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SUMMARY

The Mre11-Rad50-Nbs1 complex is a DNA doublestrand break sensor that mediates a tumor-

suppressive DNA damage response (DDR) in cells undergoing oncogenic stress, yet the 

mechanisms underlying this effect are poorly understood. Using a genetically inducible primary 

mammary epithelial cell model, we demonstrate that Mre11 suppresses proliferation and DNA 

damage induced by diverse oncogenic drivers through a p53-independent mechanism. Breast 

tumorigenesis models engineered to express a hypomorphic Mre11 allele exhibit increased levels 

of oncogene-induced DNA damage, R-loop accumulation, and chromosomal instability with a 

characteristic copy number loss phenotype. Mre11 complex dysfunction is identified in a subset of 

human triple-negative breast cancers and is associated with increased sensitivity to DNA-

damaging therapy and inhibitors of ataxia telangiectasia and Rad3 related (ATR) and poly (ADP-

ribose) polymerase (PARP). Thus, deficiencies in the Mre11-dependent DDR drive proliferation 

and genome instability patterns in p53-deficient breast cancers and represent an opportunity for 

therapeutic exploitation.

In Brief

The origins of genome instability in cancer remain poorly understood. Fagan-Solis et al. reveal a 

p53-independent genome integrity checkpoint pathway mediated by Mre11 that protects against 

genome instability in breast cancer. Mre11 dysfunction in breast cancer models induces a genomic 

loss signature and vulnerability to PARP and ATR inhibitors.

Graphical Abstract
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INTRODUCTION

Structural chromosomal instability (CIN) is a frequent hallmark of clinically aggressive 

cancers, such as triple-negative (estrogen receptor, progesterone receptor, and HER2-

negative) breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC), yet its 

etiology remains poorly understood (Cancer Genome Atlas, N. and Cancer Genome Atlas 

Network, 2012; Jiang et al., 2010; Jonkers et al., 2001). Cancers with high levels of 

structural CIN are characterized by nearly universal disruption of the p53 pathway and 

frequent genetic aberrations that drive a hyper-proliferation phenotype (e.g., amplification of 

c-Myc or Cyclin E and/or Rb1 deletion). Cancers with high levels of CIN also have frequent 

perturbation of DNA damage response (DDR) pathway genes (Kniinenburg et al., 2018), 

although their relevance to genome instability and therapeutic sensitivity in p53-deficient 

cancers remains unclear.

Oncogene-induced hyper-proliferation stimulates DNA replication stress (Bartkova et al., 

2005, 2006; Di Micco et al., 2006; Halazonetis et al., 2008), resulting in accumulation of 

single- and double-strand breaks (DSBs) during S phase (Gaillard et al., 2015; Hills and 

Diffley, 2014; Macheret and Halazonetis, 2015) and activation of the DDR. The etiology of 

oncogene-induced replication stress has been extensively studied. Proposed mechanisms 

include nucleotide depletion, oxidative stress, misregulated replication origin firing, re-

replication, perturbed replication fork kinetics, and under-replicated genomic DNA (Gaillard 

et al., 2015; Hills and Diffley, 2014; Kotsantis et al., 2018). Recent evidence suggests that 

oncogene expression stimulates genome-wide activation of ectopic intragenic origins, which 

Fagan-Solis et al. Page 3

Cell Rep. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results in replication stress due to a higher rate of transcription replication conflicts (TRCs) 

(Macheret and Halazonetis, 2018). Furthermore, depletion of RNA-DNA hybrids (i.e., R-

loops) by RNase H overexpression reduces the burden of oncogene-induced DSBs 

(Kotsantis et al., 2016). Despite these advances, the relevance of pathways that regulate R-

loop-mediated genome instability in tumorigenesis models remains poorly understood.

The Mre11-Rad50-Nbs1 complex is a DSB sensor that lies at the nexus between DNA repair 

and DDRs. The Mre11 complex is critical for ataxia telangiectasia mutated (ATM) activation 

at DSBs and downstream activation of G2/M and p53-dependent G1/S cell cycle 

checkpoints (Oh and Symington, 2018; Stracker and Petrini, 2011; Syed and Tainer, 2018). 

The nuclease and structural functions of the Mre11 complex promote the resection of DSBs 

to generate 3′ overhangs, which are a prerequisite for homologous recombination (HR)-

mediated repair and replication fork stability (Hashimoto et al., 2011; Lemacon et al., 2017; 

Trenz et al., 2006). Although complete deficiency is lethal, hypomorphic alleles of Mre11 

complex genes are causative for ataxia-telangiectasia-like disorder and Nijmegan breakage 

syndrome and have helped to establish critical roles for this pathway in suppression of 

replication-associated DSBs and response to exogenous clastogens. Recent findings also 

implicate the Mre11 complex and its closely associated nuclease, Sae2/CtIP, in the 

resolution of R-loops in mammals (Chang et al., 2018; Makharashvili et al., 2018).

Accumulating evidence supports a tumor-suppressive function for the Mre11 complex. 

Individuals with rare germline variants in Mre11 complex genes are at elevated risk of 

developing breast cancer (Damiola et al., 2014; Heikkinen et al., 2006). Although somatic 

mutations in Mre11 complex genes are infrequent in cancer (~3%; Zehir et al., 2017), 

aberrantly reduced protein expression has been identified in subsets of bladder, colorectal, 

breast, and ovarian cancers (Bartkova et al., 2008; Brandt et al., 2017; Choudhury et al., 

2010; Situ et al., 2019; Zaki et al., 2014). Mice expressing the hypomorphic Mre11ATLD1 

allele also exhibit accelerated tumorigenesis driven by p53 mutation (Theunissen et al., 

2003), Chek2 deficiency (Stracker et al., 2008), and mammary-specific Her2 expression 

(Gupta et al., 2013). Her2-driven breast cancers engineered to express a hypomorphic Mre11 

complex exhibit increased genome instability and greater metastatic potential (Gupta et al., 

2013). The mechanisms for these diverse tumor-suppressive effects have not been elucidated 

and may entail ATM- and p53-independent pathways. Indeed, ATM-independent tumor 

suppression was recently demonstrated using mice with knockin of a hypomorphic Nbs1 
allele (Nbs1ΔB) (Balestrini et al., 2016). Here, Mre11 complex dysfunction was associated 

with common fragile site instability and dramatically increased genomic instability in the 

induced lymphomas. Collectively, these observations highlight an important role for the 

Mre11 complex in tumor suppression and protection against genome instability. A greater 

understanding of these Mre11-dependent effects may have important implications for 

classification of human tumors and identification of potential therapeutic vulnerabilities.

