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Abstract
Since the first publication regarding the existence of stem cells in cancer [cancer
stem cells (CSCs)] in 1994, many studies have been published providing in-depth
information about their biology and function. This research has paved the way in
terms of appreciating the role of CSCs in tumour aggressiveness, progression,
recurrence and resistance to cancer therapy. Targeting CSCs for cancer therapy
has still not progressed to a sufficient degree, particularly in terms of exploring
the mechanism of dynamic interconversion between CSCs and non-CSCs. Besides
the CSC scenario, the problem of cancer dissemination has been analyzed in-
depth with the identification and isolation of microRNAs (miRs), which are now
considered to be compelling molecular markers in the diagnosis and prognosis of
tumours in general and specifically in patients with non-small cell lung cancer.
Paracrine release of miRs via “exosomes” (small membrane vesicles (30-100 nm),
the derivation of which lies in the luminal membranes of multi-vesicular bodies)
released by fusion with the cell membrane is gaining popularity. Whether
exosomes play a significant role in maintaining a dynamic equilibrium state
between CSCs and non-CSCs and their mechanism of activity is as yet unknown.
Future studies on CSC-related exosomes will provide new perspectives for
precision-targeted treatment strategies.

Key words: Cancer; Cancer stem cells; Exosomes; Lungs; miRNA; Microvesicles; Non-
small cell lung cancer
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Core tip: The role of cancer stem cells (CSCs) in tumour aggressiveness, progression,
recurrence and resistance to cancer therapy is well appreciated. However, therapeutic
strategies to target CSCs for cancer therapy has still not progressed sufficiently,
particularly in terms of exploring the mechanism of dynamic interconversion between
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CSCs and non-CSCs. Similar to other cells, CSCs also release exosomes loaded with
microRNAs (miRs) as part of their paracrine activity. Our review focusses on the
exosomal payload of miRs released by cancer cells and their role in the diagnosis as well
as prognosis of lung cancer patients.
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INTRODUCTION
Stem cells related to cancer [cancer stem cells (CSCs)] were first reported in 1994
during a study on human acute myeloid leukaemia (AML)[1]. The authors of the study
identified a rare population of AML-initiating cells isolated from AML patients post-
engraftment  in  severe  immunocompromised  SCID  mice.  These  cells  expressed
CD34+/CD38- surface markers and were less mature than the colony-forming cells
besides possessing a higher proliferative capacity[1]. Subsequently, in 2003, human
CSCs were identified in solid tumours in various organs, including the breast and
brain[2-4]. Hence, a small CSC population (approximately 100 cells) developed into a
tumour in an immunodeficient mice model[2]. A consensus regarding the criteria for
classifying CSCs has not been established as yet. However, they are defined as a sub-
population in a given tumour with the ability to self-renew and produce cells that can
differentiate[4]. There is growing evidence that CSCs are highly resistant to different
types  of  stresses,  including anti-cancer  therapy[5],  and hence,  they are  generally
associated with an increased risk of cancer relapse, metastasis and an overall low
survival rate[5]. CSCs have also been linked with tumours identified in various cell
lines but not so frequently in all human tissues (e.g., in human lung cancer).

EPIDEMIOLOGY OF LUNG CANCER AND TREATMENT
PERSPECTIVES
According to recently published reports, in 2018, there were 121680 new lung cancer
cases for men and 112680 for women in the United States, totaling 234030 cases[6],
which is equivalent to an average of 641 lung cancer cases diagnosed per day. These
epidemiologic data rank lung carcinoma as the 2nd  most prevalent in men behind
prostate cancer and for women after breast cancer[6]. On a positive note, Siegel et al[7]

