used to capture both 

the global and the local structural information of input images. Specifically, there are a 

contracting path and an expanding path in FCN1. 1) The contracting path follows the typical 

architecture of CNN. Every step in the contracting path consists of two 3 × 3 × 3 

convolutions, followed by a rectified linear unit (ReLU) and a 2 × 2 × 2 max pooling 

operation with the stride 2 for down-sampling. 2) Each step in the expanding path consists of 

a 3 × 3 × 3 up-convolution, followed by a concatenation with the corresponding feature map 

from the contracting path, and two 3 × 3 × 3 convolutions (each followed by a ReLU 

function). Due to the use of the contracting path and the expanding path, FCN1 can grasp a 

large image area using small kernel sizes while still keeping high localization accuracy. In 

the experiments, we normalize the output of the last layer in FCN1 into [−1,1].
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Let Xn,v represent the v-th (v = 1, ⋯, V ) voxel of the image Xn. In the a-th (a ∈ {x,y,z}) axis 

space, we denote the l-th (l = 1, ⋯, L) displacement map of Xn as Dn
l, a and its v-th element as 

Dn, v
l, a . The target of FCN1 is to learn a nonlinear mapping function to transform the original 

input image onto its corresponding 3L displacement maps, by minimizing the following loss 

function:

minw1
1
L ∑

l = 1

L 1
N ∑

n = 1

N 1
V ∑

v = 1

V 1
3 ∑

a ∈ x, y, z
Dn, v

l, a − f Xn, v; W1
2, (1)

where f(Xn,v;W1) is the estimated displacement by using the network coefficients W1, and N 
is the number of training images in a batch.

3.3. Joint Bone Segmentation and Landmark Digitization via FCN2

Based on the estimated displacement maps and the original CT image, we further propose 

the second-stage FCN (i.e., FCN2) with a U-Net architecture to jointly perform bone 

segmentation and landmark digitization. As shown in Fig. 2 (right), FCN2 adopts a stacked 

representation of displacement maps and the original image as the input, through which the 

spatial context information of images provided by displacement maps is explicitly 

incorporated into the learning process. Also, such representation could guide the network to 

focus on informative regions in the image, and may thus help alleviate the negative influence 

of image artifacts. Besides, 1) for bone segmentation, the output is transformed to the 

probability scores by using the softmax function; 2) for landmark digitization, the output is 

normalized to [0,1].

Denote Yn
c as the ground-truth segmentation map of the n-th subject belonging to the c-th 

(c = 1, ⋯, C) category, with its v-th element as Y n, v
c . Here, a CT image is segmented into C = 

3 categories (i.e., midface, mandible, and background). We denote An
l  as the ground-truth 

landmark heatmap of the l-th (l = 1, ⋯, L) landmark in Xn, with its v-th element as An, v
l . The 

objective function of FCN2 is as follows:

min
w2

− 1
C ∑

c = 1

C 1
N ∑

n = 1

N 1
V ∑

v = 1

V
1 Y n, v

c = c log P Y n, v
c = c |Xn, v; W2

+ 1
L ∑

l = 1

L 1
N ∑

n = 1

N 1
V ∑

v = 1

V
An, v

l − g Xn, v; w2
2,

(2)

where the first term is the cross-entropy error for bone segmentation and the second term is 

the mean squared error for landmark digitization. Here, 1 {·} is an indicator function, with 1 

{·} = 1 if {·} is true; and 0, otherwise. P Y n, v
c = c |Xn, v; W2  indicates the probability of the 

v-th voxel in the image Xn being correctly classified as the category Y n, v
c  using the network 

coefficients W2. The second term in Eq. (2) is used to compute the loss between the 

estimated landmark location g(Xn,v;W2) and the ground-truth location An, v
l  in the l-th 

landmark heatmap.
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3.4. Implementation Details

