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Abstract
Hair follicles are easily accessible skin appendages that protect against cold and
potential injuries. Hair follicles contain various pools of stem cells, such as
epithelial, melanocyte, and mesenchymal stem cells (MSCs) that continuously
self-renew, differentiate, regulate hair growth, and maintain skin homeostasis.
Recently, MSCs derived from the dermal papilla or dermal sheath of the human
hair follicle have received attention because of their accessibility and broad
differentiation potential. In this review, we describe the applications of human
hair follicle-derived MSCs (hHF-MSCs) in tissue engineering and regenerative
medicine. We have described protocols for isolating hHF-MSCs from human hair
follicles and their culture condition in detail. We also summarize strategies for
maintaining hHF-MSCs in a highly proliferative but undifferentiated state after
repeated in vitro passages, including supplementation of growth factors, 3D
suspension culture technology, and 3D aggregates of MSCs. In addition, we
report the potential of hHF-MSCs in obtaining induced smooth muscle cells and
tissue-engineered blood vessels, regenerated hair follicles, induced red blood
cells, and induced pluripotent stem cells. In summary, the abundance, convenient
accessibility, and broad differentiation potential make hHF-MSCs an ideal seed
cell source of regenerative medical and cell therapy.
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Core tip: In this review, we describe the applications of human hair follicle-derived
mesenchymal stem cells (hHF-MSCs) in tissue engineering and regenerative medicine.
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the conduct of the study.
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We describe protocols for isolating hHF-MSCs from human hair follicles and their
culture condition in detail. We also summarize strategies for maintaining hHF-MSCs in a
highly proliferative but undifferentiated state after repeated in vitro passages, including
supplementation of growth factors, 3D suspension culture technology, and 3D
aggregates of MSCs. In addition, we report the potential of hHF-MSCs in obtaining
induced smooth muscle cells and tissue-engineered blood vessels, regenerated hair
follicles, induced red blood cells, and induced pluripotent stem cells.
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INTRODUCTION
The hair follicle is a skin appendage and dynamic mini-organ derived from tightly
coordinated interactions between prototypic ectodermal–mesodermal cells early in
embryogenesis.  The hair  follicle  is  easily  accessible  and contain  stem cells  from
different developmental origins, such as epithelial stem cells, melanocyte stem cells,
and mesenchymal stem cells  (MSCs)[1].  These stem cells  continuously self-renew,
differentiate, regulate hair follicle development, and contribute to hair follicle cycles
which consist of the growth phase (anagen), regression phase (catagen), and rest
phase (telogen) throughout adult life[2]. During catagen and telogen, follicles prepare
their stem cells for the next anagen. During anagen, bulge stem cells are activated by
induction signals from the dermal papilla and migrate downward to the bulb region,
where they proliferate and differentiate to regenerate the inner and outer root sheath,
matrix, and hair shaft.

Many studies have focused on the epidermal stem cell lineage, which lies within
the bulge region of the hair follicle,  compared to MSCs derived from the dermal
papilla or dermal sheath. In a pioneering study, Lako et al[3] first demonstrated that
dermal papilla and dermal sheath cells from transgenically marked donor mice could
produce multiple lineages of the hematopoietic system in lethally irradiated mice,
indicating the presence of multipotent stem cells in the dermal papilla and dermal
sheath.  Subsequent  studies  showed that  dermal  papilla  or  sheath  cells  from rat
follicles expressed the cell-surface markers CD44, CD73, and CD90 as bone marrow
MSCs and resembled bone marrow MSCs in their ability to differentiate toward the
adipogenic,  osteogenic,  and chondrogenic  lineages[4,5].  In  2006,  the  International
Society for Cellular Therapy issued the minimal criteria for characterizing human
MSCs. Specifically, cultured MSCs should be adherent fibroblast-like cells, express the
surface markers CD105, CD73, and CD90, and lack the expression of CD45, CD34,
CD14  or  CD11b,  CD79α  or  CD19,  and  human  leukocyte  antigen-DR  isotype.
Furthermore, MSCs have osteogenic, adipogenic and chondrogenic differentiation
potential in vitro[6]. Therefore, dermal papilla or sheath cells from rat follicles may be a
type  of  MSCs.  A  later  study  extended these  findings  to  the  human system and
confirmed that dermal papilla or sheath cells from human hair follicles expressed the
MSC  immunophenotype  and  possessed  multi-lineage  differentiation  potential;
therefore, they were named human hair follicle-derived MSCs (hHF-MSCs)[7]. Based
on these previous studies,  the hair  follicle  may be a  readily accessible  source of
autologous human MSCs that can be used for tissue engineering and regenerative
medicine.

