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ABSTRACT
The ongoing COVID-19 crisis has put the relationship between spatial structure and disease 
exposure into relief. Here, we propose that mega regions – clusters of metropolitan regions like 
the Acela Corridor in the United States are more exposed to diseases earlier in pandemics. We 
review standard accounts for the benefits and costs of locating in such regions before arguing 
that pandemic risk is higher there on average. We test this mega region exposure theory with 
a study of the US urban system. Our results indicate that American mega regions have born 
the early brunt of the disease, and that three mega regions are hotspots. From this standpoint, 
the extent more than the intensity of New York's urbanization may be implicated in its  
COVID-19 experience. We conclude that early pandemic risk is a hitherto unrecognised 
diseconomy operating in mega regions.
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INTRODUCTION

COVID-19 has already killed 260,000 people, in-
fected more than three million (JHU 2020) and 
disrupted almost every facet of global interaction 
and exchange. In this context, human geogra-
phy needs to become a crisis discipline. The on-
going crises demand our interest because we are 
not insulated from their human and economic 
toll. They demand our professional attention 
because they play out differently across geogra-
phies, and they have a logic that is familiar to the 
geographers – they are inescapably spatial.

That the pandemic is global in reach, 
should not distract from the ways in which it 
is experienced differently in different places. 
Most obviously there are hotspots like Wuhan, 
Lombardy or New York. There are places with 
more ICU beds than cases, and places where 
they must be set up in hallways; places that 
have the infrastructure or economies to shel-
ter in place, and places that do not. If human 

geographers can contribute to some planetary 
understanding of the pandemic, then it will be 
because we are already comfortable with the 
idea that geography matters in social relations.

Similarly, the profile of this pandemic: its 
origin, its spread, its politics should not catch 
human geographers by surprise. There is no 
shortage of instructive work on past episodes 
such as H1N1, AIDS, H591 and SARS (Gould 
1993; Smallman-Raynor & Cliff 2008; Ali & 
Keil 2006; Davis 2006; McLafferty 2010). These 
events are so closely tied to the human/envi-
ronment interaction that the field broadly is 
well-equipped to investigate COVID-19’s na-
ture and interpret its significance.

This paper brings a human-geographic 
approach to the study of COVID-19’s spatial 
diffusion. We show that we can use an estab-
lished geographic concept, the mega region, 
to understand the geography of COVID-19’s 
spread and its economic toll. We propose 
that mega regions – clusters of metropolitan 
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regions like the Acela Corridor in the United 
States– are more exposed to diseases earlier 
in pandemics. The virus which started in the 
seafood markets of Wuhan, China (Sheridan 
2020), ended up in almost every major region. 
However, the transmission of the virus along 
this path seems to have been accelerated by 
mega regions themselves and the social and 
trading relationships that define them.

Our primary goal is to determine if mega re-
gions were implicated in the importation and 
spread of COVID-19. We ask two basic ques-
tions about its spread in the period between 
early February and early April: first, were mega 
regions as a class more exposed to COVID-19? 
Second, are some mega regions more exposed 
than others? To get that this, we map the dif-
fusion of disease mortality, at the mega region 
level, using publicly available data disease data 
aggregated to the megaregion level. The re-
mainder of the paper is organised as follows. 
The following section defines mega regions 
and describes our approach to mapping them. 
The third section reviews standard explana-
tions for why mega regions would be relatively 
more or less attractive from the standpoint of 
human settlement and exchange. The fourth 
proposes that pandemic risk is an underem-
phasised diseconomy of megaregions. The 
fifth section tests this intuition through a short 
study of how COVID-19 spread across the US 
City System. We conclude with thoughts on 
how policy-makers can approach pandemics 
more mega regionally and on how the geog-
raphy community that conduct mega region 
studies.

MEGA REGION ECONOMIES AND 
DISECONOMIES

It is common to describe cities in terms of urban 
economies and diseconomies – characteristics 
that make cities more productive or attractive. 
We argue that the early onset of viral pandem-
ics represents a serious urban diseconomy at 
the mega region scale. The intensity of social 
interaction at this spatial scale is most often a 
source of competitive advantage but can also 
create the infrastructure for rapid disease 
transmission. This is true of modern diseases 
as well as historic cases (Boustan et al. 2013).  

The long-term stability of mega regions will 
depend on their ability to overcome this 
vulnerability.

Mega regions are of metropolitan areas, 
that form contiguous agglomerations. They 
have been discussed in geography since Patrick 
Geddes coined the term ‘megalopolis’ in 1915. 
Lewis Mumford (1938) wrote about it in the 
late 1930s. Jean Gottman (1957) famously de-
fined the term mega region, identifying ex-
tended agglomerations of the Bos-Wash and 
Chi-Pitts mega region.

There are at least two dimensions to pandemic 
vulnerability: earliness of exposure and public 
health resources. Even if the local health infra-
structure is sophisticated, that is if officials are 
good at detecting a disease and marshalling re-
sources to it, then the areas that are first exposed 
will still see relatively higher impacts, because 
early treatment must be conducted under higher 
uncertainty about what measures will work.

Mega regions are most vulnerable in 
terms of when they face pandemic events. 
Pandemics are no more likely to start in mega 
regions than anywhere else, but they are 
more likely to be infected earlier, before the 
disease is properly understood. This was true 
in 1918, when New York had one of the most 
complete public responses to H1N1, but also 
had one of the earliest and highest mortality 
peaks. Cities like Denver were allowed to be 
slower with their response because they were 
not on the frontlines of exposure (Markel  
et al. 2007). Mega regions can channel their 
wealth and economies of scale into public 
health systems, ensuring that they are more 
productive with these resources on a per dol-
lar basis. However, because pandemics will 
always tend to be spawned by novel diseases, 
there will always be a degree of catching up.

