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Abstract
Background  Biomarker-based tests for diagnosing TB 
currently rely on detecting Mycobacterium tuberculosis 
(Mtb) antigen-specific cellular responses. While this 
approach can detect Mtb infection, it is not efficient 
in diagnosing TB, especially for patients who lack 
aetiological evidence of the disease.
Methods  We prospectively enrolled three cohorts 
for our study for a total of 630 subjects, including 
160 individuals to screen protein biomarkers of TB, 
368 individuals to establish and test the predictive 
model and 102 individuals for biomarker validation. 
Whole blood cultures were stimulated with pooled 
Mtb-peptides or mitogen, and 640 proteins within the 
culture supernatant were analysed simultaneously using 
an antibody-based array. Sixteen candidate biomarkers 
of TB identified during screening were then developed 
into a custom multiplexed antibody array for biomarker 
validation.
Results  A two-round screening strategy identified 
eight-protein biomarkers of TB: I-TAC, I-309, MIG, 
Granulysin, FAP, MEP1B, Furin and LYVE-1. The sensitivity 
and specificity of the eight-protein biosignature in 
diagnosing TB were determined for the training (n=276), 
test (n=92) and prediction (n=102) cohorts. The training 
cohort had a 100% specificity (95% CI 98% to 100%) 
and 100% sensitivity (95% CI 96% to 100%) using a 
random forest algorithm approach by cross-validation. In 
the test cohort, the specificity and sensitivity were 83% 
(95% CI 71% to 91%) and 76% (95% CI 56% to 90%), 
respectively. In the prediction cohort, the specificity was 
84% (95% CI 74% to 92%) and the sensitivity was 75% 
(95% CI 57% to 89%).
Conclusions  An eight-protein biosignature to diagnose 
TB in a high-burden TB clinical setting was identified.

Introduction
TB is a global public health problem, with an 
estimated 10 million newly diagnosed cases and 
1.5 million deaths in 2018.1 Accurate and in-time 
diagnosis of TB is critical for both effective treat-
ment and prevention of TB transmission. Unfor-
tunately, the current diagnostic tools for TB in the 
lab have low sensitivity or are time consuming, 
including sputum smear microscopy and culturing 
of Mycobacterium tuberculosis (Mtb). Detection 
of Mtb DNA using Gene Xpert MTB/RIF is more 
sensitive and provides quicker results than Mtb 
culture,1 2 yet as many as 50% of TB cases cannot 
be bacteriologically confirmed even when the Mtb 

DNA test is combined with other microbiological 
tests.3 This is in part because a high number of 
patients are unable to provide sputum.

The development of a blood sample-based test 
for diagnosing TB has been recognised as an ideal 
alternative solution.4 5 ELISAs or enzyme-linked 
immunosorbent spots were designed to detect 
Mtb antigen-specific interferon (IFN)-γ responses 
in blood.6 7 Although these IFN-γ release assays 
(IGRAs) were initially developed to diagnose Mtb 
infection. However, it cannot efficiently distinguish 
TB from latent tuberculosis infection (LTBI).8 9 
Nevertheless, IGRAs provide a platform to screen 
new host biomarkers alternative to IFN-γ for diag-
nosing TB. Several proteins have been identified 
in the supernatant of the QuantiFERON-TB Gold 
In-Tube (QFT-GIT) assay, a low throughput IGRA 
platform using Luminex technology.10–13 Unfor-
tunately, the candidate proteins identified by the 
QFT-GIT assay have not been validated due to 
its limited throughput. Thus, a high throughput 
screening method is needed to identify multiple 
biomarkers for accurate TB diagnosis.

Key messages

What is the key question?
►► Can a protein biosignature to accurately 
diagnose TB be identified using a high 
throughput antibody array?

What is the bottom line?
►► An eight-protein biosignature was identified 
using high throughput antibody arrays 
following a two-round screening strategy 
capable of distinguishing active TB from 
healthy control, latent TB infection and non-TB 
pneumonia in a high-burden TB clinical setting.