The goal of this study was to characterize the effects of Mre11 complex dysfunction on 

oncogenic proliferation, DNA damage, and genome instability in p53-proficient and p53-

deficient inducible breast cancer models. We use single-cell, whole-genome sequencing to 

characterize the effect of Mre11 dysfunction on the landscape of Her2-induced genomic 

instability in mammary epithelial hyperplasia. We further establish p53-independent effects 
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of Mre11 in suppressing oncogene-induced cell proliferation, DNA damage, and R-loops 

induced by diverse oncogenic drivers. We characterize a murine model of Rb1−/−Trp53−/− 

breast cancers with Mre11 hypomorphism that reveals abundant expression of R-loops and a 

marked increase in genomic deletions relative to other types of chromosomal 

rearrangements. Finally, drug sensitivity analyses of engineered p53-deficient breast tumors 

with or without Mre11 dysfunction identify therapeutic vulnerabilities that may be clinically 

exploitable.

RESULTS

Early Induction of Chromosomal Instability by Oncogenic Stress in Primary Mammary 
Epithelial Cells

We previously demonstrated that breast cancers initiated by Her2/Neu expression 

(abbreviated here as “Her2”) develop with shorter latency and increased levels of CIN in 

mice expressing a hypomorphic allele of Mre11 (Mre11ATLD1/ATLD1; abbreviated 

Mre11ATLD; Gupta et al., 2013). To investigate whether Mre11 hypomorphism alters CIN 

patterns during early stages of oncogenic hyperplasia, we established a system for 

propagating primary murine mammary epithelial cells (pMMECs) on lethally irradiated LA7 

mammary stem cell feeder cells (Ehmann et al., 1984; Jechlinger et al., 2009). Consistent 

with our previously reported in vivo findings, we observed significantly greater Her2-

induced proliferation in Mre11ATLD pMMECs relative to wild-type (WT) pMMECs (Figure 

1A). Because oncogene-induced CIN during preneoplasia is stochastic and precedes clonal 

expansion, analysis of CIN patterns requires a single cell-based approach. Accordingly, we 

performed low-depth (~0.2x), single-cell, whole-genome sequencing (scWGS) in WT and 

Mre11ATLD pMMECs 14 days after lentiviral transduction with EGFP alone or EGFP+Her2 

(Figure 1A). Copy number alterations (CNAs) were detected at single-cell resolution by 

pooling mapped reads into genomic bins with average size of 25 kb, using a previously 

described analysis pipeline (Garvin et al., 2015; Martelotto et al., 2017). The CNA profiles 

of 24 single cells from each genotype (WT+EGFP, WT+Her2, Mre11ATLD+EGFP, and 

Mre11ATLD+Her2) are depicted as a clustered heatmap, with the total fraction of altered 

genome for each cell shown on the right as a bar graph (Figure 1B). Significantly, WT 
pMMECs expressing EGFP had very few CNAs, corroborating the low level of background 

signal associated with the scWGS methodology and analysis pipeline employed in this 

study. In contrast, there is a substantial increase in the fraction of genome altered per cell 

after both Her2 expression and Mre11 perturbation (Figure 1B, bar graph on right). 

Unsupervised clustering was also performed but did not reveal any clonally related 

individual cells (Figure 1B), which is consistent with the relatively short time period after 

transduction when the cells were analyzed. Although the majority of the observed CNAs are 

non-recurrent and thus are indicative of a sporadic etiology, there are some focal CNAs that 

were recurrently seen in multiple cells within the same genotype. An interesting example is 

a focal region in chromosome 1 (boxed region in Figure S1) that has increased ploidy in 

4/24 WT+Her2 pMMECs and 5/24 Mre11ATLD+Her2 pMMECs, but not in the other 

genotypes analyzed. This minimal region of CNA overlap contains Parp1, which is 

instrumental for single-strand break repair (Ray Chaudhuri and Nussenzweig, 2017) and is 

frequently overexpressed in human HER2+ breast cancers (Stanley et al., 2015). 
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Furthermore, a recent study suggests that Parp1 activity reduces the rate of replication fork 

progression (Maya-Mendoza et al., 2018). Consistent with these prior studies, our findings 

are suggestive that Parpl copy number gains may confer a growth advantage in the setting of 

Her2-induced mammary preneoplasia.

Mre11 Dysfunction Results in a Copy Number Loss Phenotype

We observed a significant increase in CNAs per cell after Her2 expression in both WT and 

Mre11ATLD pMMECs (Figure 2A), indicating that oncogenic stress stimulates CIN early in 

neoplasia and does not require DDR deficiency. In fact, we did not observe an increase in 

CNAs per cell in Mre11ATLD pMMECs expressing Her2, suggesting that oncogene 

expression is the major driver of CNA development in this model. Consistent with a role for 

Mre11 in suppressing spontaneous genomic instability, Mre11ATLD pMMECs expressing 

EGFP also had a modest increase in CNAs compared to the respective WT control (Figure 

2A). We next evaluated the size distribution of observed CNAs in the different genotypes. 

Notably, the CNA size distributions in both EGFP and Her2-expressing Mre11ATLD 

pMMECs were significantly larger than the CNA size distribution observed in WT+Her2 

pMMECs (Figure 2B). This difference was even more striking when evaluating CNAs that 

give rise to genomic gains versus losses. Although the size distribution of CNA gains and 

losses (≤5,000 kb) was equivalent in the WT pMMEC genotypes, we observed a highly 

significant (p < 0.0001) enrichment for larger size genomic loss CNAs in both EGFP and 

Her2-expressing Mre11ATLD pMMECs (Figure 2C). The enrichment for genomic loss CNAs 

in Mre11ATLD pMMECs is also visually evident in the scWGS heatmaps shown in Figure 

1B. To better characterize the relationship between CNA size and the observed enrichment 

for genomic losses, we plotted the cumulative frequency distribution of CNA gains and 

losses according to individual aberration size (Figure 2D). This analysis demonstrated that 

the enrichment for genomic loss was evident for CNAs larger than 1,000 kb in Mre11ATLD

+EGFP cells and for CNAs greater than 500 kb in Mre11ATLD+Her2 cells. In contrast, no 

enrichment for CNA losses was observed in WT+Her2 pMMECs. The enrichment for 

genomic losses in the setting of Mre11 hypomorphism is reminiscent of copy number losses 

that result from accumulation of under-replicated DNA (UR-DNA) in settings of elevated 

replication fork stress in other model organisms (Salim et al., 2017; Yarosh and Spradling, 

2014). Thus, our findings are consistent with replication fork instability caused by Mre11 

dysfunction in the setting of oncogenic stress, resulting in an accumulation of UR-DNA. 

Furthermore, because copy number losses are one mechanism by which loss of 

heterozygosity (LOH) in cancer may arise, an enrichment for larger sized deletions in 

Mre11ATLD pMMECs may be consistent with the high levels of LOH that are observed in 

human breast and ovarian cancers with homologous recombination deficiency (Wang et al., 

2012).

