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ABSTRACT

There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary
pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for,
depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary
choices being affected by stress and depression. This complexity is reflected in the data, with sometimes conflicting results among studies. As the
research evolves, all characteristics of the relation need to be considered to ensure that we obtain a full understanding, which can potentially be
translated into clinical practice. A parallel and fast-growing body of research shows that the gut microbiota is linked with the brain in a bidirectional
relation, commonly termed the microbiome–gut–brain axis. Preclinical evidence suggests that this axis plays a key role in the regulation of brain
function and behavior. In this review we discuss possible reasons for the conflicting results in diet–mood research, and present examples of areas
of the diet–mood relation in which the gut microbiota is likely to be involved, potentially explaining some of the conflicting results from diet and
depression studies. We argue that because diet is one of the most significant factors that affects human gut microbiota structure and function,
nutritional intervention studies need to consider the gut microbiota as an essential piece of the puzzle. Adv Nutr 2020;11:890–907.
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Introduction
Around 15–20% of people will experience mental health
disorders such as a depressive episode or anxiety disorder
in their lifetime (1, 2), and anxiety and depression are
ranked in the top 10 causes of the global burden of disease
(3, 4). Unfortunately, our understanding of these disorders
and ability to effectively treat them are poor; for example
∼30%–40% of those with depression do not adequately
respond to pharmacological or psychological treatment (5).
The high impact on individual quality of life, as well as on
the public health system, means that preventing and treating
anxiety and depression is a global priority. Consequently,
there has been a call for a broader research approach with
more interdisciplinary efforts (6, 7). Recent approaches in
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depression and anxiety research are investigating 1) the
links between diet and mood, and 2) the influence of
gut microbiota on neurobiology and behavior, termed the
microbiome–gut–brain axis (MGBA). There is emerging
evidence showing a strong influence of both diet and gut mi-
crobiota on emotional behavior and neurological processes,
and because the gut microbiota is strongly affected by diet
(8), these 2 factors are also intertwined (Figure 1). With
increasing understanding of the mechanisms involved in the
complex interplay between diet and the gut microbiome and
its impact on anxiety/depression, specific dietary patterns
that can help prevent anxiety and mood disorders can be
identified. In addition, the use of dietary intervention may
prove to be an attractive and cost-effective alternative or
adjuvant therapy to clinically treat these disorders. This
review discusses the reasons for conflicting research on the
link between diet and depression, and how any diet and
depression relation is likely to be influenced by changes in the
MGBA. The focus of the review is on whole diets and, and
although interactions of the gut microbiota with individual
components of the diet are discussed, separate dietary
supplements (such as probiotics) are not included in detail.
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FIGURE 1 Diet has been linked with the risk of developing depression and anxiety; there are direct effects from dietary components
which could mediate this relation. Emerging research suggests that the gut microbiota is also associated with depression and anxiety in a
bidirectional relation. Because diet also has a large influence on gut microbiota, the gut microbiota should be considered a key variable in
the diet–depression relation.

Current Status of Knowledge
The relation between diet and depression
Research shows that there is a relation between diet and
depression; however, there are conflicting results from
studies and the directionality and mechanism of the relation
are currently unclear. Many correlative studies in healthy
adults show that a lower incidence of depression occurs
in those who eat according to “healthy” dietary patterns,
characterized by an abundance of vegetables, fruits, cereals,
nuts, seeds, and pulses, as well as moderate amounts of
dairy, eggs, and fish and unsaturated fats (9), including the
Mediterranean diet (10, 11), Japanese diet (12, 13), and
Norwegian diet (14). In contrast, a “Western” dietary pattern,
consisting of sweet and fatty foods, refined grains, fried
and processed foods, red meat, high-fat dairy products, and
low fruit and vegetable intake, is associated with higher
depression incidence (10, 15, 16). However, not all studies
show an association, with many finding no association
(17–20) or showing an effect only from a specific food [e.g.,
tomatoes (18)].

Conflicting results from studies are potentially due to
many factors. There is possible recall bias due to the use
of FFQs, and difficulty in controlling for all confounding
variables (21). The recall bias has not been addressed and
may be a specific problem for assessing diet and depression,

because depression can affect memory (22). Participant and
researcher expectation bias is another issue in randomized
controlled trials. Because the variables being measured rely
on participant reporting, blinding is important to prevent
expectation bias. However, blinding of the participants
to the hypothesis is difficult. Dieticians/nutritionists and
psychologists who deliver the separate arms of the trial
should also be blinded as to the study hypothesis, but in
practice this is rarely done.