Why read on?
►► The eight-protein biosignature, including four 
proteins have not been previously reported as 
potential biomarkers for TB, could be useful for 
diagnosis of TB in a real clinical setting. The 
training cohort had 100% specificity and 100% 
sensitivity, whereas the test cohort had 83% 
specificity and 76% sensitivity. The prediction 
cohort comprised prospectively obtained 
samples in a clinical setting had 84% specificity 
and 75% sensitivity.
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Figure 1  Study design and classification of study participants. In model establishment and test cohort, a total of 403 individuals were prospectively 
evaluated. Thirty-five individuals were excluded due to invalid culture or lack of clinical data. Of the 368 subjects, 276 (87 TB, 68 HC, 54 LTBI and 
67 PN) were used as a training set to establish the diagnostic model and 92 subjects (29 TB, 16 HC, 30 LTBI and 17 PN) were used as a test set to 
validate the diagnostic model. In prediction cohort, 111 individuals were prospectively recruited. Nine cases were excluded and 102 individuals (32 
TB, 19 HC, 27 LTBI and 24 PN) thus remained for further analysis. CXR, chest X-ray; HC, healthy control; IGRAs, interferon-γ release assays; LTBI, latent 
tuberculosis infection; PN, pneumonia; ROC, receiver operator characteristic.

In this study, 640 proteins were first measured in the culture 
supernatant of Mtb-stimulated whole blood using a high 
throughput antibody array. Potential TB-related proteins were 
then analysed across three different patient cohorts comprised 
healthy control (HC), LTBI, non-TB pneumonia (PN) and TB to 
evaluate how the biomarkers performed in diagnosing TB in the 
real clinical setting. The data reveal an eight-protein biosigna-
ture for the diagnosis of TB.

Material and methods
Study subjects
Three cohorts of participants were recruited in this study. The 
first cohort consisted of 160 subjects, including 40 HC, 40 TB 
(definite TB), 40 LTBI and 40 PN. In the second cohort, we 
prospectively recruited 403 individuals. After exclusion of 35 
cases, the remaining 368 individuals were subjected for further 
analysis, including 84 HC, 116 TB, 84 LTBI and 84 PN. In the 
third cohort, 111 individuals were prospectively recruited. Nine 
cases were excluded. A total of 102 individuals (19 HC, 32 TB, 
27 LTBI and 24 PN) remained for further analysis (figure  1, 
table 1).

All subjects were enrolled at the Shenzhen Third People’s 
Hospital from January 2014 to December 2018. HC and LTBI 
patients had regular physical examinations at the hospital, and 
did not have pneumonia, HIV or other diseases. The patients 
provided a full medical history, participated in regular physical 
examinations and underwent routine investigations, including 

HIV serology, chest radiography, IGRAs and microbiological 
sputum examination, where possible. All TB in this study were 
pulmonary TB and excluded HIV infection.

Case definitions
All participants were classified as HC, LTBI, PN or TB (table 2). 
PN cases referred to upper or lower respiratory tract infections 
attributed to viral or non-Mtb bacterial pathogens, although no 
attempts to identify the organisms by bacterial or viral cultures 
were made. In the first cohort of this study, 40 TB were classified 
as definite TB. When assessing the accuracy of the eight-protein 
biosignature in diagnosing TB, all the definite and probable TB 
cases were classified as ‘TB’, unless otherwise indicated.

Sample collection and preparation
Whole blood (250 µL) collected from participants using an 
EDTA anticoagulation tube was cultured in serum-free medium 
(DKW34-EHK0100, DAKEWE) in the absence or presence of 
2.5 µg/mL phytohemagglutinin (PHA, L8754, Sigma) or 10 µg/
mL Mtb-antigen peptide pool for 24 hours at 37°C, 5% CO2, 
and then the supernatant was collected. The Mtb-antigen peptide 
pool consisted of peptide pool A and peptide pool B, which was 
described previously.14

For quality control of whole blood culture, IFN-γ was measured 
by ELISA. Cultures with a ratio of IFN-γ >1 when comparing PHA 
stimulated with the non-stimulated (‘media only’) negative control 
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Table 1  Demographic characteristics of study populations

Cohort Study part Group Cases (N)
Age (years)
(mean±SD)