Here,  methods  for  isolating  and  expanding  hHF-MSCs  are  presented  and
important recent advances in understanding the multi-potential of hHF-MSCs are
summarized.

ISOLATION OF hHF-MSCs
When isolating hHF-MSCs, the first step is to obtain a complete hair follicle. When
obtaining  human  tissues,  studies  should  be  conducted  in  accordance  with  the
guidelines of the Helsinki declaration and appropriate ethical approvals should be in
place. A frequently used method is to use collagenase type I to separate the intact hair

WJSC https://www.wjgnet.com June 26, 2020 Volume 12 Issue 6

Wang B et al. Hair follicle MSCs

463

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


follicle from the human scalp skin[8]. An intact hair follicle usually includes inner root
sheath, outer root sheath, and connective tissue sheath (dermal sheath) as shown in
Figure 1. The human scalp skin is usually obtained by skin biopsy from the scalp of a
donor under sterile conditions[7]. The obtained skin tissues are often full-thickness and
therefore have an epidermis, dermis, and dermal white adipose tissue, as hair follicles
are  located  in  the  adipose  tissue.  First,  skin  tissues  are  intensively  rinsed  with
phosphate-buffered saline (PBS) containing 1% penicillin/streptomycin solution,
trimmed to remove underlying adipose tissues, cut into 2-4-mm small pieces, and
digested with 1 mg/mL collagenase type I at 37 °C with occasional agitation. After 4 h
of  enzymatic  dissociation,  the epidermis can be peeled off  from the dermis,  and
single-hair  follicles  are  released from the  dermis,  filtered through a  40-mm cell
strainer, and washed thoroughly with PBS to prevent contaminating the epidermal or
dermal cells.

Another method is to obtain complete hair follicles by directly plucking them from
the occipital region of the scalps, which eliminates invasive procedures associated
with sampling[9,10]. Hairs with intact follicles should be extensively washed with PBS
containing 1% penicillin/streptomycin solution. The hair shafts are cut off, and the
remaining hair follicles are manually transferred to the bottom of a 96-well plate, with
one follicle per well, and cultured in 100 µL of Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal  bovine serum (FBS)  and 10 ng/mL basic
fibroblast growth factor (bFGF) to allow for cell migration to the tissue culture plastic
in a 37 °C/5% CO2 incubator. Cells originating from the bulge region can be visually
identified as epidermal keratinocytes,  whereas cells  migrating out of  the dermal
sheath  or  papilla  show  the  morphological  appearance  of  mesenchymal  cells
(fibroblast-like cells) (Figure 2). The wells populated with cells migrating from the
dermal sheath or papilla are digested, pooled, and expanded under the same culture
conditions. It should be noted that the cells migrating from the dermal papilla may
contain  a  small  number  of  neural  crest  stem  cell-like  cells.  They  can  form
neurospheres under serum-free culture conditions containing N-2, B-27, bFGF, and
epidermal  growth factor  (EGF)[11].  Li  et  al[12]  found that  the  sphere-forming cells
contained 1.14% ± 0.03% of dermal papilla cells. However, these neural crest stem cell-
like cells need to be supplemented with ITS supplement and EGF when cultured in
vitro[13]. Therefore, they will gradually disappear with the increase of passage times
under the hHF-MSCs culture conditions.

