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a b s t r a c t

We present an early version of a Susceptible–Exposed–Infected–Recovered–
Deceased (SEIRD) mathematical model based on partial differential equations
coupled with a heterogeneous diffusion model. The model describes the spatio-
temporal spread of the COVID-19 pandemic, and aims to capture dynamics also
based on human habits and geographical features. To test the model, we compare
the outputs generated by a finite-element solver with measured data over the
Italian region of Lombardy, which has been heavily impacted by this crisis between
February and April 2020. Our results show a strong qualitative agreement between
the simulated forecast of the spatio-temporal COVID-19 spread in Lombardy and
epidemiological data collected at the municipality level. Additional simulations
exploring alternative scenarios for the relaxation of lockdown restrictions suggest
that reopening strategies should account for local population densities and the
specific dynamics of the contagion. Thus, we argue that data-driven simulations
of our model could ultimately inform health authorities to design effective
pandemic-arresting measures and anticipate the geographical allocation of crucial
medical resources.
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1. Introduction

The outbreak of COVID-19 in 2020 has caused widespread disruption throughout the world, leading
to substantial damage in terms of both human lives and economic cost. To arrest the spread of the
disease, governments have enacted unprecedented measures, including quarantines, curfews, lockdowns,
and suspension of travel. The wide-reaching ramifications of such measures, deemed by many experts as
necessary, are driven in part by a lack of clear information about the spatio-temporal spread of COVID-19.
Indeed, the absence of reliable data regarding disease transmission has necessarily led to cautious responses.
These recent events, which have required important decisions based on forecasts, have demonstrated more
than ever the need for reliable tools intended to model the spread of COVID-19 and other infectious
diseases [1]. A particularly urgent need is the geo-localization of outbreaks, as this may allow a more effective
allocation of medical resources.

Several notable models of this outbreak have been presented; indeed, at the time of this writing there
are over 1000 COVID-19 articles on MedRXiv, many of which address the modeling of disease spread. Some
models aim at offering specific evaluations of policy responses based on the implementation of different social
distancing measures with combined compartmental and empirical approaches [2–4]. Rather than adopting a
deterministic, mechanism-based model, Zhang et al. employed a statistical approach to analyze the spatio-
temporal dynamics of COVID-19 [5]. In Gatto et al. a combined statistical and compartmental approach
was employed, in which spatial dependence is addressed by dividing the region of interest (Italy) into local
communities connected by a network structure [3].

Here, we propose an alternative approach, using a partial-differential-equation (PDE) model designed
to capture the continuous spatio-temporal dynamics of COVID-19. We leverage a compartmental SEIRD
(susceptible, exposed, infected, recovered, deceased) model that incorporates the spatial spread of the disease

ith inhomogeneous diffusion terms [6–9]. The rationale is that the diffusion operator, properly tuned to
ccount for local natural or social inhomogeneities (e.g., mountains, rivers, highways) may describe the local
ovement of the different populations in a deterministic way, as the limit of a Brownian motion [10]. This

s critical to accurately account for information relevant to the outbreak dynamics, such as local population
ensities, which vary in space and time. While a mathematical description of non-local dynamics is still
ossible in terms of fractional differential operators [11], we postpone this approach to a follow-up of the
resent work.

Hence, our modeling approach is more appropriate for the local dynamics on mesoscales, such as regions
ithin Italy. Thus, to evaluate the model efficacy, we run a simulation study of the COVID-19 outbreak in

he Italian region of Lombardy, which has been severely impacted by the COVID-19 crisis between February
nd April of 2020 and for which the necessary data was available. Also, the high density of Lombardy’s
opulation and transportation network is specifically suitable to our modeling approach. Our simulations
how a remarkable qualitative agreement with the reported epidemiological data. We further explore
arious reopening scenarios, obtaining contrasting results that highlight the importance of considering local
opulation densities and contagion dynamics.

The paper outline is as follows. In Section 2, we describe the SEIRD model. Then, Section 3 addresses
he numerical implementation of our model and Section 4 presents the results of the simulation study in
ombardy. We conclude in Section 5 by examining the shortcomings observed from our simulations and
iscussing the additional work required to improve model accuracy and practical relevance.