Gender (males/
females), N

Positive sputum 
smears, N%

Positive sputum 
cultures, N%

I Biomarker screening HC 40 37.66±13.38 18/22 ND ND

TB 40 32.36±15.31 24/16 38 (55.26) 25 (84)

PN 40 37.80±11.59 16/24 18 (0) 12 (0)

LTBI 40 37.68±11.56 27/13 ND ND

II Model establishment and test HC 84 39.90±10.82 44/40 ND ND

TB 116 34.99±12.74 66/50 62 (65.23) 62 (33.33)

PN 84 39.98±13.47 33/51 84 (0) 84 (0)

LTBI 84 36.36±11.59 50/34 ND ND

III Prediction HC 19 35.95±10.56 9/10 ND ND

TB 32 39.94±14.94 21/11 16(50) 13 (40.63)

PN 24 43.21±12.96 15/9 24 (0) 24 (0)

LTBI 27 40±16.07 16/11 ND ND

HC, healthy control; LTBI, latent tuberculosis infection; PN, pneumonia.

Table 2  Definitions used in classifying study participants

Classification Definition

HC Negative CXR, no clinical symptoms of tuberculosis, no history of TB, negative IGRAs

LTBI Negative CXR, no clinical symptoms of tuberculosis, no history of TB, positive IGRAs

PN Negative cultures for MTB, negative smears, radiographic suggestive of non-PTB and no history of TB

Definite TB Sputum culture-positive for MTB plus CT suggestive of PTB; or positive smears plus symptoms responding to TB treatment, CT suggestive of PTB

Probable TB No sputum or negative smear and negative MTB, but CT evidence and symptoms responding to TB treatment

CXR, chest X-ray; HC, healthy control; LTBI, latent tuberculosis infection; MTB, Mycobacterium tuberculosis; PN, pneumonia; PTB, pulmonary tuberculosis.

were qualified as infected with Mtb and included in this study. 
Cultures with a ratio ≤1, were considered as invalid and excluded. 
The data provided in this study reflect the protein expression levels 
of Mtb-antigen stimulation only. Parallel blood culture superna-
tants from 51 participants chosen randomly from the training and 
test cohorts were analysed with the QuantiFERON-TB Gold (QFT-
GIT; QIAGEN) assay according to the manufacturer’s instructions 
and to 16-protein array analysis. All laboratory procedures were 
blinded to patient and sample type.

Protein array assay and data preparation
For the first screening of candidate biomarkers, the supernatant was 
analysed a glass-based and sandwich-based antibody microarray 
comprised 16 non-overlapping arrays to measure 640 human 
proteins quantitatively (QAH-CAA-640, RayBiotech, Peachtree 
Corners, Georgia, USA). For the second round of screening, a 
custom glass-based antibody array targeting the 16 proteins-
of-interest was built (RayBiotech, Peachtree Corners, Georgia, 
USA). Each protein was analysed in quadruplicate per array. Array 
processing was according to the manufacturer’s instructions.

Briefly, 100 µL of twofold diluted culture supernatant was 
added to each well, incubated overnight at 4°C and exten-
sively washed. A biotin-labelled detection antibody was added 
for 2 hours, and then AlexaFluor 555-conjugated streptavidin 
was applied for 1 hour at room temperature. The slides were 
analysed with 532 nm excitation and 635 nm emission using an 
InnoScan 300 Scanner (Innopsys, Carbonne, France).

Raw data from the array scanner were provided as image files 
(.tif files) and spot intensities (​tab-​delimited.​txt file) through 
Mapix 7.3.1 Software. Data visualisation was performed using 
Q-Analyzer Software (RayBiotech, Peachtree Corners, Georgia, 

USA). Median pixel intensities of the local background were 
subtracted from the median pixel intensities of individual array 
spots. The average spot intensity across quadruplicate spots was 
calculated. Interslide and intraslide signals were normalised 
using positive control spots. Spots with a signal intensity <5% 
above background were defined as non-detectable. Interslide 
normalisation was calculated using the third diluted standard 
(‘Standard 3’) and internal controls. For protein quantification, 
standard curves were generated using purified proteins repre-
senting the proteins-of-interest. Proteins were excluded from 
analyses if they had concentrations below the detection limit for 
over 50% of samples, resulting in a total of 590 quantifiable 
proteins. All the raw data were log2-transformed for statistical 
analysis, including supervised and bioinformatics analyses.

