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Breast cancer is the second-leading cause of metastatic disease in the central nervous system (CNS). Recent advances in the
biological understanding of breast cancer have facilitated an unprecedented increase of survival in a subset of patients pre-
senting with metastatic breast cancer. Patients with HER2 positive (HER2þ) or triple negative breast cancer are at highest risk
of developing CNS metastasis, and typically experience a poor prognosis despite treatment with local and systemic therapies.
Among the obstacles ahead in the realm of developmental therapeutics for breast cancer CNS metastasis is the improvement
of our knowledge on its biological nuances and on the interaction of the blood–brain barrier with new compounds. This article
reviews recent discoveries related to the underlying biology of breast cancer brain metastases, clinical progress to date and
suggests rational approaches for investigational therapies.
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Introduction

In 2016, approximately 246 660 women will be diagnosed with

breast cancer within the USA [1]. A population based study of 51,

898 women with breast cancer observed a metastatic incidence of

5.1% involving the central nervous system (CNS) irrespective of

initial stage at diagnosis. However, patients presenting with

metastatic breast cancer (MBC) have an estimated incidence pro-

portion of 14% of CNS involvement [2]. MBC to the CNS is asso-

ciated with both clinical decline, as well as increased cost of

patient care [3, 4]. Prior to the advent of modern radiation and

targeted therapies, patients presenting with MBC in the CNS had

a median overall survival ranging from 4 to 5.5 months [5, 6].

Recent advances in radiation therapy techniques and targeted

therapies led to some improvement in outcomes (Supplement

File 1, available at Annals of Oncology online).

Patients with metastatic HER2þ primary cancer have a risk of

35–50% to develop future metastatic brain disease and the risk

CNS as first site of disease recurrence among patients receiving

adjuvant trastuzumab treatment is 2.5% [7–10]. Similarly, meta-

static triple negative breast cancer (TNBC) also harbors an

increased probability of CNS involvement with an estimated risk

as high as 46% [11]. Other features associated with increased risk of

CNS involvement include the expression of cytokeratins 5/6 and 14,

epidermal growth factor receptor (EGFR) and p53 [5, 12–15].

The efficacy of treatment for patients with CNS metastasis has

not advanced at the same rate as for patients without CNS in-

volvement. Those patients remain an underrepresented popula-

tion in early phase clinical trials as a function of concomitant

poor performance status and presumed lack of efficacy in the

treatment of intracranial lesions with therapies primarily directed

towards extracranial disease [16]. Clinical trial design has also

been challenged by the need for concomitant incorporation of

measures of effect and endpoints for both intracranial and extrac-

ranial metastatic disease in trials for MBC with CNS metastasis.

Furthermore, biomarker based drug development has been ham-

pered by the obvious challenge of breast cancer heterogeneity and

poorly understood biological pressures imposed by the CNS
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cellular landscape (Supplement File 2, available at Annals of

Oncology online).

The blood–brain barrier

Chemotherapy was originally considered to possess minimal

effects in patients with CNS metastatic tumor given the under-

standing that hydrophilic drugs and/or large molecules do not

cross the blood-brain barrier (BBB). This was based on the expres-

sion of P-glycoprotein, which is present on the endothelial cells of

the BBB and contribute to transporting chemotherapeutic agents

out of the CNS [17]. While the role of P-glycoprotein in blocking

entry into the CNS remains unclear, the expression in the neovas-

culature of metastatic brain tumors is much decreased when com-

pared to primary brain tumors that have higher P-glycoprotein

expression in their newly formed vessels [18]. Furthermore, meta-

static CNS tumors possess an abnormal vascular supply that is de-

pendent, in part, on the fenestrated neovasculature [19, 20]. Other

drug efflux transporters in the CNS have been described specific-

ally the multidrug resistance transporter, and various organic

anion transporters, such as multidrug resistance-associated pro-

teins, organic anion transporter polypeptides, and organic anion

transporters [21]. These drug efflux transporters have also been

implicated in the transport of chemotherapy agents [22, 23]. Also

crossing of the BBB is not homogenous throughout the MBC brain

tumor as in one prospective study metastatic brain tumors had dif-

ferential paclitaxel concentrations in the tumor center and periph-

ery [24].

Taken together, the evidence suggests that drug BBB perme-

ability is most likely a function of not only P-glycoprotein expres-

sion but also the interplay of molecule size, charge, lipophilicity,

tumor neovasculature anatomy and plasma protein binding [25].

Furthermore accurate model of not only BBB penetrance but also

tumor tissue penetrance is necessary as prospective study of four

patients taking lapatinib pre-operatively showed a high variabil-

ity (0.19–9.8 lM) of lapatinib MBC CNS metastasis-to-serum

ratio [26].

Notwithstanding to challenge imposed by the crossing of the BBB

new strategies continue to evolve. For instance the new agent

ANG1005 contains the chemotherapy agent paclitaxel, which stabil-

izes microtubule polymer formation. This blocks the progression of

mitosis due to a prolonged activation of the microtubule in the mi-

totic checkpoint, resulting in cell apoptosis or reversion to the GO

phase [27]. However, ANG1005 effectively transports across the

BBB with much higher transport rate compared to a free paclitaxel

as observed in breast cancer pre-clinical model [28]. ANG1005

crosses the BBB via receptor-mediated endocytosis of the low-

density lipoprotein receptor-related protein (LRP1), which is upre-

gulated in some cancers [29]. Ester hydrolyzing enzymes then cata-

lyze a highly stereospecific reaction that results in hydrolysis of the

ANG1005 ester to carboxylic acids. This results in the intracellular

release of paclitaxel and subsequent action on tubulin.