MSCs  can  also  be  separated  from the  dermal  papilla  or  dermal  sheath  alone.
Briefly, each strand of the hair follicle can be gently separated by microdissection
away from the scalp tissues, ensuring that the dermal sheath and dermal papilla are
intact.  To  isolate  dermal  sheath  MSCs,  the  hair  follicle  is  digested  with  0.1%
collagenase and 0.25% Dispase II at 37 °C for 30 min and then the dermal sheath is
carefully separated from the main shaft of the hair follicle with a 30G needle under a
dissecting microscope[14]. After chopping the dermal sheath with scalpel blades, the
samples are treated with 0.1% trypsin/0.02 M EDTA for 30 min at 37 °C. DMEM
supplemented with 10% FBS and 10 ng/mL bFGF is used to quench the trypsinization
process. After collecting the cell suspension from the dish into a centrifuge tube, the
cell  suspension  is  centrifuged  at  200  ×  g  for  5  min,  aspirated  to  remove  the
supernatant,  resuspended  in  an  appropriate  volume  of  the  same  medium,  and
expanded as hHF-MSCs.

As the dermal papilla is engulfed within the hair matrix, an inversion technique can
be used to separate dermal papilla MSCs (DP-MSCs)[4,15]. First, using a pair of scissors,
the follicle through the matrix just above the papilla is transected to isolate the end
bulb. Next, a fine needle can be used to invert the collagen capsule structure of the
end bulb and expose the hair matrix and the dermal papilla residing inside. After
removing the  matrix  component  and any epithelial  tissue  still  present  from the
papilla, the samples are cultured in DMEM supplemented with 20% FBS to allow for
cell migration to the culture plate in a 37 °C/5% CO2 incubator. Once the cells have
proliferated  to  confluency,  they  can  be  passaged  using  standard  cell  culture
techniques and the culture medium can be changed to DMEM supplemented with
10% FBS and 10 ng/mL bFGF.

EXPANSION OF hHF-MSCs
Currently, conventional cell culture techniques are still used to expand hHF-MSCs[16].
Briefly,  the  isolated  hHF-MSCs  are  seeded into  a  100-mm cell  culture  dish  and
cultured in DMEM supplemented with 10% FBS and 10 ng/mL bFGF in a 37 °C/5%
CO2 incubator. The medium (10 mL for 100-mm plate) should be refreshed every 2 d.
Once the cells are approximately 90% confluent, they should be sub-cultured using

WJSC https://www.wjgnet.com June 26, 2020 Volume 12 Issue 6

Wang B et al. Hair follicle MSCs

464



Figure 1

Figure 1  Schematic of the human hair follicle. An intact hair follicle usually includes the inner root sheath, outer root sheath, and connective tissue sheath (dermal
sheath). The human hair follicle mesenchymal stem cells lie within the dermal papilla or dermal sheath (connective tissue sheath) of the hair follicle. Citation: Kiani MT,
Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng 2018; 4: 1193-1207.
Copyright© The Authors 2018. Published by American Chemical Society.

0.1% trypsin/0.02 M EDTA in a 100-mm cell culture dish.
For cell therapy and tissue engineering, a large number of hHF-MSCs with highly