Chromosomal Aberrations Are Associated with Large Genes

Next, we investigated whether there were any distinguishing features of the genomic regions 

where the oncogene-induced CNAs were observed. The sparseness of our scWGS data 

precluded single-base-pair resolution of CNA breakpoints. In contrast, we approximated the 

genomic region of the chromosomal aberration breakpoint as contained within the two 

genomic bins that span the transition in copy number (Figure S2A; STAR Methods). We 
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next evaluated whether these breakpoint-containing regions were enriched in previously 

annotated genomic features and used a shuffle permutation of the observed CNA profiles for 

each of the genotypes as a means of establishing statistical significance of the enrichment 

(Supplemental Methods). We did not observe any significant enrichment or depletion of 

satellite, simple repeat, long terminal repeats (LTRs), long interspersed nuclear elements 

(LINEs), short interspersed nuclear elements (SINEs), or CpG island sequences among the 

breakpoint regions for any of the genotypes (Figure S2B). In contrast, there was significant 

enrichment of breakpoint-containing regions with genes. Genes were further subdivided 

according to size into four bins of <50 kb, 50–150 kb, 150–300 kb, and >300 kb. There was 

a significant enrichment of chromosomal breakpoint regions within large genes (>300 kb) 

relative to random chance for Her2-expressing Mre11ATLD pMMECs (Figure 2E). In 

contrast, chromosomal breakpoint regions in WT+Her2 pMMECs were relatively enriched 

in moderately sized genes between 50 kb and 300 kb. Large genes are known to take longer 

than one cell cycle to transcribe and have been associated with R-loops, chromosomal 

fragile sites, and recurrent deletions in many cancers (Glover et al., 2017; Helmrich et al., 

2006, 2011; Le Tallec et al., 2013; Wilson et al., 2015). Recent work has also demonstrated 

an increase in transcription-replication conflicts (TRCs) upon oncogene expression 

(Macheret and Halazonetis, 2018), which may be due to greater transcriptional activity 

and/or persistence of R-loops (Kotsantis et al., 2016). We thereby assessed global R-loop 

levels in our pMMEC model using immunofluorescence with the monoclonal S9.6 antibody 

and observed a significant increase in R-loops 3 days after transduction with lentivirus 

expressing Her2-EGFP in pMMECs, relative to control pMMECs transduced with EGFP 

alone (Figure 2F). Collectively, these findings indicate that oncogenic stress in early 

mammary neoplasia stimulates R-loop expression and CNAs enriched in large genes, which 

in the setting of Mre11 dysfunction becomes strongly enriched in a copy number loss 

phenotype.

Mre11 Suppresses Oncogenic Proliferation Independently of p53 and ATM

We next investigated the effect of Mre11 hypomorphism in transgenic mammary hyperplasia 

models induced by c-Myc (Myc) overexpression, Rb1 deletion, and/or Trp53 deficiency–

genetic aberrations that are prevalent in human TNBCs and basal-like breast cancer (Cancer 

Genome Atlas, N. and Cancer Genome Atlas Network, 2012). Because the Mre11ATLD 

allele is a premature stop codon in the C-terminal region of Mre11, we hypothesized that a 

comparable hypomorphic allele could be generated using CRISPR/Cas9 gene targeting in 

pMMECs, as has previously been demonstrated in murine embryonic fibroblast cell lines 

(Wyatt et al., 2016). pMMECs isolated from Rosa26LSL-Cas9-EaFP (abbreviated R26Cas9) 

mice (Platt et al., 2014) were transduced with lentivirus expressing Cre recombinase and 

single guide RNA (sgRNA) targeting the C-terminal region of Mre11 (Cre-sgMre11) or a 

control non-coding region on chromosome 2 (Cre-sgControl; Figures 3A and 3B). Effective 

target site mutagenesis was confirmed by Sanger sequencing of 10 cloned amplicons each 

from R26Cas9 pMMECs transduced with Cre-sgControl or Cre-sgMre11 (Figure S3A). 

CRISPR-directed mutations corresponding to the expressed sgRNA were identified, which 

resulted in an Mre11 frameshift mutation in all 10 clones analyzed from sgMre11-

transduced pMMECs (Figure S3A). Furthermore, pMMECs transduced with Cre-sgMre11 

had reduced expression of Mre11 (Figure S3B), phenocopying the destabilizing effect of the 
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Mre11ATLD allele on Mre11 complex protein stability (Theunissen et al., 2003) These 

findings validated the pMMEC platform to evaluate phenotypes associated with oncogene 

expression and/or Mre11 hypomorphism.

We next interbred the R26Cas9 mice with transgenic mice containing a Cre-inducible Myc 

overexpression cassette also at the Rosa26 locus (Rosa26LSL-MycOE-hCD2 or R26Myc) to 

generate combination transgenic R26Myc/Cas9 mice (Figures 3A and 3B). pMMECs derived 

from these mice were transduced with lentivirus expressing Cre recombinase and either 

sgControl or sgMre11, revealing greater Myc-induced proliferation in cells with a 

hypomorphic Mre11 complex (Figure 3C). Notably, expression of Cre-sgMre11 in 

R26Cas9/Cas9 pMMECs did not result in a substantial increase in proliferation, indicating that 

this anti-proliferative effect of Mre11 is oncogene specific.

To investigate whether suppression of oncogene-induced proliferation by the Mre11 

complex is p53 dependent, we generated R26Myc/Cas9; Trp53fl/fl mice. Cre recombinase 

expression in pMMECs isolated from these mice induces deletion of Trp53 exon 2 in 

conjunction with activated expression of Cas9 and Myc (Figures 3B and S3). Mre11 

complex hypomorphism induced by expressing Cre recombinase and sgMre11 resulted in 

significantly increased proliferation relative to the R26Myc/Cas9; Trp53fm pMMECs 

transduced with Cre and sgControl (Figure 3D). We also generated and analyzed 

R26Cas9Trp53fl/flRb1fl/fl mice, representing another model of human TNBC (Figure 3B; 

Cancer Genome Atlas, N. and Cancer Genome Atlas Network, 2012; Jiang et al., 2010; 

Jonkers et al., 2001). Once again, R26Cas9Trp53mflRb1ml pMMECs transduced with Cre 

recombinase and sgMre11 demonstrated significantly increased proliferation relative to cells 

expressing sgControl (Figure 3D). These findings strongly argue that Mre11-mediated 

suppression of oncogenic proliferation is p53 independent. Given that the Mre11 complex 

has both ATM-dependent and independent effects in the response to DNA damage and 

replication stress (Rein and Stracker, 2014), we sought to determine the ATM dependency of 

Mre11-mediated suppression of oncogenic proliferation. R26Cas9Trp53flmRb1fl/fl pMMECs 

were transduced with either sgControl or sgMre11 and then treated with ATM inhibitor 

Ku55933 or vehicle control. ATM inhibition (Figure S3D) did not increase proliferation of 

Rb1−/−Trp53−/− pMMECs (Figure 3E). A possible explanation for these observations is that 

growth suppression by ATM is p53 dependent, consistent with emerging clinical evidence 

that ATM and TP53 may be epistatic in breast cancer (Weigelt et al., 2018). Conversely, 

Mre11 hypomorphism stimulated oncogenic proliferation irrespective of ATM inhibition 

(Figure 3E). These observations collectively indicate that Mre11-mediated suppression of 

oncogenic proliferation is both p53 and ATM independent.

