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Covid-19 and thymoquinone: Connecting the dots

At present, the medical approaches to cope with Covid-19 infection

caused by the respiratory syndrome coronavirus 2 (SARS-CoV-2) are

mainly supportive. In the absence of specific anti-viral therapies or

vaccines, the medical care is complemented with different combina-

tions of broad-spectrum antiviral agents, antibiotics, hydro-

xychloroquine, and convalescent plasma transfusion (Jin et al., 2020).

Thymoquinone, the main constituent of Nigella sativa, has demon-

strated anti-inflammatory, anti-oxidant, anti-tumor, and antimicrobial

activities (Banerjee et al., 2009; Chaieb, Kouidhi, Jrah, Mahdouani, &

Bakhrouf, 2011). Thymoquinone was also effective and tolerable in

children with intractable epilepsy in a randomized controlled clinical

trial at a dose of 1 mg/kg/day orally (Akhondian et al., 2011). Interest-

ingly, thymoquinone and Nigella sativa extract were found to be effec-

tive against avian influenza virus (H9N2 AIV) and a murine

cytomegalovirus infection model (Salem & Hossain, 2000; Umar

et al., 2016). Ulasli and co-workers reported that the treatment of

cells with Nigella sativa extract prior to infection with coronavirus

decreases the replication of the virus (Ulasli et al., 2014). Moreover,

gene expression analysis of the transient receptor potential proteins

(TRPs) showed a reduction in virus loads upon extract treatments,

which can decrease coronavirus survival inside cells. It should be

noted, however, that these studies on the herbal extracts may not

have been carried out according to the more recent scientific qualita-

tive standards for plant-derived products (Heinrich et al., 2020).

Therefore, there is the possibility that high concentrations in vitro or

doses in vivo, which are of no translational value have been used.

Thymoquinone as a compound (purity >99%) has unveiled a

remarkable anti-sepsis and immunomodulatory activities at specific

doses (Alkharfy, Ahmad, Jan, & Raish, 2018; Alkharfy, Ahmad, Raish, &

Vanhoutte, 2015; Alkharfy, Al-Daghri, Al-Attas, & Alokail, 2011). More

specifically, thymoquinone modulates the production of nitric oxide

(NO) and reactive oxygen species (ROS), and protects against multiple

organ dysfunction syndrome (MODS). ROS including superoxide,

hydrogen peroxide, and hydroxyl radicals are produced, among others,

by xanthine oxidase and NADH/NADPH oxidases (Galley, 2011;

Ichinose et al., 2007). The NADPH oxidases, uncoupled NO synthase

(iNOS), and mitochondria are considered important mediators of ROS

in sepsis and cardiovascular dysfunction (Kirkeboen & Strand, 1999;

Munzel, Gori, Bruno, & Taddei, 2010; Tsolaki, Makris, Mantzarlis, &

Zakynthinos, 2017). In fact, sepsis is characterized by the enhanced

release of NO, which correlates with systemic dysfunction and tissue

injury in humans and animal models (Rabuel et al., 2010; Tsolaki

et al., 2017). NO can interact with the absorption of calcium in the

myocytes and, therefore, can impede contractile activity

(Forstermann & Sessa, 2012). In addition, NO plays a key role in the

systemic inflammation of sepsis including vasodilatation, altered

vascular permeability and extravasation, leukocyte migration, and

activation (Ince et al., 2016). Notably, inflammatory cytokines such as

TNF-α, IL-1α, IL-2, IL-6, and IL-10 also enhance NO production

via iNOS (Green et al., 1994). Thymoquinone has been shown to

downregulate inflammatory cytokines, reduce NO levels, and improve

organ functions and survival of sepsis in an animal model (Alkharfy

et al., 2015). This perhaps through a redox mechanism, which

decreases the systemic oxidative stress and inflammatory response.

Consequently, thymoquinone decreases the levels of early-stage sep-

sis biomarkers (e.g., ESM-1, CRP, and VEGF) by �30–50% (Alkharfy

et al., 2018). Interestingly, thymoquinone has also been found to have

a protective effect against lung fibrosis and collagen deposition by

modulating the nuclear factor Kappa-B (NF-κB) and the antioxidant

enzyme nuclear factor 2 heme oxygenase-1 (Nrf2/HO-1) signaling

pathway (Ahmad et al., 2020).

Virus-induced phagocyte activation is correlated with oxidative

stress, not just because ROS is produced, but also because activated

phagocytes also produce inflammatory cytokines by the activation of

NF-κB (S. F. Liu & Malik, 2006; Schwarz, 1996). Actually, many genes

that are regulated by NF-κB, including inflammatory cytokines,

COX-2, and iNOS, contribute to a rise in sepsis inflammatory

responses (Ghosh, May, & Kopp, 1998; Schneider-Stock, Fakhoury,

Zaki, El-Baba, & Gali-Muhtasib, 2014). Thus, NF-κB inhibition can sup-

press inflammatory genes, impede the cytokine storm, and reduce

immune cells infiltration and activation, and, therefore, protecting

against tissue and organ damage (T. Liu, Zhang, Joo, & Sun, 2017).

While inhibition of NF-κB activation has been suggested as a thera-

peutic strategy for sepsis, it should be noted that NF-κB is an impor-

tant component of normal immune defenses and that excessive

blockade of NF-κB regulatory activities can be strong immunosup-

pressive (Coldewey, Rogazzo, Collino, Patel, & Thiemermann, 2013).

Therefore, a more selective modulation of NF-κB activity is probably

needed. Overall, existing evidence indicates that thymoquinone can

favorably modulate NF-κB expression during sepsis (Alkharfy

et al., 2015). Consequently, thymoquinone can be a strong candidate

to avert MODS and mortality of sepsis (Figure 1). Recently, molecular

docking studies have also proposed that thymoquinone may inhibit

SARS-CoV-2 and interfere with its binding to ACE2 receptors. This

can prevent virus entry and replication inside the host cell

(Bouchentouf & Missoum, 2020; Sekiou, Ismail, Zihad, &

Abdelhak, 2020). Furthermore, SARS-CoV-2 spikes can bind to a cell

surface heat shock protein (HSPA5), which is upregulated during viral

infections. Molecular dynamics simulations showed that

thymoquinone can interfere with the attachment of SARS-CoV-2 to
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F IGURE 1 Thymoquinone potential protective mechanism against Covid-19 infection. Progression from risk factors for severe SARS-CoV-2
infection mediated by oxidative stress and cytokine storm-inducing multiple organ dysfunction syndrome (MODS). Thymoquinone inhibitory
effects on viral infection and amelioration of MODS complications by restoration of the redox and immune balances. SARS-CoV-2 (Severe acute
respiratory syndrome coronavirus 2); ACE (Angiotensin Converting Enzyme); ROS (reactive oxygen species); RNS (reactive nitrogen species); NF-
κB (nuclear factor kappa-B); SIRS (systemic inflammatory response syndrome); green arrow indicates upregulation and red arrow indicates
downregulation mediated by thymoquinone [Colour figure can be viewed at wileyonlinelibrary.com]
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the HSPA5 substrate-binding domain b (SBDb) on the stressed cells,

and thus may reduce the risk of infection (Elfiky, 2020). Therefore, the

time is probably appropriate to move thymoquinone from experimen-

tation on the bench to clinical testing for the Covid-19 pandemic.
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