As shown in Fig. 2, the proposed two cascaded sub-networks (i.e., FCN1, and FCN2) are 

included in a unified framework. The input is a CT image, while the output includes 

segmentation probability maps (for midface, mandible, and background) and landmark 

heatmaps. Also, the displacement maps are intermediate outputs of the whole network, 

providing context information of input image to guide the joint learning of bone 

segmentation and landmark digitization. For each landmark, we generate a heatmap by using 

a Gaussian filtering with the standard derivation of 2 mm, and then stretch the values to the 

range of [0,1]. For optimizing the network coefficients, we adopt the stochastic gradient 

descent (SGD) algorithm (Boyd and Vandenberghe, 2004) combined with the back-

propagation algorithm. The computer we used in the experiments contains a single GPU 

(i.e., NVIDIA GTX TITAN 12GB), and the implementation of FCN is based on Tensorflow 

(Abadi et al., 2016).

In the training stage, we first train FCN1 using CT images and their corresponding target 

displacement maps as the input and output, respectively. With FCN1 fixed, we then train 

FCN2 for joint bone segmentation and landmark digitization, by using the stacked 

representation of the estimated displacement maps from FNC1 and the original image as the 

joint input, while segmentation maps and landmark heatmaps as the output. Finally, using 

the learned coefficients of FCN1 and FCN2 as initialization, we further train both FCN1 and 

FCN2 jointly. Besides, the training process is done in a sliding window fashion (with the 

fixed window size of 96 × 96 × 96). To speed up the training process, we down-sample the 

original CT image using a 2 × 2 × 2 filter, since the displacement map only provides the 

rough context information. In this way, via FCN1, we can obtain the estimated displacement 

maps for the down-sampled input image. We then up-sample the displacement maps to their 

original sizes for training FCN2.

In the testing stage, ideally, we can feed a new testing image of any size into the trained 

model, since FCN only contains the convolutional computation. But, in practice, due to the 

limited memory, we partition each testing image into multiple 128 × 128 × 128 sub-images 

with a certain overlap to perform a valid prediction. After predicting the segmentation maps 

and landmark heatmaps via FCN2, the center 64 × 64 × 64 patches (it can be up to 88 × 88 × 

88) are used to reconstruct the whole image. Note that even the testing performance would 

not be affected by the size of sub-images, the computational time will be increased if smaller 

(e.g., < 128 × 128 × 128) sub-images were used for prediction. For instance, given a testing 

image (400 × 400 × 400) with a spatial resolution of 0.40 × 0.40 × 0.40 mm3, if we select 

the size of sub-images as 64 × 64 × 64 and the valid size as 24 × 24 × 24, our proposed 

FCN2 model costs ~1.5min for prediction in the testing stage. In contrast, if we select the 

size of sub-images as 168 × 168 × 168 and the valid size as 128 × 128 × 128, our proposed 

FCN2 model costs ~ 20 s for prediction in the testing stage. Considering the image size and 

computational power in this work, we set the size of sub-images as 128 × 128 × 128 and the 

valid size of 64 × 64 × 64 in the experiments.
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4. Experiments

4.1. Methods for Comparison

We first compare our JSD method with two baseline methods that can be directly used for 

both bone segmentation and landmark digitization, which include 1) multi-atlas (MA) based 

method (Shahidi et al., 2014; Coupé et al., 2011), and 2) random forest (RF) based method 

(Cheng et al., 2011). We further compare our method with two state-of-the-art methods for 

bone segmentation and landmark digitization, respectively, such as 1) landmark-guided 

sparse representation (LSR) (Wang et al., 2014) for bone segmentation, and 2) segmentation-

guided partially-joint regression forest (SPRF) (Zhang et al., 2016b) for landmark 

digitization. Besides, we also compare our JSD method with its own three variants. We now 

briefly describe these methods as follows.

1. Multi-Atlas (MA) based method (Shahidi et al., 2014). In the experiments, we 

implement multi-atlas based models for bone segmentation and landmark 

digitization using nonlinear alignment. For landmark digitization, we map 

anatomical landmarks from corresponding positions in the nonlinearly aligned 

atlases, by using the majority voting strategy. Similar to the landmark 

digitization, we also transfer the labeled regions (bones) from multi-atlas images 

to the target image using the majority voting strategy (Schapire et al., 1998; 

Artaechevarria et al., 2009; Liu et al., 2015a).