stated that there was an overall 27% decline in cancer-related death cases between
1991 and 2016, translating into more than 2 million fewer deaths than expected if the
rate had stayed at the range of the standard values[7-9].  Conventional therapeutic
strategies  including surgery,  radiotherapy,  and chemotherapy are used for  lung
cancer treatment either singly or in combination at  different cancer pathological
stages. However, issues associated with chemotherapy and radiotherapy resistance
are well known, and recurrence is still a challenge in advanced lung cancer patients.
This inability to be 100% curative has been attributed to the sub-populations of stem
cells that are capable of self-renewal, undergoing differentiation and producing multi-
lineage  progenies  that  may  be  tumourigenic  or  non-tumourigenic.  This  sub-
population of cells contributes to the establishment and maintenance of tumours.
Although the underlying molecular mechanisms behind these CSCs’ properties are
less well-defined, the intrinsic resistance of CSCs to therapy is now generally ascribed
to a lack of the capacity to induce the apoptotic signalling, increasing telomere length
as well as interfering with the cell membrane’s ability to act as a transporter, favoring
cell migration, and metastasis[10-12]. Owing to the multifactorial mechanistic nature of
resistance, the current treatment methods are inadequate for cancer treatment, and
hence, warrant in-depth molecular studies in the future to improve the contemporary
therapeutic regimens[13].
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TARGET THERAPY FOR LUNG CSCS
Given their significant role in poor prognosis, relapse and drug resistance in cancer
patients[14,15], the current treatment modalities are being focussed to target CSCs. Some
of these emerging treatment modalities include immunotherapy directed against the
CSCs’ specific surface antigens, interference with signalling pathways (i.e.,  Notch
signalling) and epigenetic approaches[16,17]. For example, a recent pre-clinical study
targeted the self-renewal regulator BMI1 to attenuate CSCs’ self-renewal and tumour-
initiating potential in oral cavity squamous cell carcinoma[18]. Based on the promising
results during pre-clinical studies, these therapeutic strategies are now entering into
the clinical phase of assessment. Another interesting area of research targeting CSCs
involves  analyzing  the  underlying  mechanisms  regulating  the  dynamic
interconversion between CSCs and non-CSCs (Figure 1). An understanding of the
molecular mechanism underlying such a bidirectional interconversion of cells would
have significant implications on the future development of therapeutic strategies[19,20].

Besides the CSCs paradigm, the issue of cancer dissemination has been analyzed in-
depth with the identification and isolation of microRNAs (miRs). miRs are short (20-
24  nucleotides),  non-coding  RNAs,  which  are  now  suggested  to  be  the  most
promising molecular markers for the diagnosis and prognosis of tumours[21]. Their
regulatory role in various cellular processes is now well-established, although some of
the  known  miRs  are  dispensable  for  the  normal  functioning  of  cells  but  have
instrumental participation in the initiation as well as the progression of diseases. The
main function of miRs is to play an epigenetic role in regulating gene expression at
the post-transcription stage[22]. In the context of their role in cancers, they are grouped
as oncomirs that either function as oncogenes or as tumour suppressors. Given the
pivotal role of miRs in the physiological functioning of a cell, their dysregulation has
been associated with various pathologies, including the initiation and progression of
cancer[23]. Their prognostic value as qualitative and quantitative biomarkers in plasma,
either in free form or encapsulated in the microvesicles, has been reported in various
cancers[24].  There  have  been  attempts  to  classify  human  cancers  based  on  miR
expression profiles[25].

Exosomes are extracellular vesicles with a small size of approximately 30 to 100 nm.
They are formed by the fusion of intracellular components surrounded by the plasma
membrane  and  released  from  cells[26].  It  is  now  becoming  well-established  that
exosomes,  besides  other  components,  also  transfer  their  nucleic  acid  payload
including miRs, from the cell of their origin to the recipient cells. The importance of
exosomes is mainly due to their capacity to transport miRs into the body, and this
process forms an important focus for providing a deep understanding of the possible
genetic implications between cancer and non-cancer cells[27]. The miRs thus transferred
significantly  affect  the  gene  expression  and  cellular  signalling  pathways  in  the
recipient cells, including maintenance of a dynamic equilibrium between CSCs and
non-CSCs by delivering their miR-payload[28,29].

Mature  miRs  that  are  about  70  nucleotides  long  are  derived  from  pre-miRs
composed of 100 nucleotides and then transcribed[30]. Exosomes can transport small
intracellular  components,  such as  proteins and lipids,  which are included by an
endocytosis  process  from pre-  to  late-mature  exosomes[31].  Hence,  exosomes  are
currently the smallest cellular components carrying miRs from the cell to the human
organs. They are detected in many fluids, such as urine[32,33], blood and saliva, and this
peculiarity  makes  them  a  unique  mediator  against  tumour  development  and
progression. Each miR has various targets, although different miRs may have a single
target[34],  and this characteristic highlights their significant involvement in many
genetic  and cellular  processes,  such as  in  particular  the  preservation of  cellular
differentiation. The most interesting characteristic is that many human genes depend
on miRs; this aspect reflects the roles of these small molecules in the genome[35,36].