Data processing and figure generation
All data processing and statistical testing were performed in 
open source R (R Foundation for Statistical Computing, Vienna, 
Austria) and RStudio Software (RStudio, Boston, Massachu-
setts, USA). The figures were generated directly in RStudio and 
then arranged for publishing using Photoshop CS5 (Adobe, San 
Diego, California, USA).

Differentially expressed protein analysis and feature selection
Differences in log2-transformed protein expression levels for 
every protein between TB and non-TB were determined using the 
Wilcoxon rank sum test. Then the p value was adjusted based on 
the false discovery rate (FDR).15 Differentially expressed proteins 
(DEPs) were defined as those with an FDR <0.05 and a p value 
<0.001.
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Table 3  Expression levels of 16 proteins differentially expressed between TB and non-TB

Proteins Median TB (pg/mL) 25%–75% TB (pg/mL)
Median non-TB (pg/
mL)

25%–75% non-TB 
(pg/mL) P value FDR Ratio Cohen's d

MIG 2490.5 1121.3–6512.4 609.2 295.9–1312.9 0 0 0.831 0.226

Furin 0 0–5.697 245.18 10.11–352.18 0 0.001 −2.065 −0.195

I-309 5.792 3.058–10.982 1.9 1.087–3.23 0 0.001 1.389 0.847

IL-1 F7 1785.8 1506.6–2021.3 1321.1 1109.3–1657.4 0 0.002 −0.574 −0.105

EGFR 3242 2786–3775 4246 3478–4935 0 0.002 −0.317 −0.789

I-TAC 100.27 61.11–198.06 48.04 28.84–84.45 0 0.003 0.765 0.513

MEP1B 372.76 28.38–756.09 894.8 413.3–1479.9 0 0.006 −1.273 −0.55

Granulysin 514.38 296.66–837.17 945 555.1–1641.4 0 0.013 −0.664 −0.558

MDGA1 206 117.19–258.77 294.83 186.64–553.11 0 0.017 −1.075 −0.486

FAP 5999 5613–7308 7213 6376–8744 0.001 0.025 −0.246 −0.645

FOLR2 1205.8 929.2–1943.5 880.07 469.61–1224.33 0.001 0.025 0.542 0.663

PDGF-CC 69.78 0–316.87 0 0–70.69 0.001 0.025 0.696 0.189

IGFBP-5 0 0–0 51.04 0–785.55 0 0.025 −4.24 −0.177

LYVE-1 767.2 712.2–917.2 694.8 626.1–768.2 0.001 0.029 0.271 0.824

CRIM1 121.69 90.25–168.92 157.89 113.99–238.47 0.001 0.035 −0.659 −0.572

CHI3L1 2922 2527–3503 2293.6 1714.7–3171.7 0.001 0.035 0.265 0.4

Ratio: log2 (fold change); ratio >0, upregulation in TB; ratio <0, upregulation in non-TB.
CHI3L1, chitinase-3-like protein 1; CRIM1, cysteine rich transmembrane BMP regulator 1; EFGR, epidermal growth factor receptor; IL-1 F7, interleukin-1 family member 7 ; FAP, 
fibroblast activation protein; FDR, false discovery rate; FOLR2, folate receptor beta; I-309, also called CCL1/TCA3; IGFBP-5, insulin-like growth factor-binding protein 5; I-TAC, 
interferon-inducible T-cell alpha chemoattractant; LYVE1, lymphatic vessel endothelial hyaluronan receptor 1; MDGA1, MAM domain containing glycosylphosphatidylinositol 
anchor1; MEP1B, meprin A subunit beta; MIG, monokine induced by gamma interferon; PDGF-CC, platelet-derived growth factor-CC.