Mre11 Suppresses Oncogene-Induced R-Loops and DNA Damage

The Mre11 complex suppresses the accumulation of spontaneous, replication-associated 

DSBs (Oh and Symington, 2018). In contrast, some studies have demonstrated that Mre11 

nuclease activity can also promote destabilization of stalled replication forks (Malacaria et 

al., 2019; Schlacher et al., 2011). To determine whether Mre11 promotes or suppresses 

oncogene-induced DSBs in pMMECs, we measured γH2AX foci, 53BP1 foci, and neutral 

COMET tails (Figures 4A, 4B, and S4A). Mre11 hypomorphism induced by CRISPR/Cas9-
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mediated targeting of Mre11 resulted in significantly higher levels of nuclear DSBs in both 

p53-proficient and p53-deficient pMMEC models. Similarly, Mre11 hypomorphism 

increased the levels of single-stranded DNA damage, as measured by pRPA2 

immunofluorescence and alkaline COMET assay (Figures 4B and S4B). The increase in 

pRPA2 foci was most significant in cells that were no longer in S phase (Figure S4C), 

indicative of a deficiency in resolution/repair of replication stress in Mre11 mutant 

pMMECs. These findings argue that Mre11 suppresses the accumulation of oncogenic DNA 

damage (single-stranded breaks and DSBs) in both p53-proficient and p53-deficient models 

of mammary preneoplasia.

Due to our prior finding that oncogenic stress in the setting of Mre11 hypomorphism induces 

copy number aberrations in genomic regions known to have high levels of R-loops (see 

Figure 2E), we assessed global R-loop levels using S9.6 immunofluorescence. As previously 

demonstrated with Her2 expression (see Figure 2F), we again found that oncogenic stress 

stimulates R-loop foci in both R26Myc and R26Cas9Rbr−/−Trp53−/− pMMECs (Figure 4C). 

Significantly, we also found R-loop levels increased substantially further upon Mre11 

dysfunction, in both p53-proficient and p53-deficient models (Figure 4C). These 

observations are consistent with a recent study implicating the Mre11 complex as a critical 

mediator of transcription-replication conflicts in yeast and mammals (Chang et al., 2019). To 

establish whether the increase in R-loops mediates the increased levels of oncogenic DNA 

damage in pMMECs with hypomorphic Mre11, we modified our Cre-sgControl/sgMre11 

lentiviral construct to also co-overexpress RNase H1 (Figure S4D). As expected, co-

overexpression of RNase H1 abolished the increase in R-loops observed in the setting of 

hypomorphic Mre11 (Figure 4D). RNase H1 expression also rescued the increase in 

oncogenic DSBs and single-stranded DNA breaks induced by Mre11 dysfunction (Figures 

4E and 4F). These findings were also confirmed by neutral and alkaline COMET assays 

(Figures S4E and S4F). Thus, an aberrant accumulation of R-loops in pMMECs with Mre11 

dysfunction is necessary for the observed increase in oncogenic DNA damage. Collectively, 

these findings support a model wherein Mre11 mitigates DNA damage incurred at sites of 

oncogene-induced transcription-replication conflicts (TRCs) (see Figure 7).

Mre11-Deficient Mammary Tumors Have Increased R-Loops and a Genomic Loss 
Phenotype

To extend and validate these results in vivo, R26Cas9Rb1fl/flTrp53fl/fl and R26Myc/Cas9 

female mice were administered intraductal injections of lentivirus expressing Cre-sgControl 

or Cre-sgMre11 into mammary gland 4. Two weeks after injection, the mice were 

euthanized and gland 4 (injected) and gland 5 (uninjected control) were processed for 

histopathology. There was a qualitative (Figure 5A) and quantitative (Figure 5B) increase in 

mammary epithelial hyperplasia after intraductal injection with Cre-sgMre11, relative to 

glands injected with Cre-sgControl. Thus, Mre11 suppresses oncogenic hyperplasia in vivo 
in response to diverse oncogenic drivers and in the setting of induced p53 deficiency.

Cohorts of Cre-sgControl and Cre-sgMre11-injected R26Cas9Rb1fl/flTrp53fl/fl mice were 

monitored for mammary tumor development. Tumor initiation frequency was higher in 

glands injected with Cre-sgMre11 (~70%) versus Cre-sgControl (~50%), and there was a 
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trend toward a shorter latency period (Figure 5C). Tumor-free survival rates, however, did 

not achieve statistical significance (p = 0.052), suggesting that tumor latency in the 

R26Cas9Rb1fl/flTrp53fl/fl model may also be dependent on the stochastic acquisition of 

secondary genetic events. Mammary tumor lines were established from the induced tumors, 

and as expected, expression of the entire Mre11 complex (Mre11, Rad50, and Nbs1) was 

substantially reduced in tumors derived from mice injected with Cre-sgMre11 (Figure 5D). 

Consistent with our observations with pMMECs, sgMre11 mammary tumor lines had a 

higher proliferation rate (Figure 5E) and significantly higher levels of R-loops (Figure 5F) 

relative to sgControl mammary tumor lines.

We also performed matched tumor-normal whole-genome sequencing (~25x mean depth of 

coverage) of three Cre-sgControl and three Cre-sgMre11-induced mammary tumors in 

R26Cas9Rb1fl/flTrp53fl/fl mice. Site-specific mutagenesis of the Mre11 locus was confirmed 

in all of the Cre-sgMre11 mammary tumors (data not shown). Single-nucleotide variant 

mutation signatures were not statistically different between the Cre-sgControl and Cre-

sgMre11 tumors (Figure S5). Notably, there was no increase in COSMIC signature 3, which 

has been associated with homologous-recombination-deficient cancers (Alexandrov et al., 

2013; Riaz et al., 2017; Rosenthal et al., 2016). A similar lack of COSMIC signature 3 

enrichment has been observed in human breast cancers with ATM deficiency (Weigelt et al., 

2018). Structural variants (SVs) were observed in both sgControl and Cre-sgMre11 

Rb1−/−Trp53−/− mammary tumors (Figure 5G). Significantly, the observed SVs in Mre11 

hypomorphic tumors were highly enriched for deletions relative to control tumors (Figures 

5G and 5H). Thus, the genomic loss phenotype observed in early oncogenic hyperplasia 

induced in the setting of Mre11 hypomorphism (see Figures 2C and 2D) is also preserved 

upon tumorigenesis in a distinct p53-deficient breast cancer model. These observations 

indicate that Mre11 complex dysfunction is causative for a genomic scar phenotype 

consisting of an enrichment for copy number losses/genomic deletions.