In a recent phase II trial patients (n¼ 72 safety population;

n¼ 57 efficacy population) with measurable recurrent CNS in-

volvement from breast cancer were treated with ANG1005 at

600 mg/m2 every 3 weeks intravenously. HER2þ patients were

allowed to continue trastuzumab6pertuzumab [30]. Clinical bene-

fit (best intracranial partial responseþ stable disease) was seen in

70% of the patients. Best intracranial response in the efficacy popu-

lation included 8/57 (14%) patients with partial responses [3 (5%)

confirmed PRs] and 32/57 (56%) with stable disease.

2B3-101 is a doxorubicin liposomal formulation that uses

glutathione transporters on the BBB to penetrate the brain in

xenografts [31]. In an open label study of single agent 2B3-101 25

patients MBC and CNS metastasis were included and received

2B3-101 at a starting dose of either 40 (n¼ 3) or 50 (n¼ 22) mg/

m2 intravenously every 3 weeks, until disease progression or un-

acceptable toxicity [32]. Patients with HER2þMBC were treated

with concurrent trastuzumab. A 12-week progression free sur-

vival (PFS) rate of 56% was observed among in

HER2þ indicating preliminary efficacy of this new compound.

Notable Grade 3–4 adverse events were neutropenia (35%) and

palmar plantar (13%) erythrodysesthesia.

In the realm of targeted therapies modification of small mol-

ecule inhibitors leading to increased BBB penetration could be a

stepping stone for future drug development as well. Winkler et al.

recently reported results of xenograft study with intact BBB in

which GNE-317, a potent dual PI3K/mTOR inhibitor, designed

to bypass the two main exclusion transporters (P-glycoprotein

and Breast Cancer Resistance Protein) showed significant CNS

metastasis inhibitory activity [33]. This was in contrast with re-

sults observed with GDC-0980, a closely related dual PI3K/

mTOR inhibitor, but a substrate of P-glycoprotein and Breast

Cancer Resistance Protein [34].

Potential targets

Human epidermal growth factor receptors

This family of transmembrane receptors includes four mem-

bers including EGFR/HER1, HER2, HER3 and HER4, that col-

lectively stimulate a multitude of growth factor signaling

pathways [35]. Activation of receptor kinase occurs predomin-

antly via ligand-mediated hetero- or homo-dimerization. In the

case of HER2, activation is also thought to occur in a ligand-

independent manner. [36]. These tyrosine kinase receptors play a

key role in the regulation of cell-proliferative growth, survival,

and differentiation [37]. In breast cancer HER2, the preferred di-

merization partner for HER3 and EGFR, amplifies the signal gen-

erated through the dimer receptor complex [38]. HER2–HER3

heterodimers potently activate PI3K oncogenic signaling [39].

HER3 overexpression is also associated with resistance to HER2-

targeted therapies in preclinical and clinical [40, 41]. The role

HER4 receptors remains unclear in breast cancer biology but it

has recently been associated with acquired resistance to HER2

targeted therapy [42]. Targeted strategies against the HER family

have been developed in the realm of breast cancer treatment. For

instance the humanized monoclonal antibodies (e.g. trastuzu-

mab) prevent the dimerization of HER2 with other HER recep-

tors. Pertuzumab inhibits the pairing of the most potent

signaling heterodimer, HER2/HER3, thereby providing a potent

strategy for dual HER2 inhibition [43]. Furthermore small

molecule tyrosine kinase inhibitors such as lapatinib and nerati-

nib have the ability to inhibit the kinase activity of these HER re-

ceptors opposing further cancer cell survival and proliferation

[44, 45].
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Small molecule anti-HER2. While lapatinib is considered an op-

tion for treatment of patients with HER2þMBC with CNS in-

volvement when combined with capecitabine [46], it has also

been tested in combination with temozolomide in a phase I trial

[47]. Sixteen patients with HER2þ, progressive brain metastases

were enrolled with 14 that had previously been treated with

WBRT. For the 15 assessable patients, stable disease was achieved

in 10 patients (67%) and progression of disease in five patients

(33%). The most common adverse events (AEs) included fatigue,

diarrhea and constipation.

Separately, a phase II trial in patients with HER2þMBC in the

brain evaluated lapatinib as a monotherapy after WBRT [48].

Thirty-nine patients were enrolled and tumor response was as-

sessed by MRI every 8 weeks and all patients had developed brain

metastases while receiving trastuzumab; 37 progressed after prior

radiation while one patient achieved a partial response (PR) (ob-

jective response rate 2.6%). Taken together, these results indicate

that the response rates are low after WBRT. Furthermore, in the

CEREBEL trial patients with HER2þMBC without CNS involve-

ment were randomized to treatment with capecitabine combined

with lapatinib or trastuzumab [49]. The study was underpowered

and inconclusive for its primary end point (incidence of CNS as

site of first relapse); the 3% and 5% rates of CNS as first site of re-

lapse with lapatinib-capecitabine and trastuzumab-capecitabine,

respectively, were far lower than the expected rates of 12% and

20%, respectively. PFS and OS were longer with trastuzumab-

capecitabine versus lapatinib-capecitabine.

Lapatinib (750 mg twice on day one followed by 1000, 1250, or

1500 mg once daily) has also been investigated as a radiosensitizer

in a phase I trial of 27 patients with HER2þ breast cancer and�1

brain metastasis [50]. WBRT (37.5 Gy, 15 fractions) was adminis-

tered on days 1–8 after beginning lapatinib treatment. Overall, 7/

27 patients treated with 1250 mg (maximum tolerated dose) were

associated with dose limiting toxicities including grade III rash

(n¼ 2), diarrhea (n¼ 2), hypoxia (n¼ 1) and a grade IV pul-

monary embolus (n¼ 2). Among 28 evaluable patients, the CNS

objective response rate was 79% by pre-specified volumetric cri-

teria and 46% remained progression-free (CNS or nonCNS) at

6 months. However the study did not meet pre-defined criteria

for feasibility due to the high level of toxicity.