Recursive feature elimination (RFE) was performed with R 
package ‘caret’ to select DEPsfor diagnostic model using 14 
proteins with 10-fold cross-validation.16 The performance was 
evaluated with area under the curve (AUC) analysis to identify 
which combination of proteins contributed the most to predicting 
TB.

Supervised diagnosis model building
A supervised prediction analysis employing a series of mathe-
matical models, including random forest algorithm (RF), linear 
discrimination analysis (LDA) and support vector machine (SVM), 
was performed using the R package caret”.17 In the second study 
arm, the data were randomly split into two subsets at a ratio of 
3:1. The larger (75%) subset was used to train the model while 
the smaller subset (25%) was used to test the model (figure 1). 
The parameters in RF model for the eight-protein biosigna-
ture were: mtry=2, trees=500 and nodes=109. For the cross-
validation, a fivefold cross-validation and five-time repeat were 
performed with a p=0.75. The preprocessing options (prePro-
cOptions) included a threshold (thresh)=0.96, ICAcomp=3, 
k=5, freqCut=9, uniqueCut=10 and cut-off=0.9. A detailed 
description ofRF model building was provided in online supple-
mentary file. Model performance was evaluated using accuracy 
values from the cross-validation model training and AUC anal-
ysis. Each observation was assigned a probability ranging from 
0 to 1. The cut-off values were then adjusted to get the optimal 
sensitivity and specificity based on the Youden’s index. One of 
the decision trees used in our RF model is displayed in online 
supplementary figure S1.

Results
Identification of 16 candidate protein markers of TB
To identify potential protein markers of TB, high throughput 
antibody-based protein microarrays were employed to measure 

640 human proteins in cultured supernatant from 160 subjects. 
Protein levels in the TB cohort and non-TB cohort were 
compared, with 17 proteins (MIG, Furin, I-309, IL-1 F7, EGF 
R, I-TAC, MEP1B, Granulysin, MDGA1, FAP, FOLR2, PDGF-
CC, IGFBP-5, LYVE-1, CRIM1, CHI3L1 and CNTFR alpha) 
having an FDR <0.05 and p value <0.001. CNTFR alpha was 
excluded because its linear range was narrow and the protein 
was not detected in many samples. The remaining 16 proteins 
are listed in table 3.

Identification of an eight-protein biosignature for TB 
diagnosis with an antibody array
To further refine candidate biomarkers for diagnosing TB, the 
performance of 16 proteins initially identified in the prospective 
cohort was evaluated using a custom antibody array targeting 
the 16 proteins with cultured blood samples from 368 indi-
viduals. Two proteins, IGFBP-5 and IL-1 F7, were excluded in 
the following analyses since the proteins were undetectable in 
≥50% of the samples. Next, RFE method was applied to explore 
all possible subsets of the proteins. In a comparison of the diag-
nostic accuracy of TB with different protein subsets, we found 
that the AUC of 8 proteins (I-TAC, I-309, MIG, FAP, Granulysis, 
MEP1B, Furin and LYVE-1) was the highest, which was 0.8145 
with 47.42% specificity and 93.26% sensitivity (see online 
supplementary table S1).

A diagnostic model was built based on the eight-protein signa-
ture using a training cohort comprised 276 randomly selected 
samples from the 368 subjects, including 87 TB and 189 non-
TB. A series of mathematical models were applied to the eight 
proteins, with RF modelling identified as the best diagnostic 
model compared with LDA and SVM due to its superior AUC, 
specificity and sensitivity (see online supplementary table S2). 
The mean decrease in Gini index for the eight proteins was 
calculated (figure 2A). Among them, I-TAC, I-309 and MIG had 
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Figure 2  Inclusion of different analytes into eight proteins for the diagnosis of TB disease. (A) Overall importance index of the proteins in the eight-
protein biosignature to the RF model, where a higher number reflects higher importance. (B) AUC values obtained from receiver operator characteristic 
curve analysis of each of the proteins in the eight-protein biosignature distinguishing definite TB (n=53) from non-TB (n=252), HC (n=84), LTBI (n=84) 
and PN (n=84), respectively. FAP, fibroblast activation protein; HC, healthy control; I-TAC, interferon-inducible T-cell alpha chemoattractant (also called 
CXLC11); I-309, also called CCL1/TCA3; LTBI, latent tuberculosis infection; LYVE-1, lymphatic vessel endothelial hyaluronan receptor 1; MEP1B, meprin 
A subunit beta; MIG, monokine induced by gamma interferon (also called CXCL9); PN, pneumonia; RF, random forest algorithm