In  recent  studies,  it  has  been  found that  operable  non-small  cell  lung  cancer
(NSCLC)  patients  showed  a  significant  association  between  recurrence  and
survival[37-40].  In  adenocarcinoma  patients,  a  miR  score  has  been  defined  for
distinguishing between patients in stage I developing recurrence within two years
from surgery, and those patients that were disease-free after three years[41,42].  We
believe  that  determining  the  roles  of  exosomes  and  their  miR-payload  in  the
prevention and cure of cancer is the future of personalized cancer medicine. However,
targeting exosomes and monitoring miRs in biological fluids will be the pillar for the
setting of new approaches in terms of follow-up for cancer patients, with the focus
being to determine more details  in the history of  each person affected from this
disease[43-45].
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Figure 1

Figure 1  The mechanism of the dynamic interconversion between cancer stem cells and non-cancer stem
cells. The cancer stem cells interact with various cell populations of the tumour microenvironment, i.e., tumour
epithelial cells, mesenchymal stem cells, endothelial cells, epithelial mesenchymal transitioning cells, fibroblasts,
immune cells (monocytes, macrophages etc.). This interaction can cause cancer cell stemness phenotype, promotion
of tumour cell invasion, angiogenesis and metastasis. EMT: Epithelial to mesenchymal transition; CAF: Cancer-
associated fibroblasts; MSCs: Mesenchymal stem cells; CSCs: Cancer stem cells; DCs: Dendritic cells.

CANCER CELL GROWTH, METASTASIS AND ROLE OF
EXOSOMAL MIRS
The amount of miRs in exosomes is influenced by the intracellular components as
well as by the physiological context[46-50]. In particular, exosomes can maintain the
stability of miRs by preventing their degradation[48]. The consequence of this exosome-
driven role is to drive them in cancer progression as miR-142-3p, miR-150, and miR-
451, all of which have been found in exosomes in gastric cancer cells[46].  Similarly,
microsomal miR-21, let-7f, miR-20b, and miR-30e-3p are differentially expressed in
patients  with  solid  tumours  as  compared  with  healthy  people[46,49].  The  role  of
exosomal miRs is undoubted in terms of cancer growth, development and recurrence.
It is apparent that miRs also important players in angiogenesis and metastasis as they
can  inf luence  host  immunity- inducing  chemoresistance  and  tumour
microenvironment (TME) re-adaptation[51].

We know that the metastasis of cancer cells is an intricate process that implicates
the colonization of cancer cells from their primary site to a secondary location[52]. It
encompasses a cascade of molecular events that facilitates cell migration, invasion,
angiogenesis and epithelial to mesenchymal transition (EMT)[53]. From amongst the
oncomirs, specific miRs are also grouped as “metastamirs” due to their association
with  the  molecular  processes  and signalling  pathways  that  underlie  cancer  cell
metastasis[54]. For example, Coebergh et al[55] have recently identified signature miRs,
including let-71 and miR-10, which can serve as biomarkers to predict colon cancer
patients who are at a risk of metastatic cancer spread. Both miRs’ signatures were
successfully used for prediction of hepatic recurrence of cancer in stage-I and -II
patients.  Similarly,  miR-126  suppresses  EMT  to  influence  lung  cancer  cell
metastasis[56]. Molecular studies have revealed the inhibition of the PI3K/Akt Snail
pathway with the involvement of miR-126 that could be a potential therapeutic target
for  lung  cancer  treatment.  Similar  observations  have  also  been  reported  with  a
possible role of miR-30a via targeted regulation of Snail[57]. Further, the role of Wnt/β-
catenin in EMT has been reported in human colorectal carcinoma metastasis that
involved GNA13 and PTP4A genes’ regulation via β-catenin signalling and which are
targeted by the miR-126 pathway via  ERK/GSK3β/ β-catenin and Akt/GSK3/β-
catenin signalling pathways[58]. The role of β-catenin in EMT has also been reported in
a recently published study that involved miR-1246 as a regulator of EMT in A549 cells
by inhibiting E-cadherin expression via  regulation of the Wnt/β-catenin pathway
through GSK3b/β-catenin targeting[59].  These data provide vivid evidence for the
significant participation of miRs in supporting the metastatic spread of cancers from
their primary origin.