2. Random Forest (RF) based method (Cheng et al., 2011). In this method, we 

first extract Harr-like features from CBCT images. Here, we use the random 

forest classifier for bone segmentation (Schroff et al., 2008) and the random 

forest regressor for landmark digitization (Criminisi et al., 2013). Note that the 

RF based method treats bone segmentation and landmark digitization as 

independent tasks.

3. Landmark-guided Sparse Representation (LSR) (Wang et al., 2014) for bone 

segmentation. There are three main elements in LSR, including region-specific 

registration with the guidance of landmarks, estimating a patient-specific atlas, 

and convex segmentation based on maximum a posteriori (MAP). Specifically, a 

region-specific landmark-guided registration strategy is first proposed to warp all 

atlases to a testing subject. Here, the same 15 anatomical landmarks as we used 

in this study are used to initialize the multiple atlases. Then, a sparse 

representation based label propagation strategy is employed to estimate a patient-

specific atlas from all aligned atlases. Finally, the patient-specific atlas is 

integrated into a MAP probability based convex segmentation framework for 

accurate bone segmentation. In brief, the LSR method adopts the landmark 

digitization results to aid the task of bone segmentation for CBCT images.

4. Segmentation-guided Partially-joint Regression Forest (SPRF) (Zhang et al., 

2016b) for landmark digitization. In SPRF, a regression voting strategy is first 

adopted to localize each landmark by aggregating evidence from context 

locations. The bone segmentation results (via multi-atlas based method) for 

CBCT image is then utilized to remove uninformative voxels caused by 
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morphological variations across subjects. Third, a partially joint model is used to 

separately localize landmarks. In addition, this method adopts a fast vector 

quantization method to extract high-level multiscale statistical features to 

describe the appearance of voxels. That is, the results of bone segmentation are 

used as the guidance to aid the process of landmark digitization in SPRF (Zhang 

et al., 2016b).

In addition, there are two new strategies utilized in our proposed JSD method, i.e., using 

displacement maps as guidance, and joint learning of two tasks. To evaluate their specific 

contributions, we further compare JSD with its three variants, called JSD1, JSD2, and JSD3, 

respectively. Specifically, 1) JSD1 only adopts FCN2 in Fig. 2 to separately perform bone 

segmentation and landmark digitization, without using the joint learning strategy and 

displacement maps as guidance. That is, JSD1 is actually a simple U-Net (Ronneberger et 

al., 2015) framework. 2) JSD2 only adopts FCN2 for the jointly learning of two tasks, 

without using displacement maps as guidance. 3) JSD3 performs bone segmentation and 

landmark digitization independently via FCN2, but using the displacement maps estimated 

by FCN1 as guidance for both tasks.

It is worth noting that, among all comparison methods, four approaches (i.e., MA, RF, JSD1, 

and JSD3) can perform the tasks of bone segmentation and landmark digitization separately, 

two methods (i.e., JSD2, and JSD) can jointly perform these two tasks, while LSR and SPRF 

can only perform bone segmentation and landmark digitization, respectively.

4.2. Experimental Settings

Before training the model, all images are spatially normalized to have the same resolution 

(i.e., 0.40 × 0.40 × 0.40 mm3), and are also intensity-normalized to have similar intensity 

distributions via a histogram matching technique (Rother et al., 2006). For 77 CBCT images 

from patients with CMF deformities, we adopt a 5-fold cross-validation strategy (Zhang, 

1993). The 30 MSCT images from normal controls are used as additional training samples 

for model learning in each of 5 folds. We report the mean and the standard deviation of 

results yielded by different methods.