Reverse causality is possible. Stress and depression can
also alter taste thresholds (23), perception of sugary and fatty
foods (24, 25), and food choices (26–28). A 10-y longitudinal
study in France showed an association between depression
incidence and poor diet, but found that there was probably
reverse causality, with depression increasing the risk of poor
eating behaviors (29). A reanalysis of a longitudinal study
in Australia showed that those with an existing depressive
episode had a poorer diet, but not those with only historical
depression (30). The authors suggest that this could be due
to reverse causality, but alternatively could be due to altered
dietary habits after depression treatment in order to prevent
depression recurrence, an interpretation that is supported
by a study showing that 20% of people with depression
intentionally improve their diet (31).

Attempts to determine the direction of causality from
prospective studies and randomized controlled trials have
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shown similar mixed results. A meta-analysis of prospective
studies identified that a high-quality diet, regardless of its
type, as well as increased fish and vegetable intake, was
associated with a lower incidence of depression, with a
dose–type relation with compliance to the healthy diet. In
contrast, however, this meta-analysis showed that a low-
quality diet was not found to be associated with an increased
risk of depression, and the results showed a high level of
heterogeneity between studies (32).

A systematic review of randomized controlled trials by
Opie et al. (33) found that study design varied in terms
of delivery method, type of intervention, and the study
population. Few studies have been done in medically healthy
people, and over half of the studies showed no effect from the
intervention. Interventions that were successful in improving
depressive symptoms had a single delivery mode (e.g., face
to face), had been delivered by a qualified nutritionist or
dietitian, and were more likely to recommend an increase
in vegetables as opposed to a cholesterol-lowering diet or a
reduction in red meat.

The mixed results and difficulties in research design do
not mean that there is not a clinically meaningful relation.
There are plausible mechanisms for how diet can affect
depression, and bidirectionality is probable. Depression
is primarily a psychological illness and the strength and
importance of a diet–depression relation will vary depending
on individual psychological traits, including personality,
thought patterns, and coping skills. Psychological variables
are not usually adequately controlled or accounted for
in nutrition studies. The finding that the diet–depression
relation is stronger with a healthy diet than with an unhealthy
diet could be due to people less susceptible to depression
being more resilient to the effects of an unhealthy diet,
and potentially diluting any measured effect. In addition,
there are likely to be geographical differences in the strength
of the relation, as variations in micronutrient content in
soils, and consequently in foods, occur [e.g., low selenium
content in New Zealand soils (34)]. Prospective studies often
attempt to determine the direction of causality by excluding
those who already have depression from the analysis, and
then examining the rates of depression developed in the
rest of the cohort against the different dietary patterns.
The problem with this approach is that not everyone has
an equal risk of developing depression, because there are
strong genetic, epigenetic, and environmental components
to being vulnerable to depression (35). By excluding those
who already have depression, the sample is biased towards
those who are less vulnerable to developing depression, and
for whom any link between diet and depression is likely to
be much weaker. In addition, Molendijk et al. (32) suggested
that controlling for baseline depression severity could cancel
out diet–depression effects because the influence of poor
diet on depressive symptoms may have begun years earlier.
It is also possible that poor diet increases vulnerability
to developing depression under stress, rather than directly
causing depression, and therefore a study undertaken in a
cohort with low environmental stress may not reach the

tipping point in numbers developing depression needed to
reveal the relation if it exists.

Physiologically, there are multiple plausible mechanisms
by which diet can directly influence symptoms of anxiety
and depression. The etiology of depression itself is not fully
established but many biological and neurological changes are
linked to depressive symptoms. A reduction in monoamine
neurotransmitters, especially serotonin, is the most well-
known mechanism and the pharmacological target of most
antidepressant drugs (36). But monoamine deficiency is
most likely only a cause of depressive symptoms in a
vulnerable population (37). Other mechanisms found to be
linked to depression include a dysfunctional hypothalamic–
pituitary–adrenal (HPA) axis (38); immune-inflammatory,
oxidative, and nitrosative pathways (39–42, 30, 43–48);
neuroinflammation (including activated microglial cells)
(43); altered vagus nerve tone (49); neurotrophic changes,
including structural changes such as decreased hippocampus
volume (50, 51) and region-specific changes in brain-derived
neurotrophic factor concentrations (52); an imbalance be-
tween neural excitation and inhibitory signaling (53–55);
and alterations in tryptophan metabolism, including the
kynurenine pathway (56).