Figure 3  Receiver operator characteristic (ROC) curve analyses of individual cohorts. ROC curves produced from the training cohort (A), test cohort 
(B) and prediction cohort (C) using the RF model. AUCs in different cohorts are shown. AUC, area under curve; RF, random forest algorithm.

the highest differential expression in TB with Gini indices of 
24.54, 18.47 and 16.78, respectively.

In the second cohort, 53 of the 116 TB were classified as defi-
nite TB by aetiological evidence. Using receiver operator char-
acteristic curve analysis, the AUC values to diagnose definite 
TB disease using the eight proteins were 0.38–0.78 (see online 
supplementary table S3). Although I-TAC had the highest AUC 
value for distinguishing definite TB from non-TB (AUC=0.79), 
its performance for discriminating definite TB from HC was 
moderate (AUC=0.82). These data suggest that a multiprotein 
signature is necessary to accurately distinguish active TB from 
non-TB, including HC, LTBI and PN (figure 2B, online supple-
mentary table S3).

Utility of eight-protein biosignature in diagnosing TB with RF 
modelRF modelling
The combination of the eight proteins provided excellent accu-
racy (AUC=1) for distinguishing TB from non-TB in the training 
cohort using the RF model at an optimal threshold of 0.4 
(figure 3A). The RF model classified TB and non-TB with 100% 
specificity (95% CI 98% to 100%) and 100% sensitivity (95% CI 
96% to 100%) when compared with the clinical diagnosis using 
the RF model (table 4). To test the RF model, we used a test 
cohort consisting of 29 TB and 63 non-TB (figure 1), achieving 
an AUC of 0.802 (95% CI 69.6% to 90.9%), diagnostic spec-
ificity of 83% (95% CI 71% to 91%) and sensitivity of 76% 
(95% CI 56% to 90%) (figure 3B, table 4).

To verify the accuracy of the eight-protein model to distin-
guish TB from non-TB, an independent ‘prediction’ sample 
cohort consisting of 102 individuals was employed. More 
specifically, 32 of the volunteers had TB while 70 did not (19 
HC, 27 LTBI and 24 PN). The AUC in differentiating TB from 
non-TB was 0.915 (95% CI 86.3% to 96.7%), with 84% speci-
ficity (95% CI 74% to 92%) and 75% sensitivity (95% CI 57% 
to 89%) (figure 3C, table 4).

Notably, to ensure that the inclusion of probable TB data did 
not impair the diagnostic accuracy of the eight-protein signa-
ture, we reanalysed the sensitivity and specificity of the biosig-
nature using probable or definite TB (see online supplementary 
table S4). In the test cohort, the specificity and sensitivity were 
84.13% (95% CI 73% to 92%) and 73.33% (95% CI 41% to 
87%) in differentiating probable TB from non-TB, and 84.13% 
(95% CI 73% to 92%) and 78.57% (95% CI 59% to 100%) 
in differentiating definiteTB from non-TB. Similar data were 
obtained with the prediction cohort (see online supplementary 
table S4). The comparable sensitivities and specificities indicate 
that pooling the probable and definite TB cases into one group 
(ie, ‘TB’) did not decrease the model performance.