In summary, when considering lapatinib for CNS metastasis

for patients with low burden CNS disease, data suggest it is most

effective when combined with capecitabine, and in patients who

are WBRT naı̈ve.

Neratinib is an irreversible inhibitor of EGFR, HER2, and

HER4 with promising activity in HER2þ breast cancer with pre-

clinical data suggesting that it crosses the BBB. Also, secondary

endpoint analysis of a phase III trial assessing the efficacy pacli-

taxel combined with neratinib compared with paclitaxel-

trastuzumab combination showed delayed time to CNS metasta-

ses (HR, 0.45; 95% CI, 0.26–0.78) favoring paclitaxel-neratinib

combination [51].

Neratinib has also been evaluated in patients with

HER2þMBC with brain involvement in a phase II trial and was

given at a dose of 280 mg by mouth once daily on 28-day cycles to

40 patients with 85% patients having previously received lapati-

nib and 75% WBRT [52]. Three women experienced a response

(CNS ORR¼ 7.5%; 95% CI 2–27%) with the most common

grade 3 or higher event associated with diarrhea (25%),

indicating a low anti-tumor efficacy and increased toxicity. Other

small molecule HER2-directed tyrosine kinase inhibitors are

under development (Table 1).

Anti-HER2 monoclonal antibodies. HER2 targeted monoclonal

antibodies such as trastuzumab were once thought not to cross the

BBB. Recent data support that metastatic brain lesions can be

visualized by Cu-DOTA-trastuzumab indicating that trastuzumab

passes through the BBB [53]. The prospective observational

registHER trial demonstrated continuation of trastuzumab after

intracranial metastases to be associated with improved survival.

The median survival for patients who received trastuzumab subse-

quent to CNS diagnosis was 17.5 months compared with

3.7 months for patients who did not [8].

Results from the CLEOPATRA trial in HER2þ, first-line treat-

ment of MBC demonstrated significant improvement in overall

survival with pertuzumab over placebo in addition to trastuzumab-

docetaxel treatment [54]. An exploratory analyses of the incidence

and time to development of CNS metastases in patients from

CLEOPATRA suggest that pertuzumab added to trastuzumab and

docetaxel delays the onset of CNS disease compared with the con-

trol arm, as well as an OS trend in favor of pertuzumab combined

with trastuzumab and docetaxel in patients who developed CNS

metastases as the first site of disease progression [55].

Chargari et al. recently reported results of a prospective trial

with 31 patients presenting HER2þmetastatic breast cancer in

the brain and treated with WBRT and trastuzumab [56]. The pa-

tients received trastuzumab [2 mg/kg weekly (n¼ 17) or 6 mg/kg

every 21 days n¼ 14)]. In 26 patients, concurrent WBRT de-

livered 30 Gy over 10 daily fractions. In 6 patients, alternative

fractionation schedules were chosen due to poor performance or

patient convenience. After WBRT, radiologic responses were

observed in 23 patients (74.2%), including 6 (19.4%) with a com-

plete radiologic response and 17 (54.8%) with a partial radiologic

response. No grade 2 or greater toxicity was observed indicating

that trastuzumab can be safely combined with WBRT.

In an ongoing phase II trial (PATRICIA), patients with

HERþMBC and CNS metastases, receive pertuzumab in com-

bination with high-dose trastuzumab. Pertuzumab is given as

840 mg during the first intravenous infusion, followed every

3 weeks thereafter by a standard dose of 420 mg, while trastuzu-

mab is given as 6 mg/kg once weekly intravenously [57].

HER2-directed antibody drug conjugates. Animal models suggest

that trastuzumab emtansine (T-DM1) is active against

HER2þmetastatic breast cancer in the brain [58]. Jacot et al. re-

cently reported results of a retrospective study of 17 patients with

HER2þMBC with brain involvement and treated with T-DM1 at

a standard dose of 3.6 mg/kg every 21 days with five PR (29.4%)

and 35.3% disease stabilization for a total 64.7% of patients with

clinical benefit (median PFS 5.5 months) [59]. Similarly, Ferrario

et al. reported results of phase Ib trial of ONT380, an oral HER2-

specific inhibitor in combination with T-DM1 where eight patients

had evaluable CNS metastatic disease and 5/8 (63%) showed clin-

ical benefit from the combination therapy [60]. In light of the high

risk for CNS involvement among patients with HER2þMBC,

there are many trials being developed that target MBC with CNS

metastases (Table 1).
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Epidermal growth factor receptor

EGFR expression in brain metastases specimens from 30 patients

has been evaluated by immunohistochemistry (IHC) [61]. The

prevalence of EGFR expression on MBC brain tumor is as high as

40% with similar results replicated by others [62]. In TNBC cell lines

overexpressing the EGFR receptor, cetuximab is effective [63]. To

follow-up, 181 patients with triple negative breast cancer random-

ized in a phase II trial and receiving no more than six cycles of cis-

platin plus cetuximab or cisplatin alone, the extracranial ORR was

20% and 10%, respectively. Cisplatin plus cetuximab also resulted in

a longer PFS when compared with cisplatin alone (median, 3.7 ver-

sus1.5 months; hazard ratio, 0.67; 95% CI, 0.47–0.97; P¼ 0.032)

[64]. This study provides evidence suggesting that EGFR could be a

valid target in a subset of patients with TNBC. Baird et al. recently re-

ported results of a phase I expansion trial of S-222611 at 800 mg

daily, a reversible inhibitor of EGFR and HER2 in solid tumors over-

expressing HER2 and or EGFR, including HER2þMBC to the brain

[65]. Six patients had HER2þMBC with CNS disease and two pro-

longed stable diseases (�6 months).