There has been a recent interest in miR dissemination through exosomes. In this
regard, an important role is played by the cancer-associated fibroblasts into the TME,
a process that seems to release exosomes, inducing tumour development or control
depending  on  the  presence  of  some  nutrients[60].  Besides  EMT,  angiogenesis  is
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important for tumour maintenance and recurrence. In this context, exosomes released
by cancer  contribute  to  increased angiogenesis  and tumour growth through the
transforming growth factor β1-dependent pathway, which induces the fibroblast
evolution process[61,62].

In lung cancer, exosomal miR-23a from hypoxic lung cancer cells and hypoxamir-
210 from exosomes derived from such cells can improve permeability of the vessel
membranes and increase vascularization through the STAT3 mechanism, which can
transform normal bronchial cells into malignant ones[63]. One of the mechanisms that
may induce tumour progression involves tumour-derived exosomal interactions with
TME. For example, it has been shown that tumour-derived exosomes in lung cancer
may induce bone marrow-derived mesenchymal stem cells to change themselves into
a phenotype stimulating inflammation[64]. Hence, the immune system inside TME may
be affected by the  tumour-derived exosomes with the  final  result  being tumour
progression, most likely due to the reprogramming of the immune cells influenced by
tumour exosomes[64-66]. Akin to other cells, the exchange of exosomal miRs from cancer
cells  to  endothelial  cells  (ECs)  significantly  influences  their  angiogenic  activity.
Tumour cell-released miR-221-3p facilitates lymphangiogenesis in cervical squamous
cell  carcinoma by its  transfer  to  lymphatic  ECs[67].  Similarly,  cancer  cell-derived
exosomes transfer miR-25-3p to the ECs and regulate VEGF expression by targeting
KLF2 and KLF4, thus promoting angiogenesis[68].

EXOSOMAL MIRS AS BIOMARKERS AND THEIR ROLE IN
DRIVING RECURRENCE
As discussed before that the exosomes carrying miRs drive angiogenesis and cancer
progression[69]. For example, it has been shown that miR-103 enhanced angiogenesis
and induces tumour metastasis in hepatocarcinoma patients. This process involves
several endothelial target proteins, such as VE-cadherin, p120-catenin and zonula
occludens 1 in ECs[70]. In other blood diseases, such as leukaemia, exosomal miR210
secreted  by  hypoxic  leukaemia  cells  have  an  important  impact  on  angiogenesis
through the receptor tyrosine kinase ligand Ephrin-A3 of ECs[71]. In contrast, exosomes
may include miRs that  can harm leukaemia cells,  influencing motility  and their
capacity to adhere. This process is induced by the loss of C-X-C motif chemokine
ligand 12 and vascular cell adhesion molecule-1 proteins in ECs[72].

Several exosomal miRs are essential in the process of recurrence. In particular, in
metastatic breast cancer, exosomal miR-210 is involved in EC transport as well as
improving  angiogenesis[73];  in  nasopharyngeal  carcinoma  (NPC)  cells,  miR-23a
exosome enhances  tumour  growth  and recurrence[74],  although exosomal  miR-9
suppresses NPC cell migration and the consequent vascular formation by targeting
midkine and modulating the phosphoinositide-dependent protein kinase/protein
kinase B (Akt)-signalling pathway[75].

Due to their already demonstrated crucial participation in metastatic processes and
their  presence into  human fluids,  exosomal  miRs are  the  future  of  personalized
medicine as biological biomarkers[76]. Exosomal miRs are already in practice as reliable
biomarkers for the diagnosis of lung cancer patients[77-79]. Cazzoli et al[77] performed a
thorough exosomal miR-analysis of 30 plasma samples (including n = 10 each from
lung-adenocarcinoma,  lung-granuloma and healthy-smoker subjects)  and all  the
donors were matched for age and sex. The expression level of four miRs distinguished
between tumour and healthy-smoker subjects[77]. These findings were subsequently
used on a larger group of patients with 96% sensitivity and nearly 70% specificity.
Several upregulated miRs-derived exosomes (such as miR-21 and miR-155) have been
found in patients who developed lung cancer recurrence[78]. In particular, Li et al[63]