proliferative  and  multipotent  differentiation  potential  are  required.  However,
application of hHF-MSCs is restricted because they show replicative cell senescence
and loss of multipotency in long-term in vitro culture[17,18]. Bajpai et al[19] found that
hHF-MSCs could be maintained in culture for 11-12 passages (approximately 36
population doublings) before they started to show signs of cellular senescence. In
addition to the 8-10 population doublings that occurred during the initial isolation
and expansion stage, they may also undergo a total of 44-46 population doublings. It
was estimated that a hair follicle could yield approximately 1015 hHF-MSCs before
senescence occurred[19]. It is important to develop effective strategies for maintaining
hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro
passages. bFGF is a well-known growth factor that plays a critical role in the self-
renewal, high proliferation, and multi-lineage differentiation potential of MSCs[20-22].
Similarly,  bFGF  has  been  widely  used  in  large-scale  expansion  of  hHF-MSCs,
particularly to prevent myogenic differentiation[7]. Other growth factors, such as acidic
FGF and EGF, have also been tested and shown to play a similar role in the expansion
culture of hHF-MSCs[23]. In recent years, some transcription factors have also been
found to play a role in maintaining the proliferative capacity and multipotency of
hHF-MSCs.  Studies  showed  that  ectopic  expression  of  NANOG  promotes  cell
proliferation and delays hHF-MSC senescence by upregulating PBX1 and activating
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Figure 2

Figure 2  Isolation of human hair follicle mesenchymal stem cells. Human hair follicle mesenchymal stem cells
migrating out of the dermal sheath or papilla show the morphological appearance of fibroblast-like cells. Bar: 200 μm.
Citation: Jiang Y, Liu F, Zou F, Zhang Y, Wang B, Zhang Y, Lian A, Han X, Liu Z, Liu X, Jin M, Wang D, Li G, Liu J.
PBX homeobox 1 enhances hair follicle mesenchymal stem cell proliferation and reprogramming through activation of
the AKT/glycogen synthase kinase signaling pathway and suppression of apoptosis. Stem Cell Res Ther 2019; 10:
268. Copyright© The Authors 2019. Published by Springer Nature.

AKT signaling[16,24]. Lu et al[25] also found that overexpression of OCT4 promoted the
transcriptional  activation of  DNMTs,  leading to elevated methylation of  the p21
promoter, which promoted the proliferation and suppression of senescence of hHF-
MSCs.

Moreover, compared to conventional 2D cell culture techniques, 3D-cultured MSCs
show a higher yield in the same culture volume and stronger multipotency in large-
scale generation of MSCs[26,27]. Stirred-tank bioreactors with suspending microcarriers
are  the most  widely used approach for  the 3D culture of  MSCs on a  large scale.
Stirred-tank bioreactors can make full use of the cultivation space and homogenized
culture  conditions,  and enable  process  control,  such  as  maintenance  of  pH and
dissolved oxygen and medium supplementation[28]. In addition, microcarriers offer a
high surface area to volume ratio for the immobilization and expansion of adherent
cells,  and avoid the potential  risks of  tumorigenesis due to mutations caused by
consecutive passaging[29,30]. Our team utilized macroporous CultiSpher-G microbeads
as microcarriers for the 3D culture of hHF-MSCs in stirred-tank bioreactors.  The
results revealed that hHF-MSCs quickly adhered to the microspheres and showed a
26-fold  increase  in  the  cumulative  cell  number  after  12  d  of  expansion,  with  no
significant difference in differentiation potential compared to 2D culture[31].

In  addition to  microcarrier  culture,  3D aggregate  or  spheroid culture without
carrier and substrate provides enhanced cell–cell interactions and more accurately
mimics  the in  vivo  niche of  MSC,  which has been developed to expand MSCs[32].
Previous  studies  demonstrated  that  3D  aggregates  of  MSCs  exhibited  higher
proliferation efficiency, increased stemness and differentiative capacity, enhanced
anti-inflammatory and angiogenic properties, and increased survival of transplanted
cells compared to conventional 2D cell culture techniques[33-35]. Recently, Topouzi et
al[15] and Higgins et al[36] reported that 3D aggregates of DP-MSCs created by hanging
drop cultures can restore the intact  dermal papilla transcriptional  signature and
induce de novo hair follicles in non-hair-bearing human skin. However, few studies
have evaluated 3D aggregates of hHF-MSCs, which remains a promising research
direction.