A number of micronutrients have been found to be low
in those with depression or an increased risk of depression,
including zinc, magnesium, selenium, iron, and vitamins
D, B-12, B-6, E, and folate (57–62). These micronutrients
may affect depression risk via effects on the production and
activity of monoamine neurotransmitters such as serotonin
(63–68), alterations to the HPA system (62), glutamatergic
signaling (62), or inflammatory and oxidative stress (62, 69).
A diet high in fruits and vegetables has higher amounts of
these micronutrients. Plants also contain effective antioxi-
dant phytochemicals, such as vitamin C, polyphenols, and
flavonoids, which have been shown to have antidepressant-
like or anxiolytic effects (70–73). SFAs, and PUFAs such
as DHA (22:6n–3), EPA (20:5n–3), and arachidonic acid
(AA; 20:4n–6), are incorporated into neural tissue and are
important for its function (74). The ratio of the different
fatty acids (FAs) affects function; for example, increased
SFA decreases cell membrane fluidity and permeability (75),
and a low ratio of DHA to AA may increase systemic and
brain inflammation (76, 77). Healthy-style diets, especially
the Mediterranean diet, are anti-inflammatory (78) and may
lower the risk of depression by reducing inflammation.

An understudied aspect in the diet–depression relation
which could explain some of the inconsistencies is the diet–
microbiota–mood relation. Emerging evidence shows that
the gut microbiota is linked to emotional behaviors thought
to represent symptoms of both depression and anxiety, and
because the gut microbiota is highly influenced by diet, diet
can influence this relation.

The link between the gut microbiota, depression, and
anxiety
Research into the MGBA began with the observation that
there is a high comorbidity of anxiety and depression in those
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with inflammatory bowel disease (79, 80) and irritable bowel
syndrome (79–82). In addition, gut microbiota composition
in individuals with anxiety or depression (including those
in remission) differs from that in healthy controls (83–85),
and animal models of depression show altered gut microbiota
compared with controls (46).

Early studies in mice showed that gut infections or
chemically induced colitis caused an increase in patterns of
behavior thought to represent anxiety, including decreased
exploration (86) and increased behavioral inhibition (87, 88).
The direct effect of gut microbiota on emotional behaviors
was shown in studies which identified that anxiety-like
behaviors differ between germ-free (GF) rats and mice
(born and raised in a microbiota-free environment) and
animals with normal, specific pathogen–free (SPF) gut
microbiota (89–92). Colonization of GF animals with SPF
gut microbiota has been shown to ameliorate the behavioral
differences (90, 92, 93). Fecal transplants from anxious-
type mice into a more resilient strain increase anxiety-like
behaviors in the resilient strain, and vice versa (94). Probiotic
supplementation has also shown promise, with a reduction in
anxiety and depression reported in many human and animal
studies (95–99). Probiotics seem to also be protective against
the development of anxiety due to gut infection (88) and
immunodeficiency (100).

Although there is convincing evidence that microbiota
can be linked to emotional behaviors, we do not fully
understand the mechanisms, nor the clinical relevance.
Studies in humans are still few, and often do not translate
from animal studies, possibly because they often use healthy
people without depressive symptoms (101). Inconsistencies
in behavioral changes in animal studies often occur between
stress-sensitive and stress-resilient rodent strains (89–92)
and between males and females (90, 91), suggesting that
the host–microbiota relation may depend on host genotype.
There may be critical windows of development during which
the gut microbiota have more effect: for example, early
life (93), adolescence (90, 102, 103), or during gestation
(104–106).

Microbial-mediated mechanisms of mood and neuro-
logical processes are still being elucidated (88). At the
systemic level, immune modulation has been found in GF
mice (90), antibiotic-treated mice (103), and with probiotic
supplementation (88, 90, 98, 99, 103, 107–111). Some
studies have shown no evidence of inflammation alongside
behavioral changes (88, 108) or only a partial effect (98,
109, 110); however, even subclinical gut infection without
overt inflammation caused behavioral changes in mice (87).
Increased HPA axis activation (96, 102) and alterations to the
tryptophan/kynurenine metabolism have also been found
(88, 90, 107, 112–115). In the gut, changes have been found
for SCFAs (113), gut motility (100), and gut permeability
(110, 116–118). The vagus nerve may be required (97, 102,
119–121), but not always (88, 94). It is likely that multiple
parallel mechanisms are at play, and the mechanisms of the
effect of the gut microbiota are specific even to the species
level.