To evaluate the results of bone segmentation (separating bony structures between the 

mandible and the midface), we use three metrics, including 1) Dice similarity coefficient 

(DSC), 2) sensitivity (SEN), and 3) positive predictive value (PPV). Specifically, DSC 

measures the overlap ratio between automatic and manual segmentation results, defined as 
2 × V s ∩ V m

V s + V m
. Here, Vs and Vm denote the bone-labeled voxel sets automatically segmented 

by an automated method and manually segmented by a clinical expert, respectively, while 

⋅  denotes the cardinality of a set. The term SEN measures the percentage of manual 

segmentation that overlaps with automatic segmentation, defined as 
V s ∩ V m

V m
. And PPV is 

defined as 
V s ∩ V m

V s
 to measure the rate of automatic segmentation that overlaps with 

manual segmentation. To quantitatively evaluate the results of landmark digitization, we 
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adopt the detection error (via Euclidean distance) as the evaluation criterion, to measure the 

displacement from estimated landmark locations to predetermined locations.

4.3. Experimental Results

4.3.1. Segmentation Maps and Landmark Heatmaps—We first visually illustrate 

the segmentation maps and landmark heatmaps achieved by our JSD method on two patients 

with CMF deformities in Fig. 3. Each row in Fig. 3 reports the results for a specific subject. 

For the convenience of visualization, we show the 2D probability maps for the segmented 

midface and mandible in three views in Fig. 3 (a) and Fig. 3 (b), respectively. In addition, we 

overlap the heatmaps of 15 anatomical landmarks onto a single 3D image, and illustrate the 

results in three views in Fig. 3 (c). Their corresponding 3D renderings are also provided in 

the online Supplementary Materials. From Fig. 3 (a)–(b), we can see that for the task of bone 

segmentation, our method can accurately separate midface and mandible. Also, as can be 

seen from Fig. 3 (c), our JSD method can estimate clear and smooth heatmaps for landmarks 

on three typical subjects.

4.3.2. Results of Bone Segmentation and Landmark Digitization—In Table 1, 

we report the experimental results achieved by the proposed JSD method and 7 comparison 

methods for the tasks of bone segmentation and landmark digitization. From Table 1, we can 

make the following observations. First, compared with two baseline methods (i.e., MA, and 

RF), our JSD method consistently achieves the best performance in both bone segmentation 

and landmark digitization. For instance, compared with MA and RF, JSD achieves 12.05% 

and 6.33% improvements (in terms of DSC), respectively, in the segmentation of midface. 

Second, the proposed JSD method consistently outperforms two state-of-art methods (i.e., 
LSR, and SPRF) for bone segmentation and landmark digitization. For instance, the average 

error of landmark digitization by our JSD method is 1.10 mm which is lower than the error 

of SPRF (1.52 mm). Moreover, compared with the other 6 methods that treat two tasks 

independently, the methods that jointly learn two tasks (i.e., JSD2, and JSD) usually yield 

more accurate segmentation results and much lower digitization errors. This implies that the 

proposed jointly learning strategy improves the learning performances of two tasks, by 

modeling the inherent association between the two tasks of bone segmentation and landmark 

digitization. Finally, for the joint learning methods, JSD consistently outperforms JSD2 in 

both tasks of bone segmentation and landmark digitization; note that JSD2 does not employ 

displacement maps as guidance information. This suggests that the guidance provided by 

displacement maps can further promote the performance of our joint learning model.

4.3.3. Digitization Error for Each Landmark—In Fig. 4, we further show digitization 

errors for each of 15 anatomical landmarks achieved by 7 different methods. From Fig. 4, 

we can see that, compared with MA, RF, and SPRF, our proposed methods (JSD, JSD1, 

JSD2, and JSD3) generally achieve the lower errors in detecting these 15 landmarks, 

especially for the landmarks located at the lower teeth and upper teeth (e.g., LR1, LL1, LR2, 

LL2, UR1, UL1, UR2, and UL2, see Fig. 1). It is worth noting that, because of large inter-

subject variations in the local appearance of the tooth, it is very challenging to accurately 

localize tooth landmarks. These results demonstrate that our proposed two strategies (i.e., 
using displacement maps as guidance information, and joint learning) can help accurately 
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locate anatomical landmarks in CBCT images. Also, it is clinically acceptable if the 

digitization error of CMF landmarks for CBCT images is below 1.50 mm. Table 1 and Fig. 4 

clearly demonstrate that the average digitization error achieved by our JSD method is below 

1.50 mm, indicating that JSD has a great value in real clinical applications.