Breast Cancers with Mre11 Dysfunction Are Hypersensitive to DNA-Damaging Therapy and 
Inhibitors of ATR and PARP

Our finding that the Mre11 complex has p53-independent, tumor-suppressive functions leads 

to a hypothesis that Mre11 complex dysfunction may be selected for in p53-deficient breast 

cancers. Indeed, a prior study has demonstrated downregulation of Mre11 complex proteins 

in TNBC (Bartkova et al., 2008), 90% of which harbor p53 pathway deficiency (Cancer 

Genome Atlas, N. and Cancer Genome Atlas Network, 2012). To validate these findings, we 

performed immunohistochemistry for Mre11 and Nbs1 on a tissue microarray of 254 early-

stage TNBCs that were treated at Memorial Sloan Kettering Cancer Center. Ninety-three 

percent of the patients received adjuvant chemotherapy. We identified 23 samples (9%) with 

less than 10% of tumor nuclei staining for Mre11 or Nbs1 protein, while infiltrating stromal 

cells retained normal expression (Figure 6A). Notably, we found that all tumors with low 

Mre11 expression also had low Nbs1 expression, consistent with underexpression or 

destabilization of the Mre11 complex. The lack of immunoreactivity for Mre11 and Nbs1 

was also confirmed on whole tissue sections from the original tumor blocks. These “Mre11 

complex low” cancers presented with similar T- and N- stage at presentation relative to 

cancers with normal Mre11 complex expression (Figure S6). Notably, patients with Mre11 
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complex low TNBC had a significantly better breast-cancer-specific survival compared to 

the remainder of TNBCs with normal Mre11 complex expression (Figure 6B).

Because disease-free survival of patients with TNBC is highly associated with improved 

chemotherapeutic responses (Cortazar et al., 2014), we hypothesized that Mre11 

hypomorphism may promote hypersensitivity to DNA-damaging therapeutics in breast 

cancer. To directly address this possibility, we used breast tumor lines derived from 

R26Cas9Trp53fl/flRb1fl/fl mice injected with Cre-sgControl or Cre-sgMre11 to evaluate the 

effect of Mre11 hypomorphism on sensitivity to DNA-damaging therapeutics. We found that 

breast cancer cells expressing hypomorphic Mre11 were hypersensitive to several DNA-

damaging therapeutics commonly used to treat breast cancer, but not to the anti-microtubule 

agent Taxol (Figure 6C). We also evaluated the sensitivity of these mammary tumor lines to 

inhibitors of ATR (VE-821) and PARP (BMN-673), particularly because both of these 

pathways are components of the replication stress response and the ATR pathway has been 

implicated in resolution of R-loops (Cristini et al., 2018; Hodroj et al., 2017; Nguyen et al., 

2018). We observed significantly greater hypersensitivity of Mre11 hypomorphic 

Rb1−/−Trp53−/− breast tumor lines to both VE-821 and BMN-673, relative to control 

Rb1−/−Trp53−/− breast tumor lines (Figure 6D). Collectively, these findings indicate that 

Mre11 complex dysfunction is evident in a subset of TNBC patients and associated with 

improved clinical outcomes after DNA-directed cancer therapy.

DISCUSSION

Seminal studies (Bartkova et al., 2005, 2006; Di Micco et al., 2006; Gupta et al., 2013; 

Halazonetis et al., 2008) have described an Mre11-dependent DDR activated by oncogene-

induced replication stress in preneoplasia that mediates physiologically significant tumor 

suppression. Some of these studies have claimed that the oncogene-induced DDR exerts 

these effects primarily through p53 activation. To our knowledge, ours is the first study to 

directly assess the effects of DDR perturbation in p53-deficient models of oncogenic 

preneoplasia. We demonstrate that Mre11-mediated suppression of oncogenic proliferation, 

DNA damage, and genome instability are p53 independent. Thus, our findings challenge 

current models of the oncogene-induced DDR and its relation to p53: rather than being 

epistatic to p53, the Mre11-dependent DDR mediates p53-independent effects that regulate 

oncogenic phenotypes, including proliferation, genome instability, and therapeutic 

sensitivity.

Single-cell, whole-genome sequencing of premalignant mammary epithelial cells revealed 

important clues into the critical functions of the Mre11-dependent DDR in response to 

oncogenic stress. We found that oncogene expression was sufficient to rapidly induce 

widespread CNAs in otherwise completely normal primary mammary epithelial cells, 

independently of Mre11 status. Recent genomic analyses of human breast preneoplasia have 

also suggested an early origin of chromosomal instability, which does not seem to require 

DDR deficiency (Martelotto et al., 2017; Rane et al., 2015). In the setting of Mre11 

dysfunction, we observed a striking enrichment in genomic losses rather than gains, which 

was further exacerbated by oncogene expression. A similar enrichment in genomic deletions 

was seen in Rb1−/−Trp53−/− mammary tumors engineered to express hypomorphic Mre11 
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alleles, indicating that this genomic scar signature of Mre11 dysfunction persists during 

tumorigenesis. A possible explanation for the observed enrichment in genomic losses may 

be the accumulation of UR-DNA in oncogene-expressing cells with Mre11 dysfunction. 

Coupled with the observation that Mre11 dysfunction results in higher levels of unrepaired 

oncogene-induced DSBs, the increased levels of UR-DNA in this setting may be due to a 

higher rate of replication fork collapse (Figure 7).

The location of oncogene-induced chromosomal aberrations in the setting of Mre11 

dysfunction were non-randomly distributed and significantly enriched in large genes (>300 

kb). These genomic regions are known to be occupied by R-loops, depleted in replication 

origins, and associated with chromosomal fragility (Helmrich et al., 2011). Thus, our 

findings reinforce prior reports of fragile site instability induced by oncogenic stress (Miron 

et al., 2015) and complement the recent demonstration of oncogene-induced TRCs that 

stimulate intragenic dormant origin firing (Macheret and Halazonetis, 2018). Our results 

suggest that Mre11 promotes replication fork stability at oncogene-induced TRCs (Figure 

7). R-loops can either be persistent structures that are stabilized by DNA secondary structure 

or transient intermediates of gene transcription. Further work to determine whether one of 

these types of R-loops is a greater contributor to oncogene-induced CIN is warranted. We 

observed a striking increase in R-loop expression in mammary hyperplasias and tumors with 

Mre11 dysfunction. Mitigation of R-loops by RNase H1 expression in Mre11 hypomorphic 

cells diminished oncogenic DNA damage. A causative role for R-loops in the etiology of 

oncogenic DNA damage can be explained in the setting of replication fork collisions, which 

can give rise to fork uncoupling and/or collapse. Thus, our findings support a model wherein 

the Mre11 complex has critical functions in mitigating DNA damage at TRCs in oncogene-

expressing cells (Figure 7). Similar conclusions were drawn in a recent analysis of yeast and 

human cell line models (Chang et al., 2019). A more detailed examination of how the Mre11 

complex promotes genome integrity at TRCs—particularly in consideration of head-on 

versus co-directional collisions (Hamperl et al., 2017)—may provide additional clues 

regarding the etiology of genome instability during tumorigenesis.

The observation that Mre11 mutant cells have increased proliferation despite elevated levels 

of unrepaired DNA damage points to an oncogene-induced DNA damage checkpoint that is 

mediated by Mre11. The nature of the Mre11-mediated checkpoint in response to oncogenic 

stress remains to be further elucidated. Our finding that this checkpoint remains operative in 

p53-deficient cells suggests a possible role for an Mre11-mediated G2/M checkpoint in 

response to oncogenic stress. We found that ATM inhibition, however, did not phenocopy 

the effect of Mre11 hypomorphism in promoting oncogenic proliferation, suggesting that 

non-canonical mechanisms may also be involved.