DIFFERENTIATION OF hHF-MSCs
Similar  to  bone  marrow  MSCs,  hHF-MSCs  show  adipogenic,  osteogenic,  and
chondrogenic differentiation in the appropriate induction medium[23,37]. Apart from
their trilineage differentiation potential, accumulating evidence has demonstrated the
potential therapeutic value of these cells in regenerative medicine by differentiating
into smooth muscle cells (SMCs) and cell types of multiple different lineages. Here,
we describe the differentiation potential of hHF-MSCs in detail.

Myogenic differentiation of hHF-MSCs
SMCs  play  a  critical  role  in  the  occurrence  and  development  of  prevalent
cardiovascular and respiratory diseases,  such as atherosclerosis[38]  and asthma[39],
because of their contractile dysfunction. Emerging tissue engineering techniques offer
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the possibility of reconstructing functional vessel walls by SMCs[40]. Andrique et al[41]

used SMCs and endothelial cells to produce functional blood vessels with the correct
configuration of lumen, which could also react to vasoconstrictor agents. hHF-MSCs
have great potential to differentiate into SMCs. Using a tissue-specific promoter, a
previous study showed that the smooth muscle alpha-actin promoter (P-αSMA) and
fluorescence-activated cell sorting method can be used to isolate P-αSMA cells from
hHF-MSCs[7]. P-αSMA cells expressed specific markers of SMCs, including αSMA,
calponin, and smooth muscle myosin heavy chain, and generated strong contractility
in response to vasoactive agonists[7]. The defining property of SMCs is their ability to
generate contraction; thus, P-αSMA cells are considered as SMCs[7]. Although this
technique can achieve separation of a pure population of SMCs, it has the potential
risk of foreign virus integration into the chromosome. Xu et al[42] induced hHF-MSCs
into  contractile  SMCs  by  stimulation  with  transforming  growth  factorβ1  and
plateletderived growth factor BB, which avoided the risk of effects from the lentiviral
vector. In addition, Gao et al[43]  constructed tissue-engineered blood vessels using
filled  acellular  umbilical  arteries  with  hHF-MSCs  under  the  regulation  of
transforming  growth  factorβ1,  and  the  arterial  grafts  showed  considerable
vasoreactivity in response to humoral constrictors.

Application of hHF-MSCs in hair regeneration
hHF-MSCs are mainly located in the dermal papilla and dermal sheath of hair follicles
and play an important role in regulating repeated hair follicle morphogenesis in adult
life. A decrease in the number of hHF-MSCs per follicle can cause hair thinning and
loss[44]. Recently, Gentile et al[45,46] used the medical device Rigeneracons to develop
autologous micro-grafts enriched in hHF-MSCs to treat androgenetic alopecia. The
micro-grafts were obtained by centrifugation of a 2-mm punch biopsy of the scalp
with the selection of  a  cell  population with a  diameter  of  50 µm. The mean hair
density was increased significantly over baseline value after treatment with micro-
grafts enriched of hHF-MSCs[45]. Hair follicle morphogenesis is induced by tightly
coordinated  epithelial–mesenchymal  interactions  in  the  developing  embryo.
Similarly, bioengineered hair follicles can be prepared by the self-organization of
epithelial  and  mesenchymal  cells[47].  In  previous  studies,  murine  hair  follicle
regeneration was achieved by intracutaneous transplantation of the bioengineered
hair-follicle germ, which is generated by multicellular organization of follicle-derived
epithelial stem cells and HF-MSCs in 3D stem cell culture. The bioengineered hair
follicle exhibited similar tissue structures to the murine natural vibrissa follicle and
grow pelage[48]. These results suggest that hHF-MSCs are an important source of seed
cells for human hair tissue engineering.