used  a  qPCR-based  array  to  analyze  plasma  from  10  patients  affected  by  lung
adenocarcinoma, and he found an increased level of 3 exosomal miRs (miR-23b-3p,
miR-10b-5p,  and  miR-21-5p)  which  seemed  to  be  correlated  with  decreased
survival[63]. The expression profile of specific exosomal miRs in lung adenocarcinoma
patients  vindicated  the  previously  published  results  that  circulating  exosomal
miRNAs were a useful and possible marker for further diagnostic and therapeutic
purposes in lung cancer[79]. Dejima et al[80] profiled plasma exosomal miRs derived
from lung cancer patients to demonstrate that miR-21 and miR-4257 were significantly
upregulated  as  compared  with  those  patients  without  recurrence  and  healthy
individuals as controls. The microarray data also showed that exosomal miR-21 and
miR-4257 exosomes were significantly associated with tumour growth and metastatic
invasion in lung cancer. These data were also supported by the low percentage of
disease-free survival in patients with high expression of both exosomes levels[80,81].

Besides the recent reports regarding the pivotal role of exosomal miRs in driving
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recurrence  and invasion of  cancer  in  patients,  their  use  as  biomarkers  seems to
represent an effective method for diagnostic and prognostic purposes. That is justified
by  the  fact  that  there  are  currently  no  markers  that  can  satisfactorily  diagnose
presence of  tumour in the early stage as well  as predict  long-term survival  with
respect to many solid cancers[82].

Although quantification of a panel of miRs in the plasma or serum of patients at
high-risk to develop lung cancer has been proposed, the difficulty in discriminating
between  miRs  for  normal  and  cancerous  tissue  remains  an  obstacle  in  the
development of an effective screening method[83]. Nigita et al[84] analyzed data from 87
NSCLC patients, attempting for the first time to identify and differentiate miRNAs for
normal  and tumour tissues;  in  particular,  miR-441-5p was the most  consistently
detected among the NSCLC exosomes.

One of the mechanisms by which exosomal miRs affect the functioning of CSCs is
via regulation of the interaction between CSCs and their microenvironment[85]. The
exosomes  serve  as  carriers  of  the  genetic  information  (i.e.,  miRs)  required  for
regulation of the signalling involved in the transformation of cancer cells into CSCs to
achieve a dynamic equilibrium between the two cell types.

EXOSOMAL MIR PAYLOAD AND TME
Reflecting their role in metastatic processes, it is apparent that exosomal miRs have an
important  impact  on TME[86].  It  has been demonstrated that  exosomes driven by
specific  miRs,  such  as  miR-223  derived  from  macrophages,  may  induce  drug
resistance in the hypoxic TME[87].

The interactions between cancer  cells,  exosomal  miRs,  and the TME rely on a
complex network that has yet to be satisfactorily clarified. In particular, exosomes can
mediate immune regulation, and several studies are attempting to understand the
direct effects of exosomes in T-cell activation[88]. However, there is currently a lack of
understanding regarding the identification of the connections between the immune
system,  miRs,  exosomes,  and  CSCs.  Recently,  a  correlation  between  tumour-
infiltrating  lymphocytes  (TILs)  and  CSCs  in  NSCLC  patients  has  been
demonstrated[89].  This  is  important  to  highlight  the existence of  interactions and
relations of these cellular components to further connect exosomes carrying miRs,
CSCs and TME. Further clarification of the associations between TILs and CSCs will
be helpful for the development of targeted therapies that may focus on miR exosomes,
CSCs, and TME cells.

The  complexity  of  TME leads  to  difficulty  in  understanding  the  mechanisms
involved. TME is an amalgam of both cellular and non-cellular components that
encompasses the surrounding microvascular structures, immune cells, fibroblasts,
ECs, cancer cells, signalling molecules and the extracellular matrix (ECM) (Figure 2).
Put together, these components offer a growth factor and cytokine-rich TME that is
conducive for phenotypic plasticity, immune surveillance, survival, angiogenesis and
cancer cell metastasis[90,91].  More importantly, TME contributes significantly to the
spatiotemporal dynamics of pattern formation and is one of the primary factors that
substantially influence tumour heterogeneity[92].  The link between TME and CSCs
generation is represented by the EMT[93].