. Model

Let Ω ⊂ R2 be a simply connected domain of interest and [0, T ] a generic time interval. We denote the

ensities of the susceptible, exposed, infected, recovered and deceased populations as s(x, t), e(x, t), i(x, t),
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r(x, t), and d(x, t) respectively. Also, let n(x, t) denote the sum of the living population; i.e., n(x, t) =
s(x, t) + e(x, t) + i(x, t) + r(x, t). Then, our model is comprised of the following system of coupled PDEs
over Ω × [0, T ]:

∂ts = αn − (1 − A/n) βisi − (1 − A/n) βese − µs + ∇ · (n νs∇s) (1)
∂te = (1 − A/n) βisi + (1 − A/n) βese − σe − ϕee − µe + ∇ · (n νe∇e) (2)
∂ti = σe − ϕd i − ϕri − µi + ∇ · (n νi∇i) (3)
∂tr = ϕri + ϕee − µr + ∇ · (n νr∇r) (4)
∂td = ϕd i, (5)

where α is the birth rate, σ is the inverse of the incubation period, ϕe is the asymptomatic recovery rate,
ϕr is the infected recovery rate, ϕd is the infected mortality rate, βe is the asymptomatic contact rate, βi is
the symptomatic contact rate, µ is the general (non-COVID-19) mortality rate, and νs, νe, νi, and νr are
diffusion parameters respectively corresponding to the different population groups. Each of these parameters
may depend on time, space, or the model compartments. We also consider the Allee effect (depensation),
characterized by the parameter A. In this particular setting, the Allee effect serves to model the tendency
of outbreaks to cluster towards large population centers. Specific parameter selection as well as initial and
boundary conditions are discussed in Section 3.

Fig. 1 shows the dynamics of contagion between the compartments in our model. We remark that our
model accounts for asymptomatic transmission, which is considered a pivotal driver of the COVID-19
pandemic [4,12,13]. Eqs. (1)–(2) show that exposed asymptomatic patients may transmit COVID-19 to
susceptible individuals at contact rate βe. This aligns with recent studies suggesting that patients may
transmit COVID-19 almost immediately after exposure [4,12,13]. Additionally, Eqs. (2) and (4) involve
a fraction ϕe of exposed patients who do not develop symptoms and move directly into the recovered
population. We also assume that recovered patients are immune, as we do not include any backflow from
Eq. (4) to Eq. (1). (We note that this is a current source of debate, but consistent with the existing literature
for the time scale of months considered here [14]). The spatial movement over a large population is described
by an inhomogeneous random walk, which in the limit tends to a second order differential operator [10].
The diffusivity coefficient is proportional to the population and can be locally adjusted to incorporate
geographical or human-related inhomogeneities [7].

3. Numerical implementation

We use a finite-element spatial discretization of the Italian region of Lombardy, consisting of an
unstructured mesh containing 30,407 triangles (a mesh convergence analysis was first performed; data not
shown). We use the backward-Euler method for time integration and solve each time step fully implicitly
with a Picard iteration for stability. The resulting linear systems are solved by the GMRES algorithm using
a Jacobi preconditioner.

Initial conditions for the subpopulations s, e, i, r, and d in the model are defined by means of Gaussian
circular functions centered at the latitude and longitudinal coordinates of each municipality with 10,000
or more inhabitants, and weighted by the municipality’s population size and geographic area. These initial
conditions correspond to the data provided by Lab24 [15] from the date 27 February 2020, featuring a severe
outbreak in the province of Lodi, and moderate numbers of exposed and infected individuals in the provinces
of Bergamo, Brescia, and Cremona (see Fig. 2). We used homogeneous Neumann boundary conditions for
simplicity, mimicking a complete isolation of the region. We acknowledge that this is likely unrealistic (e.g. if

lockdown orders are relaxed) and will be considered in future efforts.
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Fig. 1. Flow chart describing the dynamics of contagion between the population subgroups considered in our model.

We assume σ = 1/7 day−1, ϕr = 1/24 day−1, ϕd = 1/160 day−1, and ϕe = 1/6 day−1. These values were
ased on available data from the literature regarding the mortality, incubation period, and recovery time for
nfected and asymptomatic patients [2,4,12,13,16]. Additionally, we do not consider births or non-COVID-19
ortality (i.e., we set α = 0 and µ = 0, respectively), given the time scale of months in our simulations.
The remainder of the model parameters is estimated in a two-step approach. First, we fit a 0D SEIRD

ersion of our model (i.e., consisting of a system of exclusively time-dependent ordinary differential equations
nd no diffusion terms) to match the temporal dynamics of the outbreak. Then, we iteratively refined these
alues by means of recursive simulations using Eqs. (1)–(5) to match the spatio-temporal epidemiological
ata. We use the R2 coefficient and the root mean squared error (RMSE) to assess the goodness-of-fit.

Given the uncertainty in the currently available COVID-19 data, we think that parameter estimation
iming at matching the dynamics of all model compartments is not viable. As not every member of the
opulation is tested for infection and asymptomatic cases are known to exist in possibly large numbers, we
hink that the available data of infected cases might lead to unrealistic parameter fitting. Conversely, the
ata reported for COVID-19 deaths offer more reliability to calibrate the model parameters. Therefore, we
ursue quantitative agreement in the deceased compartment (i.e., d), and qualitative agreement for the rest
f the model subgroups (i.e., s, e, i, r). In Section 4, our results will focus on the model forecasts of exposed
nd infected cases because these are key data for public health officials, e.g., in deciding resource allocation
nd measures to prevent contagion.