4.3.4. Visualization Results—To visually compare the segmentation results of 

different methods, we also show the bone segmentation results for both midface and 

mandible on three subjects in Fig. 5. In Fig. 5, the first and the last columns denote the 

original CT images and the ground-truth segmentation results, respectively. From this figure, 

we can see that MA, RF, and LSR method can not clearly segment the mandible from the 

midface, while the results yielded by our proposed JSD method and its three variants (i.e., 
JSD1, JSD2, and JSD3) are very close to the ground truth. For instance, for the first subject 

(corresponding to the first row of Fig. 5), JSD can accurately separate the mandible, 

especially for the lower teeth position, while MA and RF cannot complete the task well. It 

implies that context information of images captured by the displacement maps in our JSD 

method helps improve the learning performance.

In addition, to visually illustrate the landmark digitization results achieved by different 

methods, Fig. 6 shows a comparison of three randomly selected subjects, with each row 

denoting a particular subject. In Fig. 6, the red points indicate the detected landmarks by 7 

different methods, and the green points represent the ground-truth landmarks. Figure 6 

shows that the landmark locations estimated by our JSD method are usually very close to the 

ground truth, while MA, RF, and SPRF can not achieve excellent results for these subjects.

4.4. Comparison of Computational Cost—Different methods were implemented 

using different programming languages (e.g., MATLAB, Python, and C++) and computing 

environments (e.g., CPU and GPU). Here, we only roughly compare the computational costs 

of our method and those competing methods in bone segmentation and landmark digitization 

in the testing stage (e.g., for a 400×400×400 image with a spatial resolution of 0.4 mm3), 

with the results reported in Table 2. From Table 2, we can see that our JSD method requires 

approximate 1min to complete the two tasks jointly, which is faster than MA, RF, and LSR. 

MA is slow because of time-consuming registrations between multiple atlases and the target 

image. LSR for landmark digitization is very slow because many iterations were used to 

improve the segmentation results. Although SPRF is efficient in landmark digitization (i.e., 
20 s), this step relies on previous segmentation process which is usually very time-

consuming.

Besides, our JSD method is slower than RF in landmark digitization. The reason could be 

that RF based method only samples thousands of patches for estimating landmark positions, 

which is more efficient than JSD. Currently, we cannot predict the whole image via JSD 

because of limited GPU memory. To perform a valid prediction, we have to partition each 

testing image into multiple 128 × 128 × 128 sub-images with a certain overlap. Based on the 

segmentation maps and landmark heatmaps for these sub-images, the center 64 × 64 × 64 

patches are used to reconstruct the whole image. In this way, we can predict the maps 

accurately with limited memory. However, since these sub-images do not share 

convolutional computations, the proposed JSD method is not very fast in prediction. This 
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problem can be avoided by using a prediction strategy based on the whole image other than 

sub-images, using a GPU with larger memory. Besides, Table 2 suggests that the 

computational time of our JSD is comparable to its three variants (i.e., JSD1, JSD2, and 

JSD3). The possible reason is that we employ down-sampled images to generate the 

displacement map (helping to reduce the use of GPU memory) and the GPU is successively 

used for FCN1 and FCN2 in JSD.

4.5. Influence of the Size of Sliding Window

In the experiments mentioned above, we adopt the fixed size (i.e., 96 × 96 × 96) for the 

sliding window in the proposed JSD method. To investigate the influence of the size of 

sliding window, we perform an additional group of experiments by varying the size of 

sliding windows in the set {32 × 32 × 32,48 × 48 × 48,64 × 64 × 64,80 × 80 × 80,96 × 96 × 

96,112 × 112 × 112}. However, due to the limited GPU memory, we could not use an even 

larger size of the sliding window in a 3D manner. The experimental results are shown in Fig. 