The discovery of the TME implies the possibility of a novel treatment strategy that
goes beyond the paradigm of cancer genetics that restricts its focus only on cancer
cells[94]. The presence of CSCs in the TME is crucial for ‘tumour nutrition’ due to their
capacity to reproduce themselves, inducing tumour growth in NOD-SCID mice and
facilitating  the  spread  and  chemoresistance  of  the  tumour.  There  is  mounting
evidence  that  conservative  therapeutic  strategies  (i.e . ,  radiotherapy  and
chemotherapy) largely fail to eliminate CSCs, which are now associated with minimal
residual disease and cancer relapse[95,96].

The physiological functioning of cells is affected by a multitude of physical factors
that alter both genetic and epigenetic states. These molecular changes influence the
intracellular regulatory circuitry that enables the body to achieve as well as sustain an
appropriate response to the changing environment[97-99].  In this regard, ECM is an
elastic barrier able to change the mechanical properties of its proteins through genes’
profile mutations. Studies of the TME have led to immunotherapy and other new-
generation immune therapies, such as CAR-T cells[100-102] and anti-cancer vaccines[103-105].
The mechanism underlying the role of TME-associated transformation of normal cells
into tumour cells and then converting to malignancy upon cancer initiation is less
well defined[94]. However, this mechanism is associated with the mechanical/scaffold
(elasticity) effect of ECM[106]. Li et al[94] suggested that the elasticity is an important
aspect  in  ECM  development,  playing  a  key-role  in  miR  exosome  expression,
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Figure 2

Figure 2  The components of the tumour-microenvironment. The cellular components of the tumour-microenvironment include different types of cells including
such as epithelial tumour cells, cancer stem cells, and immune cells. Every type of cellular component contributes to maintain the tumour alive and to develop neo-
vessels for promoting the tumour cells dissemination.

regulating tumour gene expression and tumour growth. Further understanding of the
role of tumour–TME interaction will significantly help in understanding the acquired
resistance of cancer cells towards contemporary cancer therapies including surgery,
radiotherapy, chemotherapy and anti-angiogenic therapy[107]. This understanding will
open up a new avenue to target the CSC niche within the TME. In this context, in
particular,  the  exosomes  derived from the  tumour  (TEX)  seem to  have  a  strong
influence on the TME for their capacity to expand themselves in other tissues and
contributing to cancer dissemination to the organs[108].  Additionally, besides TME,
Javeed et al[109] hypothesized the presence of a tumour “macroenvironment” (TMaE)
that results from the pathological interaction between tumour cells with other organs
and systems of the body to mediate immunosuppression and promote genetic and
metabolic reprogramming of the cells through exosomal-miR payloads[109]. Further
understanding of the TMaE would be helpful for two reasons: first, it would help in
identifying those patients who would benefit from systemic therapy and second, it
would help in the future development of novel systemic therapies[110].

One of the most interesting aspects in this context is that TEX is associated with
some antigens, such as programmed death-ligand 1(PD-L1), which induces the pre-
metastatic pathway for tumour dissemination[111]. PD-L1 expression has been reported
to be enhanced by exosomes from melanoma, and this justifies the roles of exosomes
in tumour growth,  metastasis  and immune modulation[112,113].  There is  interest  in
establishing an “exosome screening” approach due to their presence in many fluids of
the human body, and this aspect is highly important in terms of providing potential
biomarkers as well as drug carriers for targeted drug delivery[114-116].

THE POTENTIAL ROLE OF MIRS IN TUMOUR
AGGRESSIVENESS
“Tumour aggressiveness” is typically used to define a highly incurable end-stage
cancer that is also able to resist the standard treatments[117-119]. Dysregulated miRs can
be oncogenes (oncomirs) if upregulated, or tumour suppressors (anti-oncomirs) if
downregulated, depending on their target transcripts[120,121]. Tumour aggressiveness is
generally associated with altered miRs profile  that  has already been reported in
various solid tumours[121-125]. Specifically, miRs have been implicated in a substantial
number  of  intracellular  mechanisms  that  include  tumour  growth,  proliferation,
recurrence, tumour metabolic alterations and chemo- and radio-resistance. However,
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they are also influenced by many extracellular factors, such as hypoxia, which seems
to contribute to poor clinical outcomes by increasing the recurrence risk[126-128].