Microbial metabolites may play a role, with some bacteria
able to produce the same neuromodulating substances that
are found in the nervous system of animals, including γ -
aminobutyric acid (GABA), acetylcholine, dopamine, sero-
tonin, and norepinephrine (122–126). GABA, acetylcholine,
and noradrenaline are also all immunomodulatory (127,
128). SCFAs, particularly butyrate, contribute to decreased
gut inflammation (129) and enhanced gut epithelial integrity
(130). They stimulate the secretion of serotonin from
enterochromaffin cells in the gut (115, 131, 132), which
mainly affects gut motility but can also activate the vagus
nerve, and enter the circulation (132). SCFAs activate free
fatty acid receptors (FFARs), which seem to have a direct
anti-inflammatory effect on microglial activation (133), as
well as being generally anti-inflammatory, because FFARs
are present on neutrophils and dendritic cells (134). No
difference in SCFAs was found in the fecal samples of people
with depression compared with healthy controls, but when
the fecal samples were transplanted into mice, an increase in
fecal acetate and total SCFAs was found (113). Gut bacteria
are also a significant source of vitamins, including vitamin
K-2 (menaquinone) and the B-vitamins niacin (B-3), biotin
(B-7), folate (B-9), and pyroxidine (B-6) (135–139). Biotin
and niacin are immunomodulatory, and deficiency could
contribute to gut and systemic inflammation (129, 140).
Serum folate is lower in those with depression (141) and may
be associated with symptom severity (61) and responsiveness
to antidepressant treatment (142). Pyroxidine is an essential
cofactor in many enzymes in the kynurenine pathway, which
is altered in those with depression (55). GF rats show an
increased susceptibility to pyroxidine deficiency (137).

Changes in gut microbiota with depression and anxiety
The MGBA findings of behavioral effects with probiotic or
inflammatory bacteria broadly fit with the microbial profiles
associated with positive or negative mental health, although
there is no specific gut microbiota composition profile
linked to anxiety or depression. Comparisons of microbial
changes in humans with depression show a variety of changes
compared with healthy controls, but show a general pattern of
increases in potentially harmful and inflammatory bacteria
such as Proteobacteria, which are normally minor in relative
abundance, alongside a decrease in commensal bacteria,
which are normally more abundant (83, 84, 113, 143–
145). In those with Generalized Anxiety Disorder, fewer
changes were found but a similar reduction in commensal
bacteria was seen (85). The lack of an identified depression
or anxiety “gut microbiota profile” is likely to be due to
variation in the methods used to evaluate gut microbiota
composition and gene abundance, and individual variation
in the human gut microbiota (146). Although there are still
many unknowns relating to the MGBA and its mechanisms,
the emerging evidence, combined with the effect of diet on
microbiota, supports its important role in the diet–mood
relation.
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Interactions of Diet with the MGBA
Whole diet
There is a paucity of research measuring the effects of whole
diet on microbiota as well as depressive symptoms, and
studies on diet and anxiety in humans are still needed.
However, dietary patterns associated with a risk of depression
are in line with changes in microbial composition and
functions, which MGBA research shows can affect emotional
behavior in rodents. Adherence to the Mediterranean diet
reduces the numbers of inflammatory/pathogenic bacteria
such as Escherichia coli, and increases key commensal bacte-
ria such as Bifidobacteria (147), Clostridium cluster XVIa, and
Faecalibacterium prausnitzii (148). It also increases microbial
metabolites including fecal SCFA concentrations (149), phe-
nolic metabolites, benzoic acid, and 3-hydroxyphenylacetic
acid (148). Vegetarian or entirely plant-based diets have
been shown to alter microbial composition (150–152) and
reduce gut inflammation (150). A dietary pattern defined
by fast-food consumption reduced Lactobacilli (149). A
high-fat/low-carbohydrate diet, regardless of the type of fat,
decreases total bacteria (153).

Many of the individual dietary elements that are asso-
ciated with an increased or decreased risk of developing
depression also alter the gut microbiota (refer to Table 1). It
is plausible that the effect of a dietary component on the gut
microbiota may partially or wholly mediate the effect of that
dietary component on mood.

Fish and omega-3 FA intake
Although “healthy” dietary patterns containing fish are found
to be associated with a lower risk of depression (10, 15,
29, 154–157), other studies show fish to be 1 component of
dietary patterns that increase the odds of depression (13) or
are inflammatory (158). When looked at in isolation, there is
evidence for a decreased risk of depression (159), increased
risk (160–162), or no relation (163–166). Randomized
controlled trials comparing fish oil with olive oil found
no difference in mood improvement (167, 168); however,
neither group was initially deficient in ω-3 FAs. Meta-
analyses have found that ω-3 FA dietary supplementation
(from fish oil or added fish) has a positive effect on mood
in those with symptoms of depression, but not in healthy
controls (169, 170). There may be an optimal dose, because
some studies have shown a nonlinear association between ω-
3 FA and depressive symptoms, with the highest doses being
less effective than moderate doses (162, 165). People with de-
pression have lower concentrations of ω-3 FAs in their RBC
membranes (171–173), possibly through oxidative damage
(172) rather than lower ω-3 FA intake. This observation
supports emerging evidence that those with depression have
higher levels of inflammation and oxidative stress (174, 175).