In this section, we see that the formation 
of mega regions is advantageous from an eco-
nomic standpoint, but for the same reason may 
open these areas up to earlier exposure to viral 
pandemics like COVID-19.

The metro commuting area designates 
an area over which land and labour costs are 
somewhat constant, that is the area over which 
the ‘The Law of One Price’ is supposed to op-
erate (Samuelson 1952; Storper et al. 2015). 
We can speak of higher housing price level in 
New York than in Philadelphia, or of different 
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labour costs in Amsterdam versus Brussels. 
Mega regions, then, are areas with different 
factor prices but especially high degrees of in-
ter-regional trade.

It is widely accepted that cities that are 
closer together will trade more with each other 
due to lower transactions costs. This is one of 
the implications of the canonical geographi-
cal economics models (Harris 1954; Brakman  
et al. 2001), and a fact that has been extensively 
verified (Hanson 2005; Head & Mayer 2006). 
In the presence of positive trade costs, there 
will be incentives to agglomerate and as these 
costs increase to some viability threshold1 the 
logic of agglomeration becomes more compel-
ling. The desire to minimise costs can explain 
why there are mega regions in much the same 
way that it explains the existence of metro 
areas to begin with (Krugman 1991; Ottaviano 
& Thisse 2001). Such advantages can lead to a 
spatial wage structure, where relatively dense 
regions pay higher real wages, and an uneven 
long-term development pattern.

In addition to trade cost reductions, mega 
regions should realise so-called technological 
externalities, advantages that make workers 
and firms more productive per unit of input. 
An obvious source of such externalities for 
mega regions in particular would be trans-
portation infrastructure. The ‘Bos-Wash’ and 
‘Par-Am-Mun’ regions are good examples. 
Both feature rapid train networks that are 
faster and more regular than train networks 
outside of the region. This is most striking 
in the American case where the Acela train 
network is currently the country’s only high 
speed train link.

A growing number of studies suggests that 
such rail links contribute increased agglomer-
ation and trade (Duranton and Turner 2012; 
Faber 2014). Ahlfeldt and Feddersen (2018) 
exploit the introduction of a new link between 
Cologne and Frankfurt to study causal effects, 
finding that the project increased GDP by an 
average of 8.5 per cent in nearby communi-
ties. In these accounts, agglomeration effects 
tend to be concentrated within extant urban 
agglomerations more than they are distributed 
to previously rural or suburban parts of the rail 
network. The already urban regions gets more 
so. In the German study, a large degree of the 
estimated effect is linked to differential sorting 

of capital and labour, after the introduction of 
the infrastructure rather than a direct causal 
effect.

Educational infrastructure also seems to be 
organised at something closer to the mega re-
gion than the metro level. In the United States, 
almost 69 per cent of first year students at-
tend university within 100 miles of where they 
went to secondary school (Wozniak 2018). Of 
course, not all of these universities are in mega 
regions but the regional catchment area for 
post-secondary education appears to be bigger 
than the commuting shed.

There may also be human capital benefits 
for megaregions that are not available outside 
of them. Educational infrastructure is highly 
concentrated in the 27 mega regions. Only 
two of the top 30 universities in The World 
University Rankings (Times Higher Education 
2020) are found outside of mega regions: 
Cornell and The University of Edinburgh. 
This is consistent with findings in Florida et al. 
(2008) that 85 per cent of patents and 88 per 
cent of author citations accrue to researchers 
in mega regions, compared to only 18 per cent 
of the population.

The observation that mega regions are 
more productive should lead us to wonder 
why there are not more of them, or perhaps 
why everyone does not cluster in the same 
one. Examples of agglomeration diseconomies 
are easy to find. The most basic of these is the 
spatial wage structure. Mega regions may have 
higher real wages (wages adjusted for the local 
price index) but they also have higher nominal 
costs. Activities that are most sensitive to the 
price of labour and land, like manufacturing 
activities, are channelled away from megare-
gions. Similarly, workers on budgets who 
seek standard suburban amenities will tend 
to migrate away from expensive megaregions 
(Glaeser 2007). There tends to be a speciali-
sation between mega regions and other areas 
whereby the former group performs high 
trade cost work that benefits the most from ag-
glomeration and the latter performs low trade 
cost work that is most sensitive to high prices.

There are pure or ‘technological’ disecon-
omies which discourage everyone from cram-
ming into conurbations. A textbook example 
of this would be traffic congestion. Roads and 
transit systems are slower and less comfortable 
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in mega regions. Pollution has historically 
been another one. The great industrial urban 
regions such as the British Midlands and the 
Upper Midwest were also quite polluted. In 
modern times the highest productivity activi-
ties (IT, finance, biotech) are low polluting, so 
any excess pollution in megaregions tends to 
come from the transport of people and not the 
production system, which is oriented to these 
greener activities. However, at a sufficiently 
high scale, vehicle exhaust emissions can be 
deleterious (Zhang & Betterman, 2013).

Our focus here is on the relationship be-
tween mega regions and pandemic events, 
which we distinguish from epidemics, endemic 
diseases and outbreaks. Per WHO guidelines 
(National Center for Biotechnology 2009), a 
pandemic describes a disease event that has 
spread to multiple countries, is continuing 
to spread, and has achieved community-level 
transmission – meaning that it can spread 
under its own momentum without being im-
ported. An epidemic is a milder event where 
community-level transmission is localised to 
one country or region. Endemic diseases, like 
measles and chicken pox, are those that are 
always circulating in a community but are not 
spreading either in a community or between 
communities. Prior pandemics include 2009’s 
H1N1 1968’s H3N2 1957’s H2N2, and 1918’s 
H1N1, known as ‘The Spanish Flu’. Pandemics 
do not need to be very deadly to be so clas-
sified – viruses such as Ebola and AIDS have 
been deadlier. They are distinguished by their 
transmissibility. We are most interested in the 
exposure of mega regions to community-level 
transmission early in an epidemic.