Human epidermal growth factor receptor 3 (HER3)

Da Silva et al. reported the results from 39 matched pairs of pri-

mary breast cancers and brain metastases, 22 unmatched brain

metastases of breast cancer, 11 nonbreast brain metastases and 6

autopsy cases of patients with breast cancer metastases to mul-

tiple sites for select gene mutations and RNA expression [66].

HER3 expression was positive by IHC in 22/37 (59%) of the

matched brain metastases patient specimens and 13/21 (62%) of

the unmatched breast cancer brain, in contrast to the primary

breast tumor, which showed HER3 expression in 11/37 (29.7%).

In addition, HER3-associated targets were ubiquitously phos-

phorylated in matched brain metastases [(HER3 64%), (AKT

86%), (ERK1/2 97%), (JNK1/2 91%), (ERK5 97%)] and un-

matched brain metastases from breast cancer [(HER3 85%),

(AKT71%), (ERK1/2 95%), (JNK1/2 90%), (ERK5 95%)]. HER3

mRNA levels showed an increase ranging from 1.1- to 5.8-fold

change in the matched brain metastases compared to primary

breast cancer tissue. Interestingly, heregulin induced breast can-

cer cell transmigration across a tight barrier of primary human

brain microvascular endothelia that was dependent on HER3 ac-

tivity was abrogated by combinatorial HER2–HER3 blockade

with trastuzumab and EV20 [67].

Poly(adenosine diphosphate–ribose) polymerase
(PARP)

In TNBC, deregulation of BRCA1, a protein with critical roles in

the homologous recombination-dependent DNA-repair

Table 1. On going targeted therapy clinical trials for breast cancer with brain metastasis

Agent Phase of study Target Clinicaltrial.gov Identification number

Lapatinib/WBRT II HER2 NCT01622868

ARRY-380/trastuzumab I HER2 NCT01921335

Bevacizumab/etoposide/cisplatin followed by WBRT II VEGF NCT02185352

ITC trastuzumab/ITC pertuzumab I HER2 NCT02598427

Cabozantinib/trastuzumab II HER2 NCT02260531

Lapatinib/everolimus/capecitabine I/II HER2/EGFR/mTOR NCT01783756

Pertuzumab/trastuzumab II HER2/EGFR NCT02536339

Intermittent lapatinib tandem capecitabine I HER2/EGFR NCT02650752

GRN1005/Trastuzumab II HER2 NCT01480583

Lapatinib/WBRT followed by trastuzumab I HER2/EGFR NCT00470847

Bevacizumab plus cisplatin/etoposide II VEGF-A NCT01281696

Iniparib II PARP NCT01173497

Sorafenib/WBRT II VEGFR/PDGFR/Raf NCT01724606

Lapatinib/temozolomide I HER2 NCT00614978

Capecitabine and buparlisib II PI3K NCT02000882

Tremelimumab WBRT or SRS II Immune checkpoint blockade NCT02563925

Neratinib and capecitabine II HER2/EGFR NCT01494662

Bevacizumab plus carboplatin II VEGF NCT01004172

Afatinib plus venorelbine II HER2/EGFR NCT01441596

Palbociclib II CDK4/6 NCT02774681

Abemacicliba II CDK4 NCT02308020

Durvalumaba II Immune checkpoint blockade NCT02669914

Vorinostata I Histone deacetylase NCT00838929

Bevacizumaba II VEGF NCT01898130

Accessed on 5 July 2016 at www.clinicaltrials.gov.
aAllows for of other histological types with brain involvement other than breast cancer.

WBRT, whole brain radiation therapy; SRS, stereotactic radiosurgery, ITC, intrathecal.
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pathway, has been attributed to a number of mechanisms, includ-

ing BRCA1-promoter methylation and overexpression of the

negative regulators ID4 and HMG [68–70]. Other defects in

homologous-recombination pathways have been implicated in

the tumorigenesis of TNBC (including aberrations in MRE11–

RAD50–NBS1, ATM, p53, and PALB2) [71–73]. Tumors with a

compromised ability to repair double-stranded DNA breaks by

homologous recombination are sensitive to blockade of DNA

single-strand breaks by PARP inhibition, providing the basis for a

synthetic lethal approach to cancer treatment [74].

McMullin et al. reported pre-clinical data whereby BRCA1 de-

ficient like (BD-L) signature is enriched in HER2þ breast cancer

brain [75]. Also, BD-L tumors were found across all breast cancer

subtypes in addition to HER2þ tumors. In the same study evalu-

ation of pharmacological sensitivity in CNS breast cancer cell

lines representing all breast cancer subtypes suggested that the

BD-L signature may serve as a biomarker to identify breast cancer

patients who benefit from a therapeutic combination of PARP in-

hibition with olaparib and temozolomide; the latter being a small

lipophilic alkylating agent capable of crossing the BBB [76].

Olaparib has also shown synergy in inducing BRCA-deficient

TNBC cell death and reducing tumor volume in xenografts when

combined with PI3K inhibitor (PI-103) as a radiosensitizer [77].

Olaparib is currently being tested in patients with recurrent glio-

blastoma with the primary objective to determine whether ola-

parib crosses the BBB and achieves tumor penetration [78].