7.

Figure 7 (a)–(b) shows that JSD can yield relatively stable performance when the size of 

sliding window is larger than 80 × 80 × 80 in both tasks of bone segmentation and landmark 

digitization. Particularly, the performance of landmark digitization is poor when the size of 

the sliding window is small (e.g., < 64×64×64), as shown in Fig. 7 (b). The possible reason 

is that, if the window size is small, the sampled sub-images may only contain a small 

number of informative voxels (i.e., landmarks) but many uninformative voxels. In this case, 

a large number of sampled sub-images are less informative, and thus we cannot effectively 

train the proposed fully convolutional network based on these sampled sub-images via min-

batch using SGD strategy. On the contrary, as shown in Fig. 7 (a), the segmentation results 

are not largely affected by the size of sliding windows. The underlying reason is that there 

are usually more informative voxels in the regions of midface/mandible in sampled sub-

images, because of the large areas of midface and mandible.

5. Discussion

5.1. Comparison with Previous Studies

In this work, we propose a joint bone segmentation and landmark digitization (JSD) 

framework via a multi-task FCN model. Compared with previous multi-atlas based 

approaches (Shahidi et al., 2014; Coupé et al., 2011; Rousseau et al., 2011; Wang et al., 

2013) for bone segmentation and landmark digitization, the proposed JSD method does not 

need the time-consuming nonlinear registration between a target image and multi-atlas 

images. Compared with previous learning based approaches (Cheng et al., 2011; Wang et al., 

2014; Zhan et al., 2011) that require human-engineered features for CT images and pre-

defined classifiers/regressors, our method learns an end-to-end model that can automatically 

perform feature extraction and segmentation/digitization. Since the feature representations 

for CT images and the subsequent classifiers/regressor are well coordinated, our method is 

expected to yield better results than the conventional learning based methods. The 

experimental results in Table 1 and Fig. 4 demonstrate the effectiveness of our proposed 

method. Compared with state-of-the-art methods for bone segmentation (Wang et al., 2014) 

Zhang et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and landmark digitization (Zhang et al., 2016b, 2017b), JSD jointly performs two tasks, by 

actively considering the underlying association between two tasks during the learning 

process. Besides, we develop the first-stage FCN (FCN1) to explicitly capture the context 

information of input images, by learning the displacement from each voxel to a specific 

landmark.

5.2. Limitations and Future Work

Although the proposed JSD method achieves promising results, there are still few 

limitations. First, there are only 107 images at hand, and we need more clinical data for the 

model learning. It is interesting to augment the training images by using synthetic data to 

improve the robustness of the proposed method. For instance, we may employ deformable 

transformation or Generative Adversarial Networks (Goodfellow et al., 2014) to generate a 

large number of synthetic data. Second, we treat the tasks of bone segmentation and 

landmark digitization equally, without considering their specific contributions. A possible 

solution may be to learn the optimal weights for different tasks automatically from the data. 

Besides, we do not consider the spatial relationships among landmarks. For instance, 

landmarks in the midface and landmarks in the mandible can be regarded as two subgroups, 

according to their spatial locations. Such prior information can be employed to further 

improve the performance of our method.

6. Conclusion

We have proposed a joint CMF bone segmentation and landmark digitization (JSD) 

framework via a context-guided multi-task FCN. Specifically, to capture the spatial context 

information of images, we propose to use displacement maps for modeling the displacement 

information from voxels to anatomical landmarks in input images. We further develop a 

context-guided FCN model, by using the first sub-network to learn a nonlinear mapping 

from an image onto its displacement maps, and employing the second sub-network to 

perform joint tasks of bone segmentation and landmark digitization. Experimental results on 