Reduced expression of Mre11 complex proteins has been identified in a variety of human 

malignancies (Bartkova et al., 2008; Brandt et al., 2017). Our data provide direct evidence 

supporting a role for Mre11 in mediating resistance to DNA-damaging therapy as well as 

PARP and ATR inhibitors in TNBCs. Indeed, low expression of Mre11 and Nbs1 was 

associated with improved clinical outcomes in a cohort of TNBC patients who were treated 

with adjuvant chemotherapy. The finding that these cancers may also be hypersensitive to 

targeted DDR pathway inhibitors represents opportunities for targeted therapy that may 
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reduce the need for highly toxic combination chemotherapeutic regimens in a subset of 

TNBC patients.

The Mre11-dependent DNA damage response is evolutionary more primitive than p53 and 

functions as a mechanism to preserve genome integrity in response to endogenous and 

exogenous genotoxic stresses. The observation that DDR gene perturbations are prevalent 

across many human cancer types (Knijnenburg et al., 2018) suggests that aspects of the 

DDR are also tumor suppressive. Our findings reveal a p53-independent checkpoint function 

of the Mre11 complex that suppresses genome instability and uncontrolled proliferation 

induced by oncogenic mutations. Disruption of this genome integrity checkpoint may drive 

the catastrophic loss of chromosomal stability that is observed in a variety of clinically 

aggressive cancers. Elucidating additional mediators of this tumor-suppressive pathway may 

reveal new opportunities for personalized therapy of human cancers, including those with 

p53 deficiency.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Gaorav Gupta (gaorav_gupta@med.unc.edu). All unique/

stable reagents generated in this study are available from the Lead Contact with a completed 

Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines—HEK293T/17 cells were obtained from American Type Culture Collection 

(ATCC, CRL-11268) and were cultured according to manufactures’ specifications. LA-7 

cells obtained from American Type Culture Collection (ATCC, CRL-2283). LA-7 cells were 

maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum, 20 mM 

HEPES, and 10 ug/ml Insulin (“LA-7 medium”). Prior to use as feeder cells, LA-7’s were 

lethally irradiated with 70 Gy ionizing radiation using a Rad Source RS2000 irradiator.

Primary Murine Mammary Epithelial Cells (pMMECs)—pMMECs were derived by 

harvesting the 4th and 5th mammary glands from 6–12-week-old female transgenic mice 

with the desired genotype. Glands were incubated in Liberase digestion medium (EpiCult-B 

Mouse Medium Kit (Stem Cell Technologies, 285 Units CollagenaseType 3 (Worthington), 

20mM HEPES (GIBCO), 20 ug/mL Liberase Blendzyme 2 (Roche) and shaken (vertically) 

at 37°C overnight. The resulting digestion was spun down and resuspended in 3 mls trypsin 

with EDTA and 1000U DNase and incubated at 37°C for 5 min. LA-7 medium (DMEM-F12 

media, 10% FBS, 20 mM HEPES, 10 μg/mL Insulin, 1XL-glutamine, 1X Penicillin-

Streptomycin) was added to neutralize the trypsin. Cells were spun down and resuspended in 

10U Dispase (Stem Cell Technologies) and 1000U DNase I (Worthington Biochemical) and 

incubated at 37°C for 5 min. Cells were washed twice with LA-7 medium and the resulting 

cells were resuspended in EpiCult-B Mouse Medium Kit (Stem Cell Technologies) and 

seeded onto Cultrex3D-Culture Matrix (Trevigen) coated 6 well plates. For longer term cell 

growth experiments, pMMECs were seeded on lethally irradiated LA-7 cells and cultured in 

Fagan-Solis et al. Page 13

Cell Rep. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LA-7 medium. All cells were cultured to 80% confluence then passaged by trypsinization. 

Cells were tested monthly for mycoplasma using PlasmoTest Kit.

Transgenic Mouse Models—Mice used in this study were housed in the Division of 

Comparative Medicine at the University of North Carolina at Chapel Hill, a facility 

accredited by the Association for the Assessment and Accreditation of Laboratory Animal 

Care International (AAALAC). R26LSL-Cas9 (jaX#024857) and R26LSL-MycOE 

(JAX#020458) transgenic mouse strains were obtained from the Jackson Laboratory. Rb1fl/fl 

and Trp53fl/fl mouse strains were generously provided by the Perou laboratory, and 

originally obtained from the Frederick National Laboratory for Cancer Research (Strains 

#01XC1 and #01XC2). A subset of interbred mouse strains used in this study were analyzed 

by the Mouse Universal Genotyping Array (MUGA) from Neogen Genomics, and 

determined to be > 90% FVB with a minor contribution from C57BL/6J. For mammary 

tumor induction studies, six to twelve-week-old female R26Cas9/Cas9; Rb1fl/fl; Trp53fl/fl mice 

received bilateral intraductal injections, into the fourth mammary gland, containing 5 × 105 

transduction units (TU) of either LentiCRISPR-Cre-V2-sgControl (Cre-sgControl) or 

LentiCRISPR-Cre-V2-sgControl (Cre-sgMre11) lentivirus. Mouse cohorts were palpated for 

the development of mammary tumors twice weekly, and three times weekly after mammary 

tumors had formed. Mice were euthanized using humane experimental endpoints in 

accordance with UNC Institutional Animal Care and Use Committee (IACUC) guidelines. 

At necropsy, mammary tumors were harvested and sectioned into four pieces. Two pieces 

were immediately flash frozen for RNA and DNA extraction. One piece with any remaining 

glands (4th and 5th) were fixed in 4% paraformaldehyde and processed for paraffin 

embedding and H&E staining (Histoserv Inc.). One piece was taken for creation of tumor 

lines. Briefly, tumor pieces were incubated in digestion medium (DMEM, 10% FBS, 

1mg/ml Collagenase Type 3,1mg/ml Hyaluronidase) and shaken (horizontally) at 37°C for 

four hours. The resulting digestion was spun down and resuspended in trypsin with DNase 

and incubated at 37°C for 5min. LA-7 medium was added to neutralize the trypsin. Cells 

were spun down and resuspended in Dispase and deoxyribonuclease and incubated at 37°C 

for 5 min. Cells were washed twice with LA-7 medium and passed through a 70 μm filter. 

The resulting cells were resuspended in LA-7 media and seeded into co-culture with 

irradiated LA-7 feeder cells. The cells were cultured over 10 passages and analyzed via flow 

for GFP expression to monitor tumor cell outgrowth. Tumor lines were then utilized for 

downstream assays when GFP expression reached < 90%.