Lower intake of fish or ω-3 FA may affect depression
risk via microbiota-induced inflammation. Research in mice
suggests that the anti-inflammatory effect of ω-3 FA may
be due to its effect on microbiota (176). A diet comprising
a high ratio of ω-6 FA to ω-3 FA (∼25:1), as is typical of
a Western-style human diet, fed to wild-type mice caused

elevated serum concentrations of the metabolic endotoxemia
markers LPS and LPS-binding protein, as well as increased
gut permeability compared with that in fat-1 transgenic
mice fed the same diet. The fat-1 mice can endogenously
produce ω-3 FA from ω-6 FA and therefore had a lower
gut ratio of 4:1. The difference in serum LPS (but not
the cytokine IL-1β and serum triglycerides) was eliminated
when the mice were given antibiotics, or when ω-3 FA
dietary intake was increased. The mechanism was found
to be an ω-3 FA-dependent increase in production of an
endogenous antimicrobial peptide, gut alkaline phosphatase,
which suppresses proendotoxic bacteria.

Another study in rats showed that supplementation of the
ω-3 FAs EPA and DHA was associated with restoration of
disturbed gut microbiota caused by early-life stress (maternal
separation) (177). In a follow-up study, pregnant mice and
then their offspring were given diets that were either ω-
3 FA deficient or ω-3 FA supplemented (178). The ω-3
FA–deficient diet caused increased fear-induced freezing
behavior, decreased sociability, and increased depressive
behavior in the offspring when they had become adults. The
diets were, not surprisingly, associated with differences in
FA composition in the brain, but also differences in fecal
microbiota profiles. The changes in microbiota numbers
showed the ratio of Firmicutes to Bacteroidetes was increased
by ω-3 FA deficiency. In the ω-3 FA–supplemented group,
Bifidobacterium and Lactobacillus were present in higher
numbers in adult mice, the ratio of Bifidobacterium to
Enterobacteria was higher, and Anaeroplasma, Clostridium,
and Peptostreptococcaceae numbers were lower, in both
adolescents and adults.

Fish and ω-3 FAs may play additional roles to those
previously assumed in the link with depression. Rather than
there being only a straightforward relation between EPA or
DPA concentrations and neural processes, dietary intake of
ω-3 FA may also (or only) be important for those with gut
dysbiosis–induced systemic inflammation, and the ratio of
ω-3 FA to ω-6 FA in the diet may also be critical.

Micronutrient intake
Microorganisms require many of the same micronutrients
that humans do, and obtain many of these micronutrients
through the host diet. Subsequently, host micronutrient in-
take can affect the gut microbiota composition and function.
Altered gut microbiota has been found in mice with a
magnesium-deficient diet and was associated with increased
depressive-like behavior (179). Whether the change in
behavior was caused by or simply additional to a change in
gut microbiota is unclear. Vitamin D intake also affects the
gut microbiota; supplementation altered the gut microbiota
in stool samples in patients with Crohn disease but not
healthy controls (180), or caused a change in healthy adults
but only in the stomach and duodenum (181). In infants,
the vitamin D status of their mother during pregnancy
influenced their gut microbiota at 1 mo old, but a supplement
given directly to the infant did not, possibly due to different
baseline concentrations of serum vitamin D in the infants
(182). The different gut regions (stool sample compared with
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upper gastrointestinal tract) may explain the differences in
these studies, and also suggest that a healthy gut may respond
differently than an inflamed gut. Research into whether
modulation of the gut microbiota by magnesium and vitamin
D supplementation is via immune modulation, and whether
vitamin D affects behavior, is lacking.

Iron is an essential nutrient for many bacteria, and dietary
intake of iron affects the gut microbiota composition. In-
creased colonic iron due to dietary supplementation has been
shown to increase gut inflammation and pathogenic bacteria,
and a diet deficient in iron has been found to increase the
relative abundance of Lactobacilli (nonsiderophilic bacteria,
which do not require iron) in mice [reviewed in (206)]. Con-
versely, the relative abundance of many beneficial bacteria,
including butyrate producers, was also reduced with an iron-
deficient diet in rats, and subsequently SCFA production also
decreased (207). Host iron status can influence the ability to
fight pathogenic bacteria in the colon, and both high and low
iron concentrations are associated with increased pathogen
virulence (206). A change in gut microbial composition can
also affect iron absorption owing to changes in pH (206). The
Western diet contains much more iron than can be absorbed
and so the concentration of iron found in feces is high (206).
Studies with whole diets should examine how micronutrient
intake relates to any changes in the gut microbiota.