The diseases at the centre of each pandemic 
will have different profiles, owing to the dif-
ferent structures of the virus or bacteria that 
causes them. COVID-19 is a disease caused by 
an underlying virus called SARS-CoV-2, which 
belongs to a family of structures called coro-
naviruses which attack the respiratory system. 
Seven such viruses have been discovered to 
date, including the 2003 SARS outbreaks and 
the more recent MERS, but only SARS-CoV-2 
has been implicated in a pandemic, owing to 
its transmissibility. Our interest, again, is on 
transmissibility of a virus once it has emerged 
and not on its initial emergence. The likes of 
Connolly et al. (2020) and Davis (2006) have 

speculated that diseases propagate at the 
urban edge, where animal/human encounters 
are more common. We are seeking to better 
understand transmission patterns after the ani-
mal-human boundary has been jumped, that is 
the post-zoonosis geography.

Epidemiologists express transmissibility 
through a metric called R0 which corresponds 
with the average number of secondary infections 
that an infected person is expected to cause in 
a susceptible population (Hethcote 2009). When 
this number exceeds 1 then disease incidence 
is expected to increase in a population. A meta 
study of COVID-19 finds that its average R0 is 3.79, 
significantly higher than the number for MERS 
and ‘SARS 1’ (Liu et al. 2020). This is most likely 
because people infected with COVID-19 are most 
contagious at the onset of their symptoms, while 
in the other two cases, transmission was highest 
once symptoms had emerged and patients were 
admitted to hospitals (Cheng et al. 2020; Wu & 
McGoogan 2020).

As geographers, our focus is not on any 
particular kind of viral category but on the 
relationship between pandemics and spatial 
structure. For our purposes, it does not really 
matter that H1N1 is an influenza and SARS-
CoV-2 is a coronavirus because in each case 
there is a pandemic with localised incidence, 
impact and response. On this score, it is use-
ful to consider how epidemiologists approach 
disease transmissions generally. The most 
common approach is SER/SEIR (susceptible/
exposed/infected/recovered) models which 
make assumptions about who has, who might 
get and who has become immune to a disease 
and then model its spread based in an area 
based on the number of people in each cate-
gory. The frontier of epidemiology continues 
to move forward as scientists develop more so-
phisticated understandings of who is in each 
group or how to measure them. There are 
also simulation models which concoct artificial 
communities and measure circulation there. 
The approaches are complementary (Kaiser 
2020; Yang et al. 2020).

There are textbook-level understandings of 
how diseases spread that directly bear on the 
current question. Most relevant is the under-
standing that close human-to-human contact is 
a primary disease vector. Pandemics tend to be 
seeded across the world via air travel networks 
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(Pastore y Pionitti et al. 2019). In fact, more 
regular air travel can explain why even older 
diseases can spread faster and more widely 
under modern conditions (Grais et al. 2003). 
This seems to be true of COVID-19 which is 
transmitted through saliva droplets and spread 
rapidly in the first part of 2020 through air 
networks and was temporarily slowed in places 
that imposed air restrictions (Chinazzi et al. 
2020; Sohrabi et al. 2020).

SARS-CoV-2, then, would seem to be com-
parable to the first SARS (‘Severe Acute 
Respiratory Syndrome’) outbreak of 2002, 
which spread rapidly across air transport net-
works (Shannon & Willoughby 2004; Bowen 
& LaRoe 2006) and via the global city network 
(Ali & Keil 2006). Based on this chronicling 
of the human geography of SARS 1, it is the 
globalised nature of modern interaction that 
seeds such events and explains why they seem 
to be occurring more regularly. If diseases 
themselves are like forest fires – somewhat un-
predictable in where they start – then global 
transportation networks are like the wind–  
reliably spreading the fire to more places.

What has been less emphasised in the geo-
graphic literature to date is the role of daily 
interaction patterns in fanning the flames of 
pandemics. The local pattern is implicated 
in disease transmission because it involves 
frequent contact between the exposed and 
the susceptible. Even with a virus as trans-
missible as SARS-CoV-2, not every interaction 
will transmit the disease. The probability of 
transmission increases considerably, with the 
frequency of exposure. As Pastore y Pionitti  
et al. (2019, p. 18) put it:

The cyclical nature of our commuting pat-
terns tightly couples neighboring cities 
within a few hours. In this way, infections 
that first arrive in a city through airline con-
nections are quickly diffused and spread 
locally. Such coupling is so evident that, 
by simply plotting the commuting patterns 
between neighboring cities, one is able to 
quickly identify the major metropolitan 
areas, even in the absence of any other in-
formation, as these naturally generate stron-
ger flows.

Current research suggest that train networks 
have indeed channelled COVID-19 at the 

community level. Zhao et al. (2020) find that 
the spread of COVID-19 in China was signifi-
cantly predicted by the train network but not 
the car or flight network. A Hong Kong study 
found that the disease was twice as likely to 
have been brought in by high speed train then 
by car or bus (Cheng et al. 2020b).