The mechanism of oxygen sensing at the cellular level has remained an area of
intense investigation, as evidenced by the two Nobel Prizes won by Otto Warburg in
1931 and Corneille Heymans in 1938 for their findings on the role of enzymes and the
nervous  system  in  respiratory  cellular  mechanisms[126].  Moreover,  the  genetic
component of adaptation to oxygen flux remained oblivious for the major part of this
century. More recent studies have successfully addressed this issue to elucidate the
molecular biology of hypoxia-inducible factor (HIF) signalling as part of the body’s
hypoxic response in health and disease[127,128]. HIF-1 signalling and HIF-1-dependent
miRs, hypoxamirs, are being extensively studied for their role in cell survival and
angiogenesis  in  the  context  of  cancer  cell  biology[129-132]  as  well  as  regenerative
medicine[133]. The data thus generated has been exploited to promote stem cell survival
and angiogenesis  either  as  part  of  physical  or  genetic  manipulation  of  cells  for
hypoxamir expression[134-138]. In this context, the homeostasis of reactive oxygen species
(ROS)  is  the  key  for  maintaining  normal  biological  processes[139].  Higher-level
oxidative  stress  produces  irreversible  damage  to  intracellular  and  cellular
components, thus altering the stability of the genome with the induction of malignant
cell transformation[140]. For example, altered production of ROS is also associated with
EMT, tumourigenesis and tumour progression[141]. In particular, the mechanism of
ROS on CSC mechanism regulation is not yet fully clarified.

The precise mechanism by which ROS regulates CSCs and EMT characteristics with
the HIF-mediated pathways is unclear[140-142]. It has been documented that normal stem
cells, as well as CSCs, have a low level of ROS, potentially due to their strong defense
system against DNA damage[140-143]. Low-level ROS in CSC-like cells is associated with
higher free radical scavenger production. The inhibition of ROS scavengers by drug
treatment  in  mouse  breast  Thy-1  +  CD24  +  Lin-  CSC-enriched  cells  markedly
decreased their clonogenicity with increased radio-sensitization[144]. Hence, low levels
of ROS and enhanced ROS defense may contribute to tumour radio-resistance as
compared to non-tumourigenic counterparts[145]. These findings strongly suggest that
ROS may play an important role in the pathogenesis of CSCs.

Surprisingly, there is a link between ROS and miRs. It has been demonstrated that
H2O2 treatment can dysregulate the expression of certain miRs in vascular smooth
muscle cells and macrophages. Moreover, it has also been demonstrated that miR-30e
contributes to regulating oxidative stress and ROS levels through SNAI1 mRNA in
human umbilical endothelial vein cells[146]. Given the significant regulatory role of
miRs in metabolic processes in the cells, many of the oncomirs, such as miR-21, are
directly involved in the formation of ROS and hence, promote tumourgenesis[147]. Both
ROS and miRs control each other’s expression in cancer cells to maintain a balance
that is supportive of cancer cells in terms of their ability to produce the hallmarks of
cancer[148,149]. More investigations are mandatory to clarify the possible importance of
ROS in CSC regulation.

CLINICAL IMPLICATIONS
Although  recent  studies  have  identified  the  presence  of  CSCs  in  ADENO  and
SQUAMO cell carcinomas of the human lung, with this aspect being important in
terms of understanding that CSCs are present in all NSCLC tumours[150-152], even in
neuroendocrine tumours of the lung[153], the possibility to target CSCs is still debated.
In particular, the scientific community is focusing attention on the characterization of
miR exosomes for their intrinsic characteristics as complex paracrine factors[153]. In fact,
it has been found that stem cell-derived exosomal miRs can be used to modulate the
therapeutic response to stroke and may increase their therapeutic potential[77]. This
aspect may be important in future if we consider the possibility of targeting CSC-
derived exosomal miRs, in consideration of CSCs’ characteristics related to chemo-
and radioresistance – this approach would have a key role in new cancer treatments.