Prebiotic foods
A “healthy” dietary pattern contains a larger amount of fruit,
vegetables, and wholegrains, which contain prebiotics such
as fermentable carbohydrates, polyols, and phytochemicals
(208). Prebiotic compounds selectively promote the growth
and microbial activity of beneficial bacteria and confer
positive health outcomes (208). The higher prebiotic content
characteristic of healthy diets may be why the association
of depression with diet is stronger for healthy dietary
patterns and more variable for poor dietary patterns (9, 32,
157). Prebiotic compounds typically have been shown to
increase concentrations of Bifidobacteria and Lactobacillus
but as microbial research techniques have become more
sophisticated, we now understand that there are many
other beneficial bacteria that are promoted with prebiotics,
such as butyrate-producing bacteria. Some dietary fibers
are considered prebiotic but not all. Dietary fiber that
promotes the growth of all gut bacteria is not considered a
prebiotic because numbers of pathogenic bacteria are also
increased (208). The most well-researched prebiotics are
the soluble fibers “fructans” [fructooligosaccharides (FOSs)
and inulin] and galactans [galactooligosaccharides (GOSs)].
Mannanoligosaccharides and xylooligosaccharides are also
considered prebiotic. Phenolics and phytochemicals show
prebiotic effects, although some of the health benefits
may be from microbially produced secondary metabolites.
Conjugated linoleic acid (18:2n–6) and PUFAs are also
considered candidate prebiotics (208).

Evidence to date for the impact of prebiotics on mood
is mixed but mostly positive. Studies in rodents have
found reduced baseline and stress-induced anxiety-like and

depressive-like behaviors with FOSs and GOSs (individually
or mixed) (209), a mixture of GOSs and polydextrose (PDX)
(188), and the glycoprotein lactoferrin (188). In both these
studies, the mixed supplements had a stronger effect on
these behaviors. In rats, GOS and PDX supplementation
improved scores in anxiety and memory tests more than
a probiotic supplementation (Lactobacillus rhamnosus GG),
but less than a synbiotic supplement (Lactobacillus rham-
nosus GG, PDX, and GOSs) (189). In zebrafish, a tendency
toward improved behaviors under stress was found with
supplementation of mannanoligosaccharides and glucose (β-
glucans) (210). A synbiotic (FOS, GOS, and inulin with a
probiotic mixture containing Lactobacillus acidophilus strain
T16, Bifidobacterium bifidum strain BIA-6, Bifidobacterium
lactis strain BIA-6, and Bifidobacterium longum strain LAF-
5) improved depressive symptoms more than the probiotic
only in hemodialysis patients (211). Conversely, increased
anxiety-like behaviors occurred in mice after supplementa-
tion with resistant starch (212). In a human study, prebiotic
supplementation in healthy volunteers improved results in an
emotional bias test with GOS, but not FOS (191). Prebiotic
supplementation altered the microbiota in all these studies.
In those studies in which positive behavioral results were
found, increases in Lactobacillus species and decreases in the
phylum Proteobacteria were found (209, 188, 210). Along
with increased anxiety-like behavior with resistant starch
supplementation, Lyte et al. (212) found an increase in the
phylum Proteobacteria, but interestingly also an increase in
Bifidobacterium.

The biological activity of many phytochemicals has been
shown to have possible positive health effects, including
antidepressant-like or anxiolytic effects (70) and a prebiotic
effect (213). The actions of phytochemicals may also be due to
secondary metabolites created by microbial utilization (213).
Research examining the effect of phytochemicals on both
mood and microbiota is lacking.

Macronutrients
A large driver of the effect of diet on the composition of the
gut microbiota is variation in macronutrient ratios, amounts,
and types. Carbohydrate fermentation tends to increase
overall microbial fermentation and SCFA production. The
amount of fermentation depends on how much reaches the
colon, which is influenced by the amount and type of dietary
fiber and prebiotic carbohydrates (214). A plant-rich diet
promotes the phylum Bacteroidetes, specifically the genera
Prevotella and Xylanibacter, which ferment plant fiber. One
study found that a reduction in total carbohydrate in the
diet reduced the butyrate-producing Roseburia/Eubacterium
rectale group. Fermentation of protein generates SCFAs,
branched-chain FAs, sulfides, and phenolic and indolic
compounds. The sulfides are associated with gut diseases
(214). The types of bacteria promoted by protein intake are
not well established (214).

Increased dietary fat alters the gut microbiota composi-
tion (153, 215, 202, 216–219, 199–201, 220), possibly via the
stimulation of bile and its modulation into secondary bile
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acid products (153). A high-fat diet (HFD) (72% fat kcal, corn
oil and lard) may also affect metabolism, inflammation, and
gut permeability via the gut microbiota, likely mediated by
LPS and the CD14 receptor. These physiological effects of
the HFD were able to be reduced with antibiotic treatment
(221). Changes in the gut microbiota with an HFD (45%
kcal fat) compared with a control diet (10%–12% kcal
fat) in mice include decreases in the beneficial bacteria
Bacteroidetes (222), Akkermansia (223), Bifidobacteria (223),
and Lactobacillus (222, 223) and increases in Firmicutes,
particularly the potentially inflammatory Clostridiales (222,
223), Enterobacteriaceae (223), and Proteobacteria (222).
Counterintuitively, the relative abundances of the families
Ruminococcaceae and Lachnospiraceae (202) and the genus F.
prausnitzii (153), which are considered beneficial gut bacteria
(224), were increased by a 60% kcal HFD.