Veliparib, a potent oral PARP inhibitor is known to cross the

BBB and has been tested in 25 patients with MBC and brain in-

volvement in a phase I trial [79]. Escalating doses (10–300 mg, or-

ally BID) were administered in combination with e (30.0 or

37.5 Gy in 10 or 15 fractions) and were well-tolerated. The 6-

month survival rate was 61% (39–78%) for breast cancer patients

and a 41% intracranial ORR was observed. Breast cancer subtypes

were not reported and further exploration of PARP inhibitors is

needed among patients with MBC with CNS involvement.

Insulin growth factor 1 (IGF1) and insulin growth
factor receptor 1 (IGF1-R)

IGF-1R is a transmembrane cellular receptor with a heterotetra-

meric structure characterized by two ‘half receptors’. Each half is

comprised of an extracelluar a-chain that is involved in ligand

binding and an intracellular b-chain that includes the tyrosine

kinase domain [80]. Activation of the IGF-1R by its ligands,

insulin-like growth factor 1 and 2 (IGF1 and IGF2, respectively),

results in activation of the PI3K/AKT/mTOR cascade and the

RAS-MAPK pathway leading to stimulation of protein transla-

tion and cell proliferation (Figure 1) [81].

Thomson et al. reported results for 41 patients, 12 of which

had IGF1 expression in brain metastatic breast cancer tissue [82].

Notably, primary breast tumor expression of IGF1 was seen in

three matched samples suggesting that an IGF pathway aberra-

tion could play an important role in a subset of breast tumor me-

tastasis. Breast cancer brain metastases showed significantly

higher activation of the c-HER2/IGFR-AKT pathway networks

compared to lung cancer metastasis; in contrast to lung cancer

metastases that have higher levels of members associated with

EGFR-ERK activity [83]. In addition, the crosstalk between

HER2 and IGF-1R with IGF-1 leads to phosphorylation of HER2

and activation of PI3K [35], while inhibition of IGF-1R signaling

blocks HER2 phosphorylation and restores sensitivity to trastu-

zumab in select preclinical models [84]. In pre-clinical models

knockdown of IGF-1R signaling decreased migration and inva-

sion of MDA-MB-231Br brain-seeking cells [85]. Early phase

clinical trials are ongoing for patients with metastatic breast can-

cer including patients with CNS metastasis (e.g. NCT00684983,

NCT01013506, and NCT02045368).

Antiangiogenesis

Vascular endothelial growth factor (VEGF) is a critical mediator

of angiogenesis in breast cancer [86]. VEGF-A is a multifunc-

tional cytokine widely expressed by tumor cells that acts through

receptors (VEGFR-1, VEGFR-2, and neuropilin) primarily ex-

pressed on vascular endothelium. VEGF increases microvascular

permeability, induces endothelial cell migration and division, re-

programs gene expression, promotes endothelial cell survival,

prevents senescence, and induces angiogenesis [87]. VEGF-A tar-

geted therapy with bevacizumab possesses modest clinical effi-

cacy in patients with metastatic breast cancer, and a survival

benefit has never been demonstrated [88, 89]. Patient derived

breast cancer CNS lesions do not show increased microvascular

density when compared to primary breast tumor tissue [90].

Paradoxically patient-derived xenograft models suggest that

metastatic breast cancer is associated with increased angiogenesis

in the CNS [91]. Additionally, the inhibition of VEGF receptor

decreases the ability of breast cancer cells to form brain metasta-

ses [92]. Preliminary data from a phase II clinical trial also shows

an intracranial ORR of 45% with the combination of bevacizu-

mab and chemotherapy [93]. Similarly, the combination of tras-

tuzumab or lapatinib with antibodies targeting VEGF receptor-2

is effective in reducing tumor microvascular density in HER2-

amplified breast cancer brain metastases using an orthotopic

xenograft although studies evaluating this combination in pa-

tients have yet to be addressed [94].

Estrogen and progesterone receptors

Targeting steroid hormone receptors was one of the earliest strat-

egies used against CNS metastases. A small study showed that es-

trogen (73.3%) and progesterone (83%) receptors are expressed

in the majority of MBC cases to the brain [61]. Notably, there was

no significant difference between the primary and the brain meta-

static deposits with respect to hormone receptor expression.

Conversely, loss of hormone receptor expression occurred in up

to 50% of BM in a retrospective series of 24 patients of matched

primary and BM pairs [95]. Agents with high antitumor activity

like tamoxifen, a selective estrogen receptor modulator, penetrate

the BBB [96]. Their efficacy in the setting of MBC with CNS in-

volvement in hampered by the fact that CNS involvement is a late

event in the natural progression of HR positive MBC when most

patients have already developed anti-estrogen resistant tumors.

As such, only anecdotal case reports have described the activity of

agents such as letrozole, anastrozole and exemestane in the MBC

with CNS involvement [97–100]. Moreover, pre-clinical models

suggest that P-glycoprotein at the BBB limits the effects of

anastrozole in the CNS, whereas letrozole does cross the BBB

[101, 102].
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PIK3/AKT/mTOR pathway

The PIK3/AKT/mTOR pathway is one of the most common

genomic aberrations in MBC [103]. In the metastatic setting,

mTOR inhibition with everolimus has shown significant clinical

efficacy in combination with an aromatase inhibitor. Notably,

this combination is now a standard of care option in this setting

[104]. Adamo et al. reported immunohistochemical analysis of

p-AKT and p-S6 and PTEN on brain metastatic tissue of 52 pa-

tients with MBC with CNS involvement [105]. A small study of

gene copy number in breast cancer brain metastases showed

that PIK3CA amplification is common in metastatic brain tissue

[106]. Interestingly, the expression of p-AKT and p-S6, but lack

of PTEN, was observed in 75%, 69%, and 25% of breast cancer

brain metastases, respectively. Concordance between primary

BCs and matched CNS metastasis was 67% for p-AKT, 58% for

p-S6, and 83% for PTEN. PTEN loss was more common in

TNBC when compared with HRþ/HER2� and HER2þ [105].