Lung cancer cell-derived exosomal miRs are at the centre of interest in the present-
day research for future roles as predictors of recurrence as well as biomarkers in the
early stage or for their prognostic role in advanced-treated patients[13,154-157]. The prime
objective is to explore the possibility of their use as biomarkers for early diagnosis of
lung cancer combined with target therapy[158,159]. In one of the studies, immunostaining
of exosomes from lung cancer tissue and chronic lung disease showed that 80% of
these  specimen-derived  exosomes  were  positive  for  EGFR,  although  2%  of  the
inflammatory tissue was positive.  This  point  suggested a  possible  role  of  EGFR
exosomes as potential biomarkers in lung cancer[61,160,161]. A similar result has also been
identified  in  ALK-EML4  translocated  exosomes,  which  are  markers  for  first-
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generation treatment ALK-TKIs[162,163].
On the same note, exosomes from the plasma of NSCLC patients (n = 276) indicated

that exosomes may have a prognostic role as biomarkers in NSCLC[156]. Similar results
were found in plasma exosomal miRs analyzed from lung adenocarcinoma patients (n
= 84) versus healthy controls. These results showed increased levels of exosomal miR-
10b-5p, miR-23b-3p, and miR-21-5p were significantly associated with poor prognosis,
thus suggesting their significance as biomarkers of NSCLC prognosis[157]. The use of
exosomal  miRs  as  prognostic  biomarkers  is  the  basis  for  new-generation  target
therapy against NSCLC, particularly in lung cancer for highly important proteins
such as EGFR, KRAS and RAB family.

The  most  relevant  aspect  related  to  targetable  exosomes  is  connected  to  the
precision treatment of NSCLC[164]. In this regard, exosomes can be produced as new
cellular molecules of delivery for medical treatment as well as against tumours to
reduce  the  negative  collateral  effects  in  the  human body[165,166].  Lai  et  al[167]  have
established a method for loading exosomes with a drug or genetically manipulating
cells with genes of interest to alter the exosomal payload derived from these cells.
Mendt et al[168] have reported a standard operating procedure to engineer exosomes
that could target KRAS (iExosomes), with a particularly good response in terms of
improved survival. The possibility to target genes such as KRAS is highly innovative
because it is responsible for the highest mortality rate in NSCLC patients.

The diversity of exosomal-payload and their functions relevant to NSCLC may
provide future pioneering target treatments. Yang et al[169] determined that induced
expression of miR-let-7 in exosomes for NSCLC treatment was specific and effective
in tumour suppression[169,170]. Similarly, exosomes isolated from H460 cells and that
had been transduced for the restoration of LKB1 (liver kinase B1) had an increased
ability to restore lung cancer cell migration as compared to exosomes isolated from
H460 cells lacking in LKB1 activity[171]. While elucidating the process, it was observed
that H460 cells with restored LKB1 supported the emigrational activity of lung cancer
cells  by  the  suppression  of  exosomal  secretion  of  migration-suppressing  miRs,
including miR-125a, miR-126a, and let7b. These data highlight the significance of
LKB1 as a new target for future cancer therapy. In an interesting new development,
antibody therapy with anti-CD9 or anti-CD63 to target tumour-derived exosomes
effectively inhibited the progression of breast cancer in mice, suggesting a successful
further treatment in lung cancer[172].

CONCLUSION
Characterization of CSC-derived exosomes in terms of their payload and the use of
exosomes  for  CSC  targeting  have  emerged  as  potential  strategies  for  cancer
theranostics. For example, the safety and feasibility of exosome targeting were first
assessed in phase I clinical trial for metastatic melanoma[173]. The patients were treated
with autologous dendritic cell-derived exosomes (DEX) loaded with the melanoma
antigen gene (MAGE) by intradermal and subcutaneous[173,174]. Although no significant
outcome was reported, the data vividly demonstrated that exosome-based treatment
may represent a new approach for curing cancer patients. The results from phase I
trial  evidenced that  the  immune system of  treated  patients  was  active  and that
exosome-treated patients showed limited disease progression[174].  Based on these
encouraging  data,  DEX  has  progressed  to  Phase  II  trials  as  maintenance
immunotherapy after first-line chemotherapy in NSCLC patients[175]. Besides the value
and importance of exosomes as mediators against anticancer effects, it is necessary to
study their clinical effects in the human body to guarantee a better standardization of
the methods of processing and ensure optimal and reproducible anti-tumour immune
responses after exosome-based therapy in the clinical perspective[176,177].
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