107 subjects with CBCT/MSCT images suggest that JSD is superior to several state-of-the-

art methods in both tasks of bone segmentation and landmark digitization.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A joint learning framework for both bone segmentation and landmark 

digitization

• A displacement map is used to explicitly model the spatial context 

information

• Results achieved by our method are clinically acceptable

• Only 1 min to complete both tasks of bone segmentation and landmark 

digitization
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Figure 1: 
The schematic diagram of the proposed Joint craniomaxillofacial bone Segmentation and 

landmark Digitization (JSD) framework. There are two major components, including (1) 

estimation of displacements from voxels to landmarks via the first-stage fully convolutional 

network (FCN1), and (2) joint bone segmentation and landmark digitization via the second-

stage FCN (FCN2). The locations of 15 anatomical landmarks are also illustrated in this 

figure. FCN: fully convolutional neural network.
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Figure 2: 
Overview of the proposed context-guided multi-task fully convolutional network (FCN), 

including two sub-networks (i.e., FCN1, and FCN2). FCN1 estimates the displacement 

maps, while FCN2 performs joint bone segmentation and landmark digitization. Each sub-

network contains a contracting patch and an expanding path.
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Figure 3: 
Results achieved by our JSD method on three typical CMF patients of (a) segmentation 

maps of midface, (b) segmentation maps of mandible, and (c) landmarks heatmaps. Each 

row denotes a particular subject, with three views shown.
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Figure 4: 
The digitization errors (mm) for each of 15 landmarks, achieved by 7 different methods.
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Figure 5: 
Results of bone segmentation achieved by 7 different methods, where each row denotes a 

specific subject.
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Figure 6: 
Results of landmark digitization achieved by 7 different methods, where each row denotes a 

specific subject. The red points denote the detected landmarks by different methods, while 

the green points represent the ground-truth landmarks.
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Figure 7: 
Results of (a) bone segmentation for midface and mandible, and (b) landmark digitization, 

achieved by our JSD method using different sizes of sliding window.
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Table 1:

Results achieved by 8 different methods in bone segmentation (i.e., midface, and mandible) and landmark 

digitization (i.e., average error for 15 landmarks).

Bone Segmentation Landmark

Methods Midface Mandible Digitization

DSC (%) SEN (%) PPV (%) DSC (%) SEN (%) PPV (%) Average Error (mm)

MA 81.14 ± 2.54 80.17 ± 3.27 82.48 ± 2.85 83.82 ± 2.21 84.31 ± 2.21 83.29 ± 2.30 3.05 ± 1.54

RF 86.86 ± 1.63 87.36 ± 2.98 85.92 ± 2.28 88.21 ± 1.52 88.54 ± 2.77 88.01 ± 1.95 2.67 ± 1.58

LSR 92.27 ± 1.31 91.96 ± 2.86 92.64 ± 1.83 89.19 ± 1.75 89.55 ± 2.34 89.03 ± 1.62 -

SPRF - - - - - - 1.52 ± 1.25

JSD1 91.83 ± 1.06 90.05 ± 2.35 93.72 ± 1.24 91.66 ± 1.07 91.35 ± 2.13 91.99 ± 1.01 1.78 ± 1.31

JSD2 92.20 ± 1.02 92.73 ± 2.50 91.78 ± 2.14 92.17 ± 0.99 93.30 ± 2.29 91.13 ± 1.41 1.33 ± 0.92

JSD3 91.89 ± 1.15 91.50 ± 2.63 92.02 ± 1.99 92.03 ± 1.08 93.14 ± 2.17 91.15 ± 1.52 1.49 ± 1.28

JSD 93.19 ± 0.89 92.82 ± 1.91 93.61 ± 1.40 93.27 ± 0.97 93.63 ± 1.37 92.93 ± 1.09 1.10 ± 0.71
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Table 2:

Computational costs of different methods in bone segmentation and landmark digitization.

Method Environment Bone Segmentation Landmark Digitization

MA CPU ~ 3 hours

RF CPU ~ 4 min ~ 15 s

LSR CPU ~ 5 hours –

SPRF CPU – Time for segmentation+20 s

JSD1 GPU ~ 35 s ~ 35 s

JSD2 GPU ~ 40 s

JSD3 GPU ~ 55 s ~ 55 s

JSD GPU ~ 60 s
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