The PI3K/AKT/mTOR pathway was found to be active in�70%

of brain tumor samples in same study. In another study

sequencing 110 primary breast tumors and MBC with CNS in-

volvement, alterations in PTEN were found in a significantly

larger fraction of CNS metastatic tumor tissue when compared

with samples from primary tumors [62]. Buparlisib is an oral

pyrimidine-derived pan-PI3K inhibitor with specific and potent

activity against class I PI3Ks. Buparlisib inhibits wild-type and

mutant PI3Ka isoforms and PI3K-b, -c, and -d isoforms at

nanomolar concentrations [107]. Importantly, a pre-clinical

human xenograft model has demonstrated that buparlisib pene-

trates the BBB and inhibits the PI3K/AKT/mTOR pathway

[108]. In a phase I dose-escalation study of buparlisib in 31

evaluable patients with advanced solid tumors, there was one

PR (TNBC and PIK3CA mutation positive) while 16 patients

(52%) had stable disease, including five patients with MBC and

one patient showed a 28% reduction in a CNS lesion with MBC

[109].

Cyclin-dependent kinases (CDK)

CDK4 and CDK6 are activated by D-type cyclins that promote

cell-cycle entry by phosphorylating retinoblastoma protein (Rb),

among other proteins, to initiate transition from the G1 phase to

the S phase (Figure 2) [110]. Gojis et al. reported studies on the

immunohistochemical landscape of 30 patients with MBC and

brain involvement [61]. In 7 cases out of 30 (23.3%) patients,

brain metastatic tissue was positive for CDK4/6 expression.

Separately, Da Silva et al. [66] reported CDK5/6 expression in up

to 34% of patients among 26 patients with MBC with CNS metas-

tasis. Multiple oncogenic signals in hormone receptor-positive

breast cancer converge to promote expression of cyclin D1 and

activation of CDK4/6 to drive breast-cancer proliferation [111,

112]. In vitro evidence also suggests that breast cancer with resist-

ance to prior endocrine therapy remains dependent on CDK1/4

to promote proliferation [113, 114]. Clinically, phase II and III

trials support the significant clinical benefit of treatment with

CDK4/6 inhibitor palbociclib among patients with HR positive

HER2 negative MBC without CNS involvement either in the first

line or progressing after first line aromatase inhibitor therapy

[115–117]. In the PALOMA3 trial 521 patients with MBC with-

out CNS metastasis were randomized to fulvestrant6palbociclib

in the setting of disease progression after treatment with anti-

estrogen therapy [115]. This trial met its primary endpoint with a

hazard ratio for disease progression or death, of 0.42; 95% CI,

0.32–0.56; P< 0.001. In the PALOMA1/TRIO-18 phase II trial

165 patients with MBC were randomized to treatment with letro-

zole6palbociclib [116]. In this study patients must not have

received prior treatment for advanced disease and primary end-

point analysis showed a hazard ratio disease progression of 0.488,
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Figure 1 HER2 signal transduction. Activation of the receptor tyrosine kinase occurs by homodimerization or heterodimerization with other HER family members; i.e., epidermal growth fac-
tor receptor (EGFR) and HER3 and insulin growth factor receptor 1 (IGFIR). Activated HER2 initiates downstream signaling through the PI3K-AKT-mTOR and RAS-MAPK pathways, promoting
cell proliferation and survival.
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95% CI, 0.319–0.748; P¼ 0.0004. All patients accrued to both tri-

als had HR positive and HER2 negative tumors.

Cancer cell lines overexpressing low molecular weight cycle E

(LMW-E) have increased genomic instability, increased cyclin E

associated activity, prolonged S phase, and accelerated G1 to S

phase transition (Figure 2) [118–120]. In mice, the activity of

LMW-E is mediated through binding and activation of CDK2,

which triggers the resistance of CDK2 to inhibitors of p21 and

p27 [121, 122]. LMW-E overexpression correlates with poor

outcomes in various models of breast cancer regardless of HR

and HER2 status [123]. Nanos-Webb et al. reported results of

cyclin E and LMW-E overexpressing breast cancer cell lines

whereby CDK2 inhibition demonstrated synergistic effects with

doxorubicin [124]. CDK pathobiology has also been studied in

TNBC. Horiuchi et al. showed the exploitation of increased

MYC expression found in TNBCs by using a synthetic-lethal ap-

proach dependent on CDK inhibition [125, 126]. The CDK1/2

inhibitor, dinaciclib, effectively induces arrest in both G1-S and

G2-M and tumor regression in triple-negative tumor xeno-

grafts. Unfortunately, phase I dose escalation with dinaciclib

combined with anthracycline in patients with TNBC was

stopped after the first dose cohort was found to be too toxic

[127].

Palbociclib has been investigated in primary brain tumors. In

vivo experiments in glioblastoma multiforme (GBM) has shown

that palbociclib can suppress growth of GBM in intracranial

xenografts, and prevented tumor-related death of treated mice

[128]. In these experiments, palbociclib was not only present in

intracranial tissues, but was 25–35� higher in tumor tissue than

in normal tissue [128]. Recent studies, however, have shown that

certain BBB transports, P-glycoprotein and Breast Cancer

Resistance Protein (BCRP/ABCG2), can inhibit CNS uptake of

palbociclib, although more studies are needed [129]. Palbociclib

has been shown to have cytostatic effects on Retinoblastoma

tumor suppressor (Rb) pathway proficient TNBC models [130].