In order to compare the diagnostic accuracy of the eight-
protein biosignature between different groups (HC, LTBI 
or PN). In the test cohort, the specificity and sensitivity were 
81.25% (95% CI 54% to 96%) and 75.86% (95% CI 56% to 
90%) in differentiating TB from HC and the specificity, and 
89.47% (95% CI 67% to 99%) and 75% (95% CI 57% to 89%) 
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Table 4  Diagnostic accuracy of the eight-protein biosignature in diagnosing TB

Model Group
Clinical 
diagnosis (n)

Classified as 
non-TB (n)

Classified as 
TB (n)

Cut-off 
value

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Accuracy
(95% CI)

Training
(n=276)

Non-TB 189 189 0 0.4 100%
(96% to 100%)

100%
(98% to 100%)

100%
(98% to 100%)

100%
(96% to 100%)

100%
(99% to 100%)TB 87 0 87

Test
(n=92)

Non-TB 63 52 11 0.4 76%
(56% to 90%)

83%
(71% to 91%)

88%
(77% to 95%)

67%
(48% to 82%)

80%
(71% to 88%)TB 29 7 22

Prediction
(n=102)

Non-TB 70 59 11 0.4 75%
(57% to 89%)

84%
(74% to 92%)

88%
(78% to 95%)

69%
(51% to 83%)

81%
(72% to 88%)TB 32 8 24

NPV, negative predictive value; PPV, positive predictive value.

in the prediction cohort. For differentiating TB from LTBI, the 
specificity and sensitivity of the test cohort were 80% (95% CI 
61% to 92%) and 75.86% (95% CI 56% to 90%). The speci-
ficity was higher in the prediction cohort at 88.89% (95% CI 
71% to 98%). TB were differentiated from PN with a speci-
ficity of 94.12% (95% CI 71% to 100%) in the test cohort and a 
75% (95% CI 53% to 90%) in the prediction cohort (see online 
supplementary table S5). These data indicate that our eight-
protein biosignature model might be useful in diagnosing TB.

Comparison of in-house culture and the QFT-GIT assay in 
diagnosing TB
To validate the reliability of our laboratory culture system, we 
performed whole blood culture in parallel using the QFT-GIT 
assay for 51 samples including 16 TB, 14 HC, 17 LTBI and 4 
PN. The proteins in our eight-protein signature were detected 
using an antibody array. Analysis of the 8-protein biosignature in 
the QFT-GIT supernatant for diagnosing TB revealed an AUC of 
0.92 (95% CI 84.7% to 99.4%), with 60% specificity (95% CI 
42% to 76%) and 100% sensitivity (95% CI 79% to 100%) (see 
online supplementary figure S2A). When the eight-protein signa-
ture of our in-house culture system was tested in its ability to 
diagnose TB accurately, it had an AUC of 1 (95% CI 100%), 
with 100% specificity (95% CI 79% to 100%) and 100% sensi-
tivity (95% CI 90% to 100%) (see online supplementary figure 
S2B). Thus, our in-house culture system performed better than 
the QFT-GIT assay.

Discussion
Here, an eight-protein biosignature for diagnosing TB from 
stimulated whole blood culture was identified after screening 
640 human proteins. Using RF classification, the eight-protein 
biosignature efficiently discriminated TB from non-TB, including 
HC, LTBI and PN. The eight-protein biosignature’s sensitivity 
and specificity of 75% and 84%, were then confirmed in an 
independent prospective cohort in a clinical setting. This is the 
first biosignature consisting of host proteins that can discrimi-
nate TB from HC, LTBI and PN.

The diagnostic accuracy of our prediction dataset was not as 
high as the training model. However, this is not unusual since 
a model is trained by maximising its accuracy with the training 
set. For example, all three different principle machine learning 
algorithms (SVM, LDA and RF) that we applied performed 
better with the training set than the prediction set. Overfitting 
of the training cohort may be one reason why the model was 
not as accurate with the validation cohort. We tried to minimise 
overfitting of the training set by tuning the parameters, archi-
tectures and data preprocessing. We also selected the RF model, 
which seldom overfits the data in practice since the generali-
sation ‘test set’ error does not increase as the model gets more 

complex (ie, as the number of trees goes to infinity).18 This can 
be further ensured by having the appropriate amount of trees 
and tree depth.19 The second reason why different accuracies 
were observed between the training and test/prediction sets in 
our study might be due to the known molecular heterogeneity 
of TB. Whereas most patients infected with Mtb will remain in 
a clinically asymptomatic, contained state termed LTBI, less than 
10% of patients will eventually develop clinical manifestations 
of TB. There is also a spectrum of varying symptoms, micro-
biologies, immune responses and pathologies between TB and 
LTBI. For example, active TB can have different patterns of lung 
involvement. Some LTBI with higher burden latent infection 
share a similar molecular transcriptional signature with active 
TB.20 The limited sample size may be the third possible reason. 
Therefore, the accuracy of our biomarkers will likely improve 
with further stratification of the disease as well as an increase 
in participants. Moreover, the RF model can be optimised by 
changing the RF architecture (eg, number of trees, depths of the 
individual trees, parameter tuning).