Some evidence for an effect of macronutrient intake on
emotional behavior has been found in rodent studies, mostly
with an HFD. Increased anxiety-like behavior has been
found in mice fed an HFD comprising 60% kcal unspecified
unsaturated FAs (225), 58% kcal hydrogenated coconut oil
(226), or 45% kcal lard and soybean oil (227), compared
with control diets of ∼10% kcal fat. Decreased anxiety-like
behaviors have also been found with an HFD (Crisco and
corn oil, 90% kcal), compared with a diet high in protein
(90% kcal) or carbohydrate (90% kcal), which did not alter
these behaviors (228). Another study found no change in
anxiety-like behaviors with an HFD (60% kcal), but did find
alterations in memory, and also found decreased anxiety-
like behaviors with a high-sucrose diet (70% kcal) (202).
Support for the role of the gut microbiota as a mediator of any
behavioral changes with an HFD comes from a study where
a fecal transplant from mice fed an HFD (60% kcal fat) into
mice with antibiotic-depleted microbiota (fed a normal diet,
13% kcal fat) increased anxiety-like behaviors (229).

Dietary compounds also interact with each other and may
offset their individual effects. Increasing dietary carbohy-
drate, particularly prebiotic compounds, may reduce some
of the protein fermentation products because carbohydrate
is a preferred substrate (214). Increased inflammation and
endotoxemia in mice caused by an HFD were mitigated
by polyphenol supplementation or polyphenol-rich plant
extracts (215, 230–233). The polyphenol supplementation
was also associated with differences in the gut bacteria,
including an increase in Firmicutes and Verrucomicrobia
(231), Akkermansia spp. (231, 233), Faecalibacterium (233),
and Lachnospiraceae, specifically Coprococcus (215), and a
decrease in Bacteroidetes (231) or microbial diversity (232).
The fat content of these diets varied from 26% kcal (231)
and 45% kcal (231) to 60% kcal (232). The fat content in the
control diets was low at 0% (231) and 4.1% (232).

Food additives
Western diets include a high proportion of processed foods
containing food additives to improve attributes such as
shelf life, texture, and palatability. Studies in mice showed
that emulsifiers can alter the gut microbiota composition

(234, 205), increase the proinflammatory potential of the
gut microbiota (234), increase microbiota infiltration of
the gut mucosa layer (234), and alter anxiety-like behavior
(205). Salt is another food additive that tends to be in
high concentration in processed foods and Seck et al. (235)
found that high fecal salinity alters gut microbe composition,
including a decrease in the beneficial bacteria Akkermansia
muciniphila and Bifidobacterium spp., specifically B. longum
and B. adolescentis. Maltodextrin reduces mucus production
and increases gut inflammation by increasing endoplasmic
reticulum stress (236). The links between a Western diet and
depression may include an effect of food additives on the gut
microbiota. Evidence from human studies is needed.

Other considerations
Fermented foods typically contain strains of Lactobacillus as
well as yeasts, and are likely to be important because they
contain both probiotic microbiota and microbial metabolites.
Most studies investigating the effect of fermented foods
on the gut microbiota or mood have been undertaken
using commercially produced yoghurts with very specific
microbiota and fall more into the category of supplements
than diet, so are not discussed here. However, there is huge
scope for research into fermented drinks such as wine and
kombucha, or foods such as breads, sauerkraut, kimchi,
and yoghurt, and their effect on the gut microbiota and
mood.

Individual variation in response to dietary changes needs
to be considered. Differences in physiology and baseline
microbiota composition may affect how the gut microbiota
responds to dietary changes, or to disruption such as during
stress or antibiotic treatment. For example, a high (palmitic)
fat diet in mice increased Actinobacteria and Firmicutes,
with a decrease in Bacteroides and Proteobacteria, as well
as increasing gut permeability and systemic inflammation
in mice that became obese. In contrast, the mice that were
resistant to becoming obese with the same diet did not have
the same changes in microbiota, or systemic effects (220). Age
is a factor that also needs to be taken into account. Dietary
changes may be more effective, at least in the short term, in
younger subjects. Of a group of urban dwellers who spent
16 d living in a rainforest village and consuming the village
diet, the change in gut microbiota composition was greater
in the children (237). Because gut microbiota composition
and stability change with age, different interventions may be
more effective at different life stages or, conversely, disruption
to microbiota may have more of an impact at different ages.