While basal like cancers do not tend to display alterations in cyc-

lin D1 or CDK4/6, the PALOMA-1 study did not find these gen-

omic aberrations to predict response to therapy outside the CNS

[116]. While palbociclib inhibits CDK 4/6 primarily, it can have

some effect on other CDKs relevant to TNBC (such as low mo-

lecular weight CDK-E, and CDK1/2) [131]. HER2þ breast can-

cers on the other hand, have been demonstrated to require cyclin

D1 and CDK4 for tumor progression and maintenance [132,

133]. Palbociclib has been found to have single agent activity in

transgenic HER2þmodels by causing near complete cessation of

tumor proliferation, leading to improved survival of mice [133].

Palbocicib is being investigated currently in TNBC and HER2-

positive disease in patients who have brain metastasis

(NCT02774681).

In HER2þ breast cancer, Shom et al. reported that in trans-

genic mouse models, CDK1/4 inhibition mediates resistance to

HER2 targeted therapy in breast cancer [134]. In addition,

CDK4/6 inhibition suppresses Rb phosphorylation and decreases

TSC2 phosphorylation; thereby partially attenuating mTORC1

activity. This relieves the feedback inhibition of upstream EGFR

family kinases and resensitizes tumors to EGFR/HER2 blockade.
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Figure 2 The figure depicts the role of cyclin-dependent kinases 4 and 6 (CDK4/6) in the cell cycle. The normal cell replication processes are represented i.e., G1 first growth period to S
DNA replication phase G2 second growth period, and M, which is the mitosis period. Cyclin D1-CDK4/6 inactivates retinoblastoma protein (Rb) through phosphorylation. The latter event allows
for cell cycle progression from G1 to S phase. Palbociclib targets cyclin-CDK4/6 complex formation ultimately generating cell cycle arrest. Also low molecular weight cyclin E-cycle dependent
kinase 2 (LMW-E-CDK2) complex activation is depicted. When active LMW-E-CDK2 complex is resistant to inhibitory effect of cyclin inhibitors p21 and p27 and promote initiation of S phase.
Denaciclib targets CDK2 promoting cell cycles arrest.
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CDK4/6 inhibition has also been shown to sensitize patient-

derived xenograft tumors to HER2-targeted therapies and delay

tumor recurrence in a transgenic model of HER2þ breast cancer.

A phase II clinical trial of CDK 4/6 inhibitor, abemaciclib, in

combination with trastuzumab6fulvestrant, is in the process of

being developed [135]. Notably, pre-clinical xenografting studies

support the idea that abemaciclib crosses the BBB more effect-

ively when compared to palbociclib [136]. Measurable levels of

abemaciclib and active metabolites were detected in brain tumor

tissue for all 3 patients and breast cancer and brain metastasis

treated with at least 5 days of abemaciclib [137]. Unbound con-

centrations of abemaciclib in the plasma and tumor tissue were

comparable and generally consistent with the CSF concentration

for each of the patients.

Aurora kinase A/B

Salhia et al. reported the results of a comprehensive analysis of 19

fresh-frozen samples of breast brain metastases [138]. As ex-

pected, according to PAM50 gene expression classifier luminal B,

HER2þ/ER�, and basal-like tumors were identified as the most

commonly represented breast cancer subtypes in this brain me-

tastasis cohort. Frequently amplified and overexpressed genes

included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The

ATM, CRYAB and HSPB2 genes were also commonly deleted and

under-expressed. Data mining revealed enrichment in genes con-

trolling cell cycle and G2/M transition pathways, which con-

tained AURKA, AURKB and FoxM1. Also, both FoxM1 and

AURKB were up regulated when compared to primary breast

cancer and nonneoplastic controls.

The Aurora kinases (Aurora A/B/C) constitute a family of

highly conserved serine/threonine kinases, which play important

roles in cell cycle control as they regulate progression through mi-

tosis and cytokinesis [139, 140]. Aurora A and B have been linked

to cancer [141, 142]. While Aurora A coordinates centrosome

maturation, assembly of the bipolar spindle and chromosome sep-

aration, Aurora B regulates chromosome condensation, the spin-

dle checkpoint and cytokinesis [140]. In aromatase inhibitor-

resistant breast cancer cell lines, the aurora kinase inhibitors, ali-

sertib and danusertib, blocked cell cycle progression at the G2/M

phase, interfered with chromosome alignment and spindle pole

formation, as well as resulted in preferential growth inhibition

compared with parental MCF-7 cells [143]. Even further growth

inhibition was obtained when combining the Aurora kinase in-

hibitors with the antiestrogen fulvestrant. A phase I clinical trial is

planed with an aurora kinase A inhibitor (alisertib) in combin-

ation with dual TORC1/2 inhibitor (MLN8237) [144]. The dose

expansion cohort will consist of patients with metastatic TNBC

with CNS involvement permitted for study accrual.

Immune system

Immune checkpoint inhibitors, predominantly in the form of anti-

PD1 antibodies, have demonstrated meaningful antitumor activity

in solid tumors in melanoma, lung cancer and renal cell carcinoma

[145–147]. In addition to a favorable toxicity profile, some patients

show sustained antitumor responses that provide compelling ration-

ale for also investigating this therapeutic in the realm of breast can-

cer. Notably, pre-clinical data suggest that cytolytic CD8þT cell-

mediated immunity can take place against tumors located in the

CNS [148], as evidenced in melanoma patients with brain metasta-

ses. Margolin et al. reported the results of a phase II trial of 72 pa-

tients with metastatic melanoma treated with ipilimumab including

12 patients (24%) without neurologic symptoms achieved control of

CNS disease, further highlighting that host antitumor immunity can

be utilized against malignant cells in the CNS [149].