The mega region is relatively more ex-
posed to each of these disease pathways. A 
disproportionate amount of air traffic in 
the world is concentrated in mega regions. 
Seventeen of the 20 busiest airports in the 
world are found in megaregions (Airports 
International Council 2019). Only Dallas, 
Jakarta and Denver have Top 20 airports out-
side of our mega regions. On the other hand, 
these areas feature extended trading areas, 
where high densities firms, workers and stu-
dents are clustering for the express reason 
of being able to ‘share, match, and learn’ 
(Duranton & Puga 2004) with each other. In 
the language of prominent economic geog-
raphers, the mega region is where the phys-
ical infrastructure that maintains ‘global 
pipelines’ is found but also where there is, 
by virtue of density and industrial structure, 
there is a high degree of ‘local buzz’ (Bathelt 
et al. 2004). For these very reasons, the mega 
region is more susceptible to pandemic 
events. Our analysis emphasises this localised 
process.

Guided by this intuition about mega regions 
and pandemics, we study the early transmis-
sion of COVID-19 in US Mega regions between 
January and April of 2020. Our primary goal is 
to determine if mega regions were implicated 
in the importation and spread of COVID-19. 
We ask two basic questions about its spread in 
the period between early February and Early 
April:

1.	 Were mega regions as a class more exposed 
to COVID-19?

2.	 Were some mega regions more exposed 
than others?

DEFINING AND IDENTIFYING MEGA 
REGIONS

Mega regions are clusters of metropolitan areas- 
contiguous urban areas that extend well beyond 
the daily commuting range. The mega region 
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convenes industries, organisations, and infra-
structures. Amsterdam and The Hague are in the 
same metropolitan region because there is a high 
degree of regular daily travel between the loca-
tions. Amsterdam and Brussels are in the same 
mega-region because there is regular interaction: 
transportation, learning, trading among them.

The commuting area is a useful unit of eco-
nomic geography because it attempts to capture 
the organic extent of an area’s economy. For the 
purposes of economic and social analysis, it is 
usually superior to jurisdictional boundaries like 
cities or states. However, even when it is drawn 
with great care, the metro area does not entirely 
represent the scale of the regional economy. 
There are other scales at which organic human 
and economic activity is contained. The smaller 
area over which the retailer geography studies. 
We propose that an analysis of how regions are 
affected by pandemics should consider the mega 
region: the scale at which commuting areas 
themselves cluster.

Some metros are urban islands while oth-
ers are joined to extended urban formations. 
These clusters of cities are mega regions 
(Florida et al. 2008; Innes et al. 2010; Marull 
et al. 2013; Mellander et al. 2015). The ‘Acela 
Corridor’ which connects the area that runs 
from Greater Boston to Great New York and 
south to Greater Washington DC is the most 
famous American instance of this, but there 
are 28 such extended agglomerations in the 
world according to our estimates, and 12 
such US regions. The Dutch Randstad region 
(Amsterdam, Rotterdam, The Hague and 
Utrecht) is itself part an even larger region 
(‘Par-Am-Mun’) that connects these cities to 
Paris, Brussels and Munich.

Researchers have used economic and demo-
graphic data to more precisely define mega re-
gional clusters. A 2005 study (Lang & Dhavale 
2005) identified 10 US mega regions based on 
their commuting patterns. While such data 
enable the identification of mega regions in 
a specific country or economic regions, com-
paring these data across national contexts has 
made it virtually impossible to systematically 
identify and define mega regions globally.

An alternative approach is to use to night-
time satellite data. Here, brightly lit areas that 
stretch across multiple labour markets are in-
terpreted as megaregions. The advantages of 

this approach are two-fold: it defines urbanity 
through a globally consistent rule, and it uses 
standardised global data. If there is a consistent 
relationship between nighttime light levels and 
economic activity, then this approach should 
capture it. Using this methodology, Florida and 
colleagues (2008) identified 40 such contigu-
ous urban areas across the world. A follow-up 
study (Mellander et al. 2015) compared these 
nighttime images to data on settlement and 
economic activity to determine how predictive 
satellite images were of actual human activity. 
That found that luminosity mostly varied with 
population, especially, population density and 
was only moderately associated with population 
level and the density or level of economic ac-
tivity, confirming that satellite technology can 
be used to map the extent of human agglom-
eration. The study also suggested that light 
tended to be overestimated in the largest cities, 
and underestimated in rural areas, a finding 
that points to a more troubling type of mea-
surement areas. The relative under-detection  
of rural light may, at its extreme, lead to an 
overestimation of the extent of relatively urban 
mega such as the Boston-Washington corridor.

Advances in technology have brought about 
much better satellite imagery that can be 
used to more precisely define urban agglom-
erations. In 2015, the National Oceanic and 
Atmospheric Administration began to release 
data using superior satellite equipment and 
under a new standard, the Visible Infrared 
Imaging Radiometer Suite (VIIRS). The new 
technology is superior to the older, Defense 
Meteorological Satellite Program (DMSP) 
standard due to its greater image resolution, 
its ability to distinguish ‘normal’ nighttime 
lights from gas flares and fires, and its superior 
dynamic range (Elvidge et al. 2013), among 
other things. Although this new data is still 
being understood, it appears to be a significant 
improvement (Proville et al. 2017). Crucially, 
VIIRS data appears to reduce large city bias. 
Shi et al. (2014) indicate that the error rate is 
23 per cent lower for large cities and 27 per 
cent lower for urban areas.