Direct detection of Mtb and its antigens provide evidence 
of TB, yet few reports are currently available. This is likely 
because Mtb is not a blood-borne pathogen and, as such, Mtb 
antigen concentration in the circulation is extremely low.21 22 
One technology that has shown promise in diagnosing TB 
is a nano-dish based technology that detects Mtb antigen-
derived peptides in plasma; however, it has not been validated 
in a larger cohort TB.23 Expensive technology platforms that 
require extensive training to operate (eg, mass spectrometry) 
might restrict its clinical application, particularly in rural areas. 
Since Mtb infection elicits strong host responses, it has been 
generally accepted that host proteins might be useful, alter-
native markers for TB diagnosis.24 Several groups have identi-
fied host-derived biomarkers of TB with the Luminex platform 
using blood culture supernatant (ie, QuantiFERON).25 26 This 
platform is limited to analysing ≤50 proteins at a time, which 
may impede biomarker discovery studies. Only one sample can 
be analysed at a time as well. Thus, the analysis of unstimu-
lated and stimulated Mtb factors for TB diagnosis will decrease 
the throughput in clinical applications.25

In this study, a high throughput antibody array enabled the 
screening of 640 host proteins in Mtb antigen-stimulated 
whole blood culture, which resulted in the identification of an 
eight-protein biosignature for TB. Among them, MIG in blood 
culture supernatant has been previously reported as a candidate 
biomarker for Mtb infection,27 whereas serological I-TAC, MIG 
and I-309 have been implicated as biomarkers of TB.28–30 The 
concentration of Granulysin in serum is inversely correlated with 
increased IFN-γ levels in culture supernatant, and has also been 
suggested as biomarker of Mtb infection.31 Notably, our study 
identified several host proteins, such as FAP, Furin, LYVE-1 and 
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MEP1B, which have not been previously reported as potential 
TB biomarkers. FAP is a member of the S9B prolyl oligopepti-
dase subfamily, which is believed to control fibroblast growth or 
epithelial-mesenchymal interactions during development, tissue 
repair and epithelial carcinogenesis.32 Interestingly, another 
member of the S9B subfamily, DPPIV, is enriched in pleural fluid 
and is useful for diagnosing tuberculous pleurisy.33 LYVE-1 is a 
marker of lymphatic vessels and its mRNA was highly expressed 
in lymph nodes from macaque infected with Mtb.34 Furin is a 
proprotein convertase that cleaves proteins downstream of a 
basic amino acid target sequence.35 In addition to processing 
cellular precursor proteins, Furin is also utilised by a number of 
pathogens, such as HIV and the influenza virus.36 Although the 
role of Furin in TB pathogenesis is unknown, expression of Furin 
in T-cells is required for the maintenance of peripheral immune 
tolerance. We hypothesise that decreased Furin expression in TB 
contributes to excessive T cell activation, which results in tissue 
damage.

A comparison of our in-house culture system with the QFT-IT 
assay to simulate the whole blood showed that our culture 
system has better sensitivity and specificity than the QFT-IT 
assay. The improved accuracy with our in-house culture system 
may be due to a biassed diagnostic model, which was built using 
data collected from our culture system that may have different 
antigens than the QFT-IT assay.

Patients infected with HIV were excluded from this study 
because HIV infections increase the risk of TB. However, it 
would be interesting to evaluate the performance of the eight-
protein biosignature in a prospective HIV-positive TB cohort 
since HIV infection may affect the host protein response to Mtb 
infection.

In summary, an eight-protein biosignature capable of diag-
nosing TB from HC, LTBI and PN in a high-burden TB clinic 
setting was identified using a two-round screening strategy.
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