METHOD DETAILS

Cloning

LentiCRISPR-Cre-V2-sgRNA LumiFluor plasmid: This plasmid was created by using 

restriction enzymes (XbaI and BglII) to cut the Cre sequence from the pLV-Cre_LKO1 

plasmid and swapping it for the Cas9 sequence in lentiCRISPR V2 using restriction digest 

and T4 ligation. In order to get rid of the BsmbI site within Cre, Gibson cloning was used 

(HiFi DNA Assembly Master Mix; NEB) to change the sequence of a Valine residue from 

GTC to GTA, thus removing the site while preserving the protein sequence. Using the 

remaining BsmB1 sites, the sequences for sgControl (53bp1 intron sequence) and sgMre11 

were inserted into the sgRNA scaffolding region.
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LentiCRISPR-Cre-V2-sgRNA-RNasH1: This plasmid was created via Gibson cloning of 

the RNaseH1 gene from the pEGFP-RNASEH1 plasmid (Addgene #108699) to replace the 

LumiFluor gene in the LentiCRISPR-Cre-V2-sgControl LumiFluor and LentiCRISPR-Cre-

V2-sgMre11 LumiFluor plasmids.

Lentiviral_pRRL-EF1a-NeuT-LumiFluor: This plasmid was created via Gibson cloning 

of the Lentiviral_pRRL-EF1a-GpNLuc plasmid to insert the NeuT gene (constitutively 

active truncation mutant of Neu, the rodent ortholog of Her2) and an autocleavage P2A 

sequence upstream of the luciferase gene. NeuT-P2A was synthesized as a gene block (IDT), 

using pSV2-NeuT (Addgene #10919) as the reference sequence. Because NeuT is 

commonly used to recapitulate Her2-initiated tumorigenesis, we refer to this construct as 

“Her2” in the text and figures of the manuscript.

All plasmids created were confirmed by Sanger sequencing (Eton Bioscience Inc.). 

LentiCRISPR-Cre-V2-sgControl-Lumifluor, LentiCRISPR-Cre-V2-sgMre11-Lumifluor, 

LentiCRISPR-Cre-V2-sgControl-RNaseH1, LentiCRISPR-Cre-V2-sgMre11-RNaseH1, 

Lentiviral_pRRL-EF1a-GpNLuc, and Lentiviral_pRRL-EF1a-NeuT-LumiFluor will be 

made available by the Lead Contact.

Topo cloning—pMMECs were infected twice with either Cre-sgControl or Cre-sgMre11. 

Upon confirmation of at least 80% viral efficiency, Topo Cloning was performed per 

manufactures protocol. Sequencing was performed by Eton Biosciences and analysis 

performed using Bioedit software.

Immunofluorescence—pMMECs were infected twice with either Cre-sgControl, Cre-

sgMre11, GFP, or NeuT virus. Upon confirmation of at least 80% viral efficiency, cells were 

seeded onto 3D-matrix coated coverslips, were treated with EdU for 10 min, and 

subsequently fixed by cold Methanol:Acetone (1:1) incubation at −20Cfor 10 mins. Cells 

then underwent EdU detection using the EdU detection kit (Baseclick) in accordance with 

kit instructions. Cells were then blocked in PBS + 5% FBS for 1 hour, followed by 

incubation in the appropriate primary antibody for 1 hour (p-γH2AX; 53bp1; p-RPA2; or 

S9.6), secondary antibody for 30 min, then DAPI for 1 min. Coverslips were then mounted 

onto slides with Prolong Gold mounting medium, cured for 2 hours and stored at 4C in the 

dark until imaging. Coverslips were examined on an Olympus BX61 upright wide field 

microscope. Resulting foci were analyzed using Fiji software (Schindelin etal., 2012).

Comet assay—pMMECs were infected twice with either Cre-sgControl, Cre-sgMre11, 

GFP, or NeuT virus and confirmation of at least 80% viral efficiency was determined by 

Flow Cytometry (Attune NxT) for GFP expression. The presence of SSBs and DSBs were 

analyzed via Alkaline (SSBs/DSBs) and Neutral (DSBs) comet assay using the Trevigen 

comet assay kit according to manufacturer’s protocol. Comet images were captured by 

fluorescence microscopy using Olympus BX61 upright wide field microscope. The tail DNA 

percent was quantified using the ImageJ software with OpenComet plug-in (Gyori et al., 

2014).
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Growth assays—pMMECs were infected twice with either Cre-sgControl or Cre-

sgMre11 virus then seeded into 12 well plates at a density of 3 × 104 cells/well onto LA-7 

feeder cells. Duplicate samples were harvested every 2–3 days for 15 days. Total cells/well 

were counted, cells were fixed in 3% PFA and subjected to flow analysis (Attune NxT) for 

the presence of GFP. Prior to ATMi growth assays, the dose of ATMi that resulted in 50% 

and 100% inhibition of the ATM pathway was determined. Wild-type mouse embryonic 

fibroblasts (MEFs) were treated with 0,1,3,5, 7,10,15, or 20 uM of the ATM inhibitor 

Ku55933for30 min. They were then subjected to 10 Gy, incubated under normal culture 

conditions and then cell lysate was collected for western blotting analysis of the 

phosphorylated form of the ATM downstream protein, Kap1. For ATMi growth assays 

pMMECs were treated as above but with the additional presence of either 5 or 10 uM of 

ATMi.

Viral production and infection—HEK293T/17 cells were transfected, using 

Polyethylenimine (PEI), with viral packaging plasmids, psPax2 and pMD2.G, and either 

LentiCRISPR-Cre-V2-sgControl-Lumifluor, LentiCRISPR-Cre-V2-sgMre11-Lumifluor, 

Lentiviral_pRRL-EF1a-GpNLuc, or Lentiviral_pRRL-EF1a-NeuT-LumiFluor, 

LentiCRISPR-Cre-V2-sgControl-RNaseH1, or LentiCRISPR-Cre-V2-sgMre11-RNaseH1 

plasmids. Twenty-four hours post transfection, cells were washed and refed with fresh 

medium. Viral containing media was collected for 3 days. Collected media was filtered (0.45 

um) then spun down for 2 hours at 16C at 21,000 rpm. Virus containing pellet was 

resuspended in PBS and incubated at 4°C for 24 hours then aliquoted and stored at −80C. 

For lentiviral infections, cells were transduced with the appropriate virus combined with 

4μg/ml Polybrene overnight. Cells were refed with fresh viral containing medium and 

incubated overnight two to three times (2–3 back to back infections). Following the last 

infections cells were washed three times with PBS and cultured with MEGM. For testing 

viral efficacy, a small sample of cells were fixed with 3% Paraformaldehyde (PFA) and were 

assessed via flow cytometry (Attune NxT) for the presence of GFP indicating Cas9 

expression or were stained with anti-CD2-PE indicating Myc expression.

Chemotherapeutic and inhibitor sensitivity assays—Tumor cells were seeded at a 

density of 1500 cells per well of a 96 well dish and allowed to attach overnight. After the 

cells were attached, various drugs or DMSO control were added to the media to the final 

concentrations shown in the figures. Each treatment was done in triplicate. Cells underwent 

IncuCyte live cell imaging (S’artorius), scanned every two hours to determine cell 

confluence and growth rates over seven days.