Childhood adversity increases susceptibility to developing
mood disorders later in life, and episodes of major depressive
disorder are commonly preceded by psychosocial stress (238,
239). Stress also alters the gut microbiota (240–244), and
the effects of early-life stress on microbiota may extend to
adulthood (245). It is therefore plausible that changes in
microbiota due to stress at least partly mediate the onset
of stress-related depressive or anxious episodes. Dietary
intervention during or after stress is a promising area of
research (241, 246).
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Determining which factors help keep a healthy microbiota
composition stable or help correct a dysbiosis may be
beneficial. The low–Fermentable Oligosaccharides, Disac-
charides, Monosaccharides, And Polyols (FODMAP) diet
has a reduced amount of fermentable substrate compared
with the amounts in normal diets, and can alleviate gut
symptoms such as pain and bloating in those with irritable
bowel syndrome, because of reduced gas production by gut
microbiota (247). The diet is followed strictly for 2–6 wk
until gut symptoms resolve, and foods are then reintroduced
to determine individual tolerances. Because of the link
between irritable bowel syndrome and depression/anxiety,
it is plausible that the low-FODMAP diet could correct
a dysbiosis related to altered mood. Initial research find-
ings suggest that for those with irritable bowel syndrome
symptoms, a low-FODMAP diet may reduce symptoms of
anxiety (248). However, the low-FODMAP diet reduces total
bacterial abundance, which may lower the production of
bacterial metabolites such as SCFAs that are important in
maintaining gut homeostasis. A decrease in Bifidobacteria
and other beneficial bacteria may also occur (247, 249).
The diet is designed as a temporary elimination diet for
irritable bowel syndrome and adhering to it long-term is
likely to compromise nutritional status. Long-term effects on
the microbiota profile are unknown.

There is some evidence that altered gut motility may be
associated with mood (250) and that the gut microbiota
composition is altered by changes in motility and vice versa
(251). Foods that directly affect factors such as gut motility,
e.g., those containing soluble or insoluble fiber, may also be
able to affect mood by correcting problems with motility,
which could be a confounding variable or could be related
to changes in the gut microbiota. More research in this
area is needed, and it would be useful for food intervention
studies to measure changes in gut function concurrently
with assessing changes in mood. Other cofactors usually
considered in depression research, such as exercise and sleep,
also have independent impacts on microbiota (252, 253)
and should be considered when assessing relations between
foods, mood, and the microbiome.

Conclusions
Research shows that there is a link between diet and depres-
sion but conflicting results and limited research mean that
we do not yet understand the nature of the relation. There
is likely to be a bidirectional relation and it may be of more
importance in vulnerable individuals. Because diet is a large
influencer of the gut microbiota composition and function,
it is likely that changes in the gut microbiota contribute to
how diet (whole diet and individual components of diet) may
affect depression and anxiety. Limited research in this area
is sometimes contradictory and mostly in rodents but does
show a pattern of results indicating that the gut microbiota
may play a significant role and should be considered in
dietary intervention studies. Dietary patterns for positive
mental health will likely support the growth of commensal

microbiota, decrease the growth of pathogenic and colitis-
inducing bacteria, and affect gut barrier permeability and
inflammation. In addition, because a change in whole dietary
patterns changes the ratio of many dietary components,
investigation into these individual components is also impor-
tant. In dietary studies for depression and anxiety, types and
amounts of dietary components (e.g., fat, prebiotics) within
the dietary patterns should be identified.

Although examining the changes in microbial profile
is interesting, it is important to remember that it is the
collective function and characteristics of the gut microbiota
that interact with the host, and that >1 microbe can occupy
a particular ecological niche within their environment.
Therefore, similar functions can be carried out by different
microbiota structures and the same functional outcome
could occur with different changes in microbiota. This par-
ticularly supports food as an effective intervention, because
it can shift the microbial profile at all taxonomic levels and
may also affect composition and function separately. The
type and strength of the effect of diet on the gut microbiota
will be determined by existing microbiota composition and
function and the host phenotype, including interactions with
immune function. Research needs to include examination
of the gut microbiota function as well, using metabolomics
and/or metagenomics techniques.

Research, in both humans and animals, into mecha-
nisms of the MGBA will continue to help to elucidate the
mechanisms by which the gut microbiota affect depression
and anxiety symptoms, as well as other psychological and
neurological effects. Food interventions have the dual benefit
of a direct impact on gut and brain physiology and an indirect
effect via the gut microbiota. With continued research
investigating these aspects of the MGBA, we will further
our understanding and make advances in obtaining a well-
understood and well-guided holistic approach to treating and
preventing anxiety and depression.
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