The potential importance of immune checkpoint guided ther-

apy in breast cancer is underscored by recent reports of PD-1 in-

hibitor activity in TNBC. The monoclonal PD-1 antibody,

pembrolizumab, was recently tested in a phase Ib trial in 32 fe-

male patients with PD-L1þand heavily pretreated metastatic re-

current TNBC [150]. The disease control rate (partial

responseþ disease stabilization rates) for� 24 weeks was 25.9%.

Three patients with brain metastasis were enrolled into this trial

but efficacy endpoints were not reported for these patients.

Avelumab, a PD-L1 monoclonal antibody, also showed signs of

activity in a phase Ib trial showing stable disease in 40 patients

(23.8%) with an overall disease control rate of 29.2% [151]. In

patients with TNBC who had PD-L1þ immune cells within the

tumor, 44.4% (4 of 9) had PRs, compared with 2.6% (1 of 39) for

TNBC with PD-L1� immune cells. Notably, none of these trials

reported results on patients with MBC and CNS involvement and

only one of them allowed for accrual patients with CNS metasta-

sis. Xiu et al. reported increased PD-L1 expression in 40% of

brain tumor tissue of patients with primary TNBC, which was

increased when compared to other metastatic sites such as liver

(8%) or bone (17%) [152]. Analysis of 84 excised CNS breast can-

cer metastases derived from the four primary phenotypes includ-

ing HRþ/HER2� (n¼ 23), HRþ/HER2þ (n¼ 21), HR�/

HER2� (n¼ 21) and HR�/HER2þ (n¼ 19) has revealed

CD4þand CD8þ tumor-infiltrating lymphocytes (TIL) and

CD68þmacrophage/microglial cells, as well as the expression of

PD-1, PD-L1, and PD-L2 in brain tumor tissue. PD-L1 and PD-

L2 expression was quantified using H-score, which incorporates

staining intensity and frequency of positive cells [153]. PD-L1

(present in 53% of breast cancer brain metastases) did not correl-

ate with CD4þTIL (P¼ 0.31). Likewise PD-L2 (present in 38% of

brain metastases) also did not with CD4þTIL (P¼ 0.08). TILs

PD-1 expression correlated positively (n¼ 17) with

CD4þ (P¼ 0.03) and CD8þ (P¼ 0.005) TIL. In multivariate ana-

lysis, overall survival after resection of MBC in the brain was posi-

tively impacted by PD-1 expression on TILs (HR¼ 0.3;

P¼ 0.003). PD-L1 and PD-L2 expression is a common occur-

rence in brain metastasis, irrespective of primary tumor and brain

metastasis phenotypes. These data provide rationale for further

investigation of checkpoint blockade in subsequent studies.

Discussion

Breast cancer complicated by CNS metastasis is a growing chal-

lenge as more effective therapy against the primary malignancy

facilitates a more resilient systemic disease that leads to CNS

metastatic infiltration. Many breast cancer patients presenting

with multiple metastatic foci within the CNS are treated with ra-

diation therapy as a first line option. Palliative chemotherapy

after disease progression provides modest clinical benefit(s) with

1-year overall survival rates consistently <50%. Therefore, a
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better understanding of the biology governing the development

and progression of breast cancer brain metastasis is essential to

develop rational treatment strategies.

Individuals with HER2þMBC possess greater benefit from se-

quential HER2-targeted therapies with prolonged survival [154,

155]. Moreover, hormone receptor-positive breast cancer treat-

ments including newer targeted therapies against CDK and mTOR

pathways prolong survival in the metastatic setting [104, 115]. A

low accessibility to brain metastases has hampered biomarker based

drug development in patients with MBC and CNS involvement.

There are also limited data on biomarker statuses between CNS

metastases and the primary breast tumor (concordance rates), al-

though smaller studies indicate a discord between different sites of

metastatic breast cancer including the brain [152, 156].Tumor-

derived DNA isolated from the cerebral spinal fluid may allow for

increased knowledge of genomic aberrations of MBC to the CNS

and propel further drug development [157]. This is particularly

relevant as cancer therapy development continues to utilize mo-

lecular biology as a guidance for combined drug approaches to dif-

ferent targets [158]. Incorporation of patients with CNS metastasis

into early phase clinical trials for patients with progressive systemic

disease is also a key component of future drug development [16].

Going forward, novel targeted therapies are required that cross

the BBB to provide antitumor activity. This goal may be further

enhanced by administering agents in combination with BBB dis-

rupting agents through intra-arterial or nanoparticle-mediated

transport [159–161]. Furthermore, an important question re-

mains with respect to whether CSF drug levels are a valid surro-

gate for estimating metastatic tumor drug exposure [162].

Therefore, future pre-clinical models will be needed to take into

account the numerous unanswered questions for prioritizing fu-

ture clinical drug development.

Finally, efforts will be required to circumvent the challenge of

accruing patients with MBC and CNS metastases who progress

with systemic disease after multiple lines of therapy. Related efforts

have already been implemented, including the multi-institutional

‘Brain metastases in breast cancer network Germany’ (BMBC, GBG

79) in which women with breast cancer brain metastases were ana-

lyzed in Germany [163]. Furthermore, efforts are also ongoing in

Asia where a multinational cohort aims to retrospectively analyze

cases of HER2þMBC with CNS involvement and define patterns

of disease occurrence and progression [164].
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