Hematopoietic differentiation potential of hHF-MSCs
Shortage of red blood cells caused by a lack of voluntary donations can threaten the
lives of patients who require transfusion. hHF-MSCs may alleviate this dilemma
because of their ability to differentiate into blood cells. A previous study showed that
dermal papilla and dermal sheath cells generate hematopoietic colonies in vitro, and
can  contribute  to  multi-lineage  hematopoietic  reconstitution  in  vivo  after
transplantation into lethally irradiated recipient mice[3]. Recently, Liu et al[49] induced
mature erythrocytes from hHF-MSCs by overexpressing OCT4 and hematopoietic
cytokine  exposure.  This  mature  erythrocyte  contained no nuclei,  and expressed
mainly the adult β-globin chain and rarely the fetal γ-globin chain. Numerous studies
have shown that red blood cells produced from induced pluripotent stem cells (iPSCs)
are generally incompletely enucleated and rarely express the adult β-globin chain,
although iPSCs have been widely used to investigate treatments for diseases of the
blood  system[50,51].  Therefore,  hHF-MSCs  may  provide  an  alternative  source  of
erythrocytes for potential autologous transfusion.

iPSCs from hHF-MSCs
iPSCs are a suitable seed cell source for regenerative medicine because their broad
differentiation potential is similar to that of embryonic stem cells[52].  iPSCs can be
induced from somatic cells by ectopic expression of defined transcription factors[53]. In
a groundbreaking study, Wang et al[10] successfully reprogrammed hHF-MSCs into
iPSCs by lentiviral transduction with Yamanaka factors (OCT4, SOX2, C-MYC, and
KLF4). These HF-MSC-derived iPSCs (HF-iPSCs) showed similar characteristics to
embryonic stem cells in colony morphology, expression of alkaline phosphatase, and
expression of  specific  human embryonic stem cells  (hESCs) surface markers and
endogenous pluripotent genes; additionally, HF-iPSCs formed teratomas containing
representatives  of  all  three  germ  layers  after  intramuscular  injection  into
immunocompromised mice[10]. HF-iPSCs have further expanded the application of
hHF-MSCs in regenerative medicine. Bajpai et al[54] derived contractile SMCs using
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HF-iPSCs. Shi et al[55] reprogrammed HF-iPSCs into functional hepatocytes expressing
hepatic markers and drug metabolism-related genes. However, reprogramming of
hHF-MSCs into iPSCs by lentiviral transduction with Yamanaka factors, although
highly  reproducible,  is  an  inefficient  method;  therefore,  identifying  important
transcription factors that can improve the efficiency of programming has become a
research focus. Recently, our team found that co-transduction of PBX1 and Yamanaka
factors  into  hHF-MSCs significantly  improved the reprogramming efficiency by
activating the AKT/GSK3β signaling pathway[56]. These results contribute to mass
production  of  HF-iPSCs  and  further  support  the  potential  of  hHF-MSCs  in
regenerative medicine.

CONCLUSION
hHF-MSCs have high proliferation ability and broad differentiation potential, and can
be easily accessed by direct plucking of human hairs, showing numerous advantages
over  other  cell  sources  in  various  clinical  applications.  We  have  described  the
tremendous  capacities  of  hHF-MSCs  in  obtaining  induced  SMCs  and  tissue-
engineered blood vessels, regenerated hair follicle, and induced red blood cells, as
well as produced iPSCs in this review. However, hHF-MSC multipotency remains
relatively unexplored as compared to the epidermal stem cell lineage in hair follicles
or other human MSCs. The capacity for differentiation into other cell lineages as well
as epigenetic modification during differentiation require further analysis. In addition,
the role of hHF-MSCs in cell therapy has been investigated. hHF-MSCs transduced
with the human hepatocyte growth factor (hHGF) gene can continuously secrete
transgenic hHGF to promote liver cell regeneration and alleviate hepatic fibrosis[57].
Engineered  hHF-MSCs  transduced  with  the  release-controlled  insulin  gene  can
release human insulin in response to rapamycin and exhibited dramatic functionality
in reversing hyperglycemia with no formation of detectable tumors after engraftment
into mice[58]. In summary, hHF-MSCs are a promising source of cells for the rapidly
emerging field of cell therapy and tissue engineering.
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