Automated analysis of mouse mammary tissues—The process of quantitative 

image analysis begins with the acquisition of high-resolution digital slides. FFPE sections of 

mouse mammary tissue stained with hematoxylin and eosin were scanned on an Aperio 

ScanScope XT (Leica Biosystems). Images were then uploaded to eSlide Manager and 

visualized with ImageScope 12.3 (Leica Biosystems). Separate tissue sections on each 

image were annotated by KFS. Mouse mammary glands four and five were differentiated 

based on the location of the lymph node which separates the glands. The annotated images 

were then imported to Definiens Architect XD 2.7.0 Build 60765 ×64 for analysis with 
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Tissue Studio version 4.4.2. Using the Tissue Studio portal, the annotated images were 

preselected for region-of-interest (ROI) detection. The Definiens Composer algorithm was 

used to segment the tissue into different ROIs: Brown Adipose, Epithelium, RBCs, Stroma, 

Glass, and White Adipose. This algorithm was trained on representative regions to classify 

all the tissue within the ROIs in the final analysis. The program then calculated the total 

tissue area and the area percentages for each of the ROIs. In addition, the program was 

configured to detect and score nuclei within each of the ROIs, based on a hematoxylin stain 

threshold and average size set by the analyst. All nuclei were counted and classified as small 

(<20 μm2), medium (20–40 μm2), or large (> 40 μm2). These values were used to calculate a 

histological score equal to (1 × % nuclei small) + (2 × % nuclei medium) + (3 × % nuclei 

large). The analysis output included all quantitative results as well as screen captures of the 

ROI detection plus overlays and the cellular analysis (nuclei). Slide scanning and tissue 

quantification was performed by the Bentley R. Midkiff at the Translational Pathology Lab 

at UNC.

Human breast cancer tissue microarrays—Tissue microarrays were constructed from 

271 patients with non-metastatic TNBC (ER/PR <1%; HER2 0/1+, or HER2 2+/FISH not 

amplified) who underwent surgical resection of their primary tumor at our institution 

between 2002 and 2007. Exclusion criteria were < 1 cm primary tumor size, prior breast 

radiation, inflammatory breast cancer, and neoadjuvant chemotherapy. 

Immunohistochemistry (IHC) was performed using rabbit polyclonal anti-sera generated 

against human Mre11 (1:3000) and human Nbs1 (1:3000). Tumors were classified as low-

expressors of the Mre11 complex if < 10% of cancer cells had detectable nuclear protein 

expression of Mre11 and/or Nbs1 relative to background staining levels, and determined by 

two independent reviewers. 254 out of 271 cases were deemed evaluable. Lack of 

immunoreactivity was confirmed by repeating the IHC using whole tissue sections in a 

subset of Mre11 complex low-expressors.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell whole genome sequencing

Mammary epithelial cells for single cell sequencing were derived from littermate WT and 

Mre11ATLD1/ATLD1 female mice. Lentivirus expressing EGFP or EGFP+HER2 was added to 

the cells for 24 hours. Following this infection, the cells were transferred to 10 cm tissue 

culture dishes containing irradiated LA7 cell feeder layers. The cells were maintained in 

culture for 2 weeks at which time they were dissociated into a single cell suspension and 

sorted for EGFP positive cells into a 96 well plate. These were used for the whole genome 

single cell sequencing described below.

Single cell sequencing libraries were prepared using the WGA4 kit (Sigma-Aldrich) as 

previously described (Garvin et al., 2015; Martelotto et al., 2017). Half of the individual cell 

libraries (48/96) were pooled into each of two library pools. Each pool was run on a single 

lane for 100-cycle single end sequencing (HiSeq2500, Illumina). The resulting FASTQ files 

and a bed file defining the indices for the pool, were used as input into Volur (https://

github.com/pkMyt1/Volur). The pipeline trimmed 27 nucleotides from the end of each read, 
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aligned the reads to the GRCm38 reference with BowTie2 (Langmead and Salzberg, 2012), 

converted the SAM files to BAM with SamTools (Li et al., 2009), and output gzipped, 

demultiplexed BED files suitable for use with Ginkgo (Garvin et al., 2015). Ginkgo was run 

using a variable 25 Kb segment size, 76 base pair bowtie simulated reads, and global 

(sample with lowest LOD) segmentation. All other parameters were left as the default. Once 

Ginkgo completed the segment copy data file was downloaded. This file was modified by 

removing the chromosome-Y elements, masking alignment errors by setting the copy 

number in those regions to 2, and normalizing any cell called triploid to diploid. 

Chromosome Y was removed because these were female mice. These mice are not the same 

genetic background as the GRCm38 reference. This resulted in regions of copy gain or loss 

common to all samples.

Quantification and statistical analysis—Since we did not provide a known diploid 

sample for Ginkgo to use as a reference, any cell that was scored as being triploid by Ginkgo 

was adjusted by subtracting 1 from the copy value of each segment. Segments observed in 

the Mre11 ATLD1 cells that were likely mapping errors because of the mouse strain used 

were masked by setting those regions to a copy number of 2 creating a no triploid, 

Mre11ATLD1 masked segment copy bed file. Ginkgo defines the copy number based on how 

many reads mapped to each predefined segment. The mapped reads for this determination 

may cross the segment boundaries. Because of this the copy number transition cannot be 

assigned to the segment boundaries. To account for this uncertainty, we use a breakpoint for 

our analysis. We define a breakpoint region as the start coordinate of the preceding segment 

through the stop coordinate of the segment containing the copy number change. Using the 

masked segment copy file, the number and location of each breakpoint was derived for each 

cell type. The unique breakpoints were then intersected with bed files of interest using 

BedTools (Quinlan and Hall, 2010) via the Python pybedtools API within Völur.

Statistical significance of breakpoint region intersects—The determination that an 

observed set of breakpoint regions is enriched for overlap with annotated genome regions 

(e.g., genes, obtained from http://www.Ensembl.org//useast.ensembl.org/?redirectsrc=//

www.ensembl.org%2F) was based on generation of an empirical null distribution dataset by 

randomly shuffling the genomic locations of the individual breakpoint regions for each cell 

and then determining the frequency of intersects with the genome feature of interest. This 

process was repeated 10,000 times for each intersect set. The observed frequency of 

intersection value was considered significantly different than the randomly shuffled dataset 

if it was < 5% or > 95% of this empirical null distribution. Specific association with a target 

set was defined as being those target sets that were not enriched for the control cells but 

were enriched for the oncogene expressing or Mre11ATLD1 cells.

Tumor whole genome sequencing—Whole genome sequencing services were 

provided by Novogene. Reads were trimmed using SeqPurge (Sturm et al., 2016), aligned to 

the mm10 mouse reference using bwa-mem (Li, 2013) and subsequently realigned with 

ABRA2 (Mose et al., 2019). The resultant BAM files were sorted and duplicate marked 

using biobambam2 (Tischler and Leonard, 2014). Small variants were called using Strelka2, 

Mutect2 and Cadabra (Cibulskis et al., 2013; Kim et al., 2018; Mose et al., 2019). Mutect2 
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calls were filtered using the GATK’s best practices whereas the Strelka2 and Cadabra 

default filters were applied. Quality thresholds were used to filter calls using values of 

QSS_NT > = 70 and QSI_NT > = 40 for Strelka2, SNV TLOD > = 9 and