We assume βi and βe to be equal, as precise estimates on the relative infectivity levels between the
ymptomatic and asymptomatic pools are unclear [12]. We define βi,e with decreasing piecewise constant
alues in time to model the escalation of the lockdown restrictions. Following the results of parameter
alibration, we initially set1 βi,e = 3.3 · 10−4 persons−1·day−1 on 27 February 2020, reducing this to
i,e = 8.5 · 10−5 persons−1·day−1 after the first lockdown measures on 9 March 2020, to βi,e = 6.275 ·

10−5 persons−1·day−1 after the additional restrictions on 22 March 2020, and to βi,e = 4.125 · 10−5

persons−1·day−1 following the final restrictions on 28 March 2020. Similarly, we assume νs,e,r = 0.0435,

1 We call “persons” the unit measure for the populations. In other papers, this is called “contacts”.
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Fig. 2. Model forecast of COVID-19 spread in Lombardy. (A) Main areas affected by the pandemic in Lombardy. (B) Initially, the
main affected areas are Lodi and Cremona and, to lesser extent, Bergamo and Brescia. (C–E) Our model predicts increasing exposures
in Bergamo and Brescia. The outbreak in Lodi soon moves north into the Milan metro area, where it further spreads despite the
lockdown restrictions. (F) The model also predicts that governmental restrictions eventually succeed in reducing the exposure to the
disease, which is faster in Brescia and Bergamo than in Milan. (G) Cumulative curves of infections according to reported data (dots)
and simulations (dashed lines) for the three main areas of contagion: Bergamo, Brescia, and Milan. The model has been calibrated to
match the data reported for the deceased subgroup, resulting in a forecast of a larger number of infections. To highlight the qualitative
agreement of our simulations, we also show the numerical results scaled to match the order of magnitude of the reported infectious
data (solid lines).

0.0198, 0.0090, and 0.0075 km2· persons−1· day−1 over the respective phases. The Allee term A is set to
1000 persons, and we fix νi = 1.0 · 10−4 km2· persons−1· day−1 throughout, assuming that symptomatic
ndividuals are largely immobile.

. Results

.1. Forecasting the spatio-temporal dynamics of the COVID-19 pandemic in Lombardy

Fig. 2 shows the evolving spatial pattern of the COVID-19 outbreak in Lombardy, beginning with
xposure in Bergamo, Brescia, Cremona and Lodi. The contagion moves north from Lodi into Milan via the
outhern suburbs and eventually reaches the city center. We note that although Lodi and Cremona are the
ost affected areas at the onset of the outbreak, they quickly improve and avoid the explosive growth found

n Milan, Bergamo and Brescia. This is consistent with the reported data [15]. However, we found Cremona
o be somewhat underpredicted by our model. This might be attributable to the presence of the neighboring
ity of Piacenza, which shares its metropolitan area with Cremona but is not included in our simulations
ecause it belongs to the adjacent region of Emilia-Romagna. The inclusion of a possible inflow of infected
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Fig. 3. Effect of the boundary conditions: a spike of the outbreak in Cremona (black arrow) induced by an inflow of individuals from
iacenza, a city in Emilia Romagna southbound of Lombardy.

hrough the southern border with Emilia-Romagna does show a small spike in Cremona, as reported in Fig. 3.
In this case, in the absence of available data, we postulated with an educated guess an abnormal influx from the
South (100 susceptible persons Km−1 day−1), 1 exposed person Km−1 day−1, 1 infected person Km−1 day−1).
This result pinpoints the importance of an accurate calibration of the boundary conditions.

In Fig. 2, we demonstrate the remarkable qualitative agreement in the outbreak dynamics between our
model forecasts and data in the three main affected areas: Milan, Bergamo, and Brescia. The R2 between the
model forecast and the data of infected cases are 0.997, 0.977, 0.976, and 0.998 for all Lombardy, Bergamo,
Brescia, and Milan, respectively. We observe that the outbreak emerges in Milan later, where it grows more
steadily, eventually becoming the most affected area in Lombardy. We also note that the lockdowns appear
to have effectively halted the spread in Bergamo and Brescia. These restrictions notably reduce the spread
in Milan, limiting the virus to a linear growth pattern, but fail to stop it.