Adler et al. (2020) use ‘Day/Night Band’ 
VIIRS images to re-survey global mega regions, 
allowing for mega regions to be identified with 
more precision than in prior mega region 
studies (Florida et al. 2008; Innes et al. 2010;  
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Marull et al. 2013; Yang et al. 2011). An algo-
rithm is used to detect the level of brightness 
and proximity of urban regions. Areas where 
multiple metropolitan areas are joined by 
bright lights are identified as megaregions. 
They rely on government metropolitan data as-
sembled by the Brookings Institute (2020) for 
metropolitan area definitions. Dias (2019) de-
scribes the methodology in detail and provides 
reproducible code. That set of estimates is the 
basis for the current analysis.

Table  1 lists this new set of global mega re-
gions. Under these boundaries, The Randstad 
forms the northern part of a mega region that 
includes nearly all the Netherlands, Belgium 
and Luxembourg, as well as the larger Rhine-
Ruhr metro area and Frankfurt. For its part, New 
York is part of a region that extends from Boston, 
through Philadelphia and past Washington DC.

All major cities form the center of major 
metro areas but not all major metro areas 
are centred on mega regions. Fifteen of the 

largest 27 areas in the world (Brookings 
2020) are part of mega regions (See Table 2). 
Large regions in more developed coun-
tries are generally more likely to be part of 
mega regions. The largest metros that are 
not part of larger mega regions are Jakarta, 
Chongqing, Mumbai, Delhi and Dhaka – 
each from a middle or low-income country. 
The very large metros in developed countries 
(e.g. Tokyo, Seoul, New York, London) are 
all themselves part of mega regions. China 
has three mega regions (Beijing, Shanghai, 
Hong-Shen and Shandong) and several other 
major metros that are not so identified, in-
cluding Chongqing and Chengdu.

We investigate this question with the help 
of publicly available data from the COVID 
Tracking Project (www.covid​track​ing.com) 
which aggregates daily state agency data on 
COVID cases and deaths at the county level. 
This dataset is the only attempt that we know 
of to harmonise data from local authorities  

Table 1.  The 28 global mega-regions including forming metros, population (millions) and GDP (US$ billions)

Region Major cities Population Economic output

Bos-Wash New York; Washington, D.C.; Boston 47.6 3650
Par-Am-Mun Paris, Amsterdam, Brussels, Munich 43.5 2505
Chi-Pitts Chicago, Detroit, Cleveland, Pittsburgh 32.9 2130
Greater Tokyo Tokyo 39.1 1800
SoCal Los Angeles, San Diego 22.0 1424
Seoul-San Seoul, Busan 35.5 1325
Beijing Beijing, Tianjin 37.4 1226
Lon-Leed-Chester London, Leeds, Manchester 22.6 1177
Hong-Shen Hong Kong, Shenzhen 19.5 1043
NorCal San Francisco, San Jose 10.8 925
Shanghai Shanghai, Hangzhou 24.2 892
Taipei Taipei 16.7 827
Sao Paolo Sao Paolo 33.5 780
Char-Lanta Charlotte, Atlanta 10.5 656
Ista-Burs Istanbul, Bursa 14.8 626
Vienna-Budapest Vienna, Budapest 12.8 555
Mexico City Mexico City 24.5 524
Rome-Mil-Tur Rome, Milan, Turin 13.8 513
Singa-Lumpur Singapore, Kuala Lumpur 12.7 493
Cairo-Aviv Cairo, Tel Aviv 19.8 472
So-Flo Miami, Tampa 9.1 470
Abu-Dubai Abu Dhabi, Dubai 5.0 431
Osaka-Nagoya Osaka, Nagoya 9.1 424
Tor-Buff-Chester Toronto, Buffalo, Rochester 8.5 424
Delhi-Lahore New Delhi, Lahore 27.9 417
Barcelona-Lyon Barcelona, Lyon 7.0 323
Shandong Jinan, Zibo, Dongying 14.2 249
Fresno-Field Fresno, Bakersfield 2.3 108

http://www.covidtracking.com
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(i.e. the level at which US public health records 
are kept). However, as its compilers themselves 
note the degree of testing and coding deci-
sions will tend to vary somewhat by state. That 
combined with the novel nature of the under-
lying virus should suggest that this data is not 
as reliable as regular government estimates. 
Data for our study was accessed on 2 May 2020 
and should not be considered fully current 
through that date due to lags in reporting in 
some states.

In the US, counties are administrative 
units that are aggregated into metropolitan 
areas by the federal government, they can 
be used to aggregate up to metro and mega 
units. We treat counties in the following 11 
mega region areas as the experimental unit 
of our analysis:

•	� ‘Bos-Wash’ is centred on the Acela-serving 
portion of America’s mid-Atlantic region, 
extending north to Portland Maine and 

South to Richmond Virginia and as far 
inland as Harrisburg Pennsylvania.

•	� ‘So-Cal’ radiates west from the city if Los 
Angeles to the Pacific Ocean, east across 
the Inland Empire to Riverside and south 
through Orange County to San Diego 
and Tijuana. Only the American portion 
of this region is covered in the empirical 
estimates.

•	� ‘Char-Lanta’ connects Atlanta and 
Charlotte, extending west to Knoxville 
Tennessee and southeast to Charleston 
South Carolina. It includes the major 
North Carolina research centres of 
Raleigh, Durham, and Chapel Hill.

•	� ‘Det- Pitts’ sits on the eastern edge of the 
greater Industrial Midwest, bridging the 
traditional auto manufacturing centres 
of Detroit and Flint and the traditional 
steel centre of Pittsburgh. It also includes 
Cleveland and Columbus, Ohio

Table 2.  The largest 28 metros in the World Metro Data from Oxford Economics via Brookings (2018)

Metro Country Mega-region Population GDP

Tokyo Japan Greater Tokyo 37,738 $1,739,789
Jakarta Indonesia None 32,111 $726,205
Chongqing China None 30,656 $500,690
Seoul South Korea Seoul-Busan 25,288 $954,774
Shanghai China Shanghai 24,592 $891,765
Beijing China Beijing 21,952 $713,401
Mexico City Mexico Mexico City 21,468 $490,623
Sao Paulo Brazil Sao Paolo 21,406 $551,450
New York United States Bos-Wash 20,227 $1,663,263
Mumbai India None 20,209 $340,317
Delhi India None 19,419 $354,506
Osaka Japan Osaka-Nagoya 18,711 $737,027
Dhaka Bangladesh None 18,234 $140,835
Karachi Pakistan None 16,484 $114,823
Bangkok Thailand None 16,334 $549,961
Tianjin China Beijing 16,042 $512,442
London United Kingdom Lon-Leed-Chester 15,150 $908,103
Istanbul Turkey Ista-Burs 15,047 $626,006
Cairo Egypt Cairo 14,814 $347,609
Kolkata India None 14,758 $108,897
Chengdu China None 14,664 $337,901
Buenos Aires Argentina None 14,191 $311,814
Lagos Nigeria None 14,078 $163,734
Guangzhou China Hong-Shen 13,807 $569,766
Manila Philippines None 13,385 $308,270
Los Angeles United States So-Cal 13,377 $1,009,090
Paris France Par-Am-Mun 12,650 $844,687
Moscow Russia None 12,388 $811,896
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•	� ‘Nor-Cal’ is the region surrounding 
the San Francisco Bay, including San 
Francisco, San Jose, Sacramento and 
Stockton.

•	� ‘Chi-Waukee’ connects Chicago and 
Milwaukee and also includes metro 
portions surrounding Lake Winnebago 
(Appleton, Fond du Lac, Oshkosh) and 
Northern Indiana (Fort Wayne, Elkhart, 
South Bend).

•	� ‘Mid-Flo’ contains Orlando, Tampa and 
Deltona, the major metropolitan areas 
north west of the Everglades. That na-
tional park creates a significant barrier 
between Miami/Palm Beach and this 
great urban expanse.

•	� ‘San-Austin’ bridges the urban and exur-
ban regions that surround San Antonio 
and Austin Texas along Interstate 35.

•	� ‘Louis-Apolis’ runs north on Interstate 45 
from Louisville to Indianapolis. It, inter-
estingly enough, does not include nearby 
Cincinnati.

•	� ‘The Bayou’ extends east from New 
Orleans along the Gulf of Mexico into 
Gulfport, Mobile and Pensacola. We 
can be more confident that the light 
detected in this region originates with 

actual human activity and not oil-refining 
processes.

•	� ‘Fresno-Field’ stretches across California’s 
Central Valley, including the farming re-
gions of Fresno, Visalia and Bakersfield.

Figure 1 maps all mega regions in North 
America, including these.

We compare the 388 counties found in 
these megaregions to 2,282 counties found 
outside. The latter category is subdivided into 
rural counties and metro counties (‘smallest’, 
‘small’, ‘medium’, ‘large’, ‘largest’) at each 
metro size quartile. Of these the ‘largest’ cat-
egory, which includes metro areas like Dallas, 
Houston, Miami and Seattle is the most rele-
vant benchmark for what is happening inside 
of mega regions.

When studying COVID-19 transmission, it 
is important to choose the appropriate out-
come measures Comparing prevalence and in-
cidence of COVID-19 cases (those who tested 
positive) is not a good measure of the subna-
tional impact and spread of the virus due to the 
unevenness of inter- and intra-state COVID-19 
testing. For example, as of 12 April the testing 
rate in Louisiana was five times higher than 
that of Texas.1 Instead the analysis will con-
centrate on a more concrete variable: deaths. 

Source:  originally from City Lab (https://www.citylab.com/life/2019/02/global-megaregions-economic-
powerhouse-megalopolis/583729/).

Figure 1.  North America’s mega regions. [Colour figure can be viewed at wileyonlinelibrary.com]

https://www.citylab.com/life/2019/02/global-megaregions-economic-powerhouse-megalopolis/583729/
https://www.citylab.com/life/2019/02/global-megaregions-economic-powerhouse-megalopolis/583729/
www.wileyonlinelibrary.com
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Although deaths do not capture the full spread 
of the disease (as many people recover), the 
undercount will be less dramatic and can be 
minimised further using statistical controls.

Were mega regions as a class more exposed 
to COVID-19? – COVID-19 did not start in a 
megaregion but once it spread to megaregions, 
it grew faster. The first confirmed case of 
COVID-19 in the United States on 21 January 
2020 was a 35-year-old man in Snohomish 
County, Washington who had recently returned 
from Wuhan, China. Snohomish County is 
in the Seattle-Tacoma-Bellevue metro – not 
a megaregion, according to our definition 
however part of the ‘Cascadia’ mega region 
(Florida et al. 2008). The first confirmed 
COVID-19 death on 29 February 2020 also 
occurred in the Seattle-Tacoma-Bellevue 
metro. The first death in a megaregion (Placer 
County, California in the Sacramento-Arden-
Arcade-Roseville metro) occurred four days 
later on 4 March 2020. From there, the death 
count continued to grow in both ‘largest’ 
and megaregions and by 14 March 2020 half 
of the day’s deaths were in megaregions (5  
of 10). From that day onward, the proportion of 
deaths in megaregions continued to grow until 
13 April when they plateaued at approximately 

82 per cent. The vast majority of the over 
60,000 COVID-19 deaths in the US so far have 
occurred in megaregions, despite megaregions 
only having 43 per cent of national population. 
Figure 2 plots this experience.

Figure 2.  COVID-19 mortality by regional catego-
ry.This experience is consistent with the idea 
that pandemics filter down the urban hierar-
chy from mega- regions to large metros and 
then to smaller areas. Here, a disease can 
start anywhere for completely random reasons 
that are outside of this model but once it has 
been introduced to a city system, it will tend 
to will be transmitted faster and more widely 
in large commuting sheds with connections to 
the outside worlds, before eventually making 
it to elsewhere via regional ‘hub and spoke’ 
connections.

In this way the US and Chinese experi-
ences seems similar. Like Seattle, Wuhan is a 
large metro area that is outside of a megare-
gion. By din of its size and density it was an 
effective incubator of the disease. Once com-
munity transmission was initiated, the disease 
was spread to small and large regions alike 
through regular mobility patterns (Fan et al. 
2020). However, because the flow from mo-
bility from the initial area to mega regions 
was stronger, mega regions in both countries 

Figure 2.  COVID-19 mortality by regional category.
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began their own community transmission rel-
atively earlier (Figure 3).

To determine if megaregion counties have 
had a significantly higher amount of COVID-19  
related deaths, we can compare average num-
ber of deaths at county level across metro 
types. To account for dramatic differences in 
population, we can use a relative rate to mea-
sure deaths: log deaths per million population. 
Age-specific mortality rates are still not conclu-
sive but we do know that age plays a consider-
able factor and that older adults are more at 
risk. Therefore, counties with a younger pop-
ulation may appear to be less impacted by the 
virus (in terms of deaths) due to the number of 
younger residents recovering from the virus. As 
such, we include control variable: proportion 

adults aged 65-years-old and above (US Census 
Bureau 2018). Pre-existing health conditions 
may also augment COVID-19 related deaths. 
We include control variable: proportion of 
adults that report poor or fair health (County 
Health Rankings and Roadmaps n.d.). As coun-
ties in megaregions are, on average, denser 
than counties in other types of metropolitan 
areas, population density is included a control 
variable. Lastly, as air travel played a key part 
in the spread of COVID-19 and megaregions 
are more likely have airports, we have included 
a dummy control variable that indicates if a 
county has an airport or not.

Examining average county death rates by 
metro type, analysis of covariance (ANCOVA) 
finds a significance difference in mean (log) 

Figure 3.  COVID-19 deaths by week and region type.

Figure 4.  ANCOVA of COVID-19 deaths by region type. Adjusting for health outcomes, airport size and density.
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deaths per million people (F(5, 1155) = 13.35, 
p < 0.001), while adjusting for poor health, pro-
portion of older adults, population density, and 
airport connectivity. Figure 4 shows that coun-
ties in megaregions had the highest average 
death rate with and without control variables.

Follow-up Bonferroni pairwise comparisons 
find that counties in megaregions have signifi-
cantly higher average deaths per million than 
counties in all other types of metros (at the 
0.05 level), controlling for poor health, pro-
portion of older adults, population density and 
airport connectivity.

The persistence of mega region effects, even 
after controlling for airport and local density 
effects points to the possible influence of ex-
tended urbanisation, that is being located in a 
metro region among other metro regions on 
COVID-19 transmissibility. Further work will 
have to use final data and additional controls 
to measure this conurbanisation effect more 
thoroughly.

Were some mega regions more exposed to 
COVID-19 than others? – We now consider 
differences above mega regions. There 
appears to be considerable heterogeneity 
among this group, as is clear from Figure 5 

which shows boxplots for each mega region 
as well as the distribution of counties within 
each region. The Bayou – the region centred 
on New Orleans, Louis- Apolis and Bosh-Wash 
have higher mortality rates, on average and 
relatedly they are also home to the most outlier 
counties. The Central and Southern California 
regions appear to be relatively low in terms of 
their average death rates.

That Bos-Wash, the most extensive and  
‘mega-ey’ mega region would be among the 
most affected mega-regions is supportive of our 
theory. Neither the Bayou nor Louis-Apolis are 
especially connected or agglomerated, how-
ever, the Bayou’s high rate is related to ‘super 
spreader’ events associated with Mardi Gras 
festivities, as was the case in Taiwan and China 
with New Years’ activities (Chen et al. 2020).

Looking at expanded metro typology that 
includes all megaregions as distinct categories, 
the ANCOVA results again found a significant 
difference in mean (log) deaths per million 
people (F(10, 344) = 15.47, p  < 0.001), while 
adjusting for poor health, proportion of older 
adults, population density and airport connec-
tivity. Looking at the pairwise comparisons, 
three megas had significantly higher average 
death rates than the rest: The Bayou, Bos-Wash 

Figure 5.  The distribution of county COVID-19 deaths by megaregion.
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and Louis-Apolis. After controlling for poor 
health, proportion of older adults, population 
density and airport connectivity, the average 
log death rate per million residents in the 
three megas were 5.55, 5.17 and 4.88, respec-
tively. The megas with the lowest death rates 
were Fresno-Field (2.72), Mid-Flo (3.02) and 
San-Austin (3.31).

Together, these results suggest that the differ-
ences in morbidity between mega regions and 
non-megas are driven by three mega regions: 
The Bayou/Bos-Wash/ and Louis-Apolis. These 
regions seem to have become early hotspots 
for the pandemic and, possibly, vectors for the 
transmission of the disease to elsewhere in the 
urban system. This said, there are mega regions, 
even large mega regions like the three California 
mega regions, that did not become hotspots 
even though they are dense, globally connected 
areas. Thus, the apparent relationship between 
urban structure and early pandemic risk should 
not be treated as deterministic.

Similarly, we do not find a consistent rela-
tionship between urbanisation and pandemic 
exposure across all categories. Medium size 
metros outside of metros, are second among 
all metros in adjusted mortality. Rather than 
come up with a theory for this ex-post, we will 
note that this finding is still consistent with the 
intuition that the extent of urbanisation (how 
far the urban range goes), matters more from 
a transmission standpoint than urban size or 
density. Mega regions as a class have extensive 
urbanisation, but not necessarily high degrees 
of population density or even urban sise.

Differences in morbidity can definitively 
not be attributed to the timing of social dis-
tancing legislation. We calculated the pop-
ulation-weighted timing of social distancing 
legislation. Mega regions as a class issued 
stay-at-home orders on 25 March, on average- 
compared to 31 March for other areas. Among 
mega regionregions, Bos-Wash (26 March), 
The Bayou (29 March) and Louis-Apolis  
(24 March), did not shutdown especially early 
or late.

DISCUSSION

Mega regions seem to be at higher risk of 
importing pandemics at their early stages. In 

early discussions about how the virus spread 
in the US, population density has been dis-
cussed as a reason why – say – New York’s early 
experience has been so poor. Our results sug-
gest that New York’s poor outcomes may be 
more connected to its location in the coun-
try’s largest extended agglomeration than to 
its average population density. This finding 
implicates local ‘buzz’ type interactions (face 
to face communication, regularised travel 
and commuting) in the transmission of dis-
ease. While global ‘pipeline’ connections do 
indeed explain how modern diseases spread 
so quickly, the degree to which community 
transmission is established in each place ap-
pears to be more a function of the interaction 
pattern within a given region.

This finding should worry policy-makers 
and residents in such places because med-
ical treatment will tend to always be less 
effective earlier on, as the public health sys-
tem is still learning about the disease and 
how to respond to it. As we write this, public 
health guidance on how to lower the R0 of 
the virus is still changing; officials in the US 
and Canada had originally said that masks 
were not likely to be protective and now they 
have reversed that. The areas that have had 
to deal with high levels of infection during 
this period are likely to have worse outcomes 
per capita than those that are still waiting for 
community transmission.

The nature of the pandemic diseconomy 
is somewhat unusual in that it is probabilistic. 
There are mega region like Tokyo, Singapore 
and Taipei, or for that matter So-Cal and Nor-
Cal that have had relatively mild early expe-
riences even though they are large globally 
connected centres with extensive agglomera-
tion. Some of this may have to do with unstud-
ied factors but there is also a large stochastic 
element to epidemiology that makes living in 
a large city comparable to playing ‘Russian 
Roulette’. The dynamic we highlight here may 
still play out in these megaregions in subse-
quent months. The 1918 pandemic saw several 
waves in some cities, and in some cities the sec-
ond or third waves were stronger (Markel et al. 
2007). We would expect for mega regions to 
be relatively more exposed on the second and 
third waves for the same reasons we outline 
above.
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Pandemics, then, are not like most other 
negative urban externalities (pollution, 
crime, noise) which are more certain, or for 
that matter the more certain advantages (pe-
cuniary cost savings, human capital externali-
ties, infrastructure) to living in mega regions. 
As economic geographers and urban econo-
mists think through the implications of this 
crisis for cities, they should think more care-
fully about how standard approaches can be 
reconciled with pandemic risk. For instance, 
does the presence of pandemic risk lead to 
the sorting of more risk-tolerant workers and 
firms into mega regions, and risk adverse ac-
tors outside? Now that these risks are front of 
mind, will peripheral areas open that mini-
mise these risks? Cutler and Miller (2004) es-
timate that the American cities that installed 
clean water systems in the early twentieth cen-
tury, lowered total mortality by 13 per cent, 
will some cities (big and small) develop effec-
tive public health responses that overcome 
the risk posed by COVID-19 and similar re-
cent events?

Our focus has been on the economic na-
ture of economic regions. We treat them as 
organic economic units over which there is 
regularised (if not daily) interaction including: 
travel, commuting, educational exchange and 
face-to-face interaction. Outside of our analysis 
and conceptualisation is the understanding of 
mega regions as political units. It is clear that 
there are no offical mega region governments 
in the United States but the degree to which 
norms, attitudes and actor-networks can be 
mapped to mega regions is still unknown. The 
same can be said of public health responses 
generally. It is quite clear that none the juris-
dictions studied have either the testing or iso-
lation capabilities that seem to have worked in 
South Korea, Taiwan, Luxembourg and Hong 
Kong but there may be subtle differences in 
response that are omitted from our analysis. 
What is also left for another study is the ques-
tion of whether there should be more formal 
governance at the mega region level so that dis-
eases response can be organised at the level of 
disease transmission.

Future research should also revisit the 
empirical topic of COVID-19 transmission 
across the urban hierarchy, once the pan-
demic has concluded. Our analysis here is 

limited because data on case numbers is not 
reliable and because there was not enough 
time to conduct a more in-depth causal study. 
Once the relevant outcome indicators stabi-
lise, then a follow-up study can attempt to 
directly measure mega region connectedness 
through a direct measure of interaction, as 
opposed to the present study which infers a 
degree of interaction from the extent of ur-
banisation. Although this study is early and 
focused on the relationship between agglom-
eration and transmission, it has nonetheless 
found suggestive evidence and signalled that 
follow-up study would be worthwhile.

Note

1.	 In these ‘bell-shaped’ models, there will be a 
theoretical level of trade costs at which trade 
itself cannot be justified. However, up to this 
point agglomeration of some form is justified 
on the basis of trade cost reduction.
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