We observe that our simulations predict a larger number of infections than the reported data. This results
from using the data for deceased cases for calibration, which is comparatively more accurate than infections
(see Section 3). We obtained R2 = 0.972 and range-normalized RMSE = 7.6% for this subgroup. Thus, the
difference in predicted and measured infections suggests a lack in the reporting of real cases, probably due
to the deficiencies and difficulties of testing a significant sample of the whole living population. However,
we also remark that COVID-19 mortality data depend on the currently unknown transmission rates, which
emphasizes the importance of qualitative agreement to test novel modeling approaches. To this end, we show
that it is possible to rescale our simulation results to accurately match the order of magnitude of the reported
infected case data Fig. 2, though we emphasize that this is purely for the purposes of visualization.

4.2. Exploring alternative reopening scenarios

We further use our model to assess four illustrative reopening scenarios over four months following 27
February 2020: maintenance of restrictions, relaxation of the lockdown everywhere on 3 May 2020 under
two different sets of assumptions, and a combination of maintenance of restrictions in Milan and relaxation
elsewhere in Lombardy. We still consider the changes in parameter values induced by the sequential
restrictions (see Section 3) and the lockdown relaxation is modeled by setting νs,e,r = 2.175 · 10−2 km2·
persons−1· day−1 and βi,e = 9.0 · 10−5 persons−1·day−1 (scenario A), and βi,e = 6.6 · 10−5 persons−1·day−1

(scenario B). Scenario A is a pessimistic scenario, which assumes that the population contact rate is similar to
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Fig. 4. Results of simulations over alternative reopening cases. (A) Cumulative infected cases in Lombardy over the different reopening
cenarios. Our simulations suggest that maintaining a strict lockdown outside of Milan offers little benefit; however, keeping lockdown
estriction in Milan may prevent explosive growth. (B) Comparison of the cumulative infections in the three largest metropolitan areas
i.e., Bergamo, Brescia and Milan) for the global reopening A (GR A, dashed lines), global reopening B (GR B, dotted lines), and
aintenance of lockdown (L, solid lines).

arly-outbreak levels. Scenario B is more optimistic and assumes that the generally greater public awareness
f preventative measures (such as mask-wearing and social distancing) translates to greater success in
imiting contact, despite increased mobility.

Fig. 4 shows the resulting outbreak dynamics for these four reopening scenarios. Our simulations suggest
hat relaxing the lockdown restrictions in the entire region may cause severe and rapid growth in the
ilan area. However, major urban zones far from Milan (e.g., Brescia and Bergamo) just experience a
arginal increase in growth and still show a favorable trend in time. Conversely, if we maintain the lockdown

estrictions in Milan and relax them elsewhere, the outbreak shows more favorable dynamics, similar to
hose obtained for Brescia and Bergamo. Thus, our results suggest that maintenance of lockdown measures
n high-population, high-density areas like Milan may be necessary for longer times to effectively arrest the
pread of contagious diseases like COVID-19.

. Discussion

We have introduced a compartmental PDE model describing spatio-temporal propagation of disease
ontagion and applied it to the 2020 outbreak of COVID-19 in Lombardy specifically. Our simulations
re intended to provide a proof-of-concept of the potential of PDEs for regional modeling of the outbreak.
onetheless, they show good qualitative agreement with reality, accurately predicting the outbreak dynamics

n different areas and recreating the transmission path in time and space. We then used the model to examine
ome possible reopening scenarios, which suggested that reopening may be best determined based on local
opulation and contagion dynamics, and not by a one-size-fits-all approach.

Our model is in a very early stage, with ample room for improvement. We plan to consider non-
onstant model parameters and adaptively update them according to measured data using data-assimilation
rocedures [17]. Indeed, as more reliable data becomes available, we can further extend parameter calibration
o fit data for additional model compartments other than the deceased subgroup. A significant issue when
onsidering complex geographical domains is the quantification of the boundary conditions. Should data
ot be available, boundary conditions can be defined realistically by including 0D SEIR models describing
he fluxes to neighboring regions, similar to what was done for cardiovascular problems (see, e.g., [18–20]).
dditionally, we used population-dependent diffusion terms, but ideally these could also be affected by

eographical features (e.g., rivers, mountains, roadways, and railways) [7]. Non-local effects like the ones
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modeled by fractional operators can also be included [11]. These considerations may be crucial whenever
using the model in larger geographical domains.

We would also like to extend our framework into more sophisticated compartmental models including,
e.g., hospitalizations, patients in intensive care units, or age and biological sex structures [3,4]. This would
further increase the utility of the model, potentially helping decision-makers to determine the allocation of
resources among different areas. The present results clearly pinpoint the current standpoints of virologists,
emphasizing the need of restrictions. Finally, the socio-economical costs of lockdowns are not included here,
but could ultimately be incorporated in future quantitative analyses, e.g., aiming at the comprehensive
optimization of pandemic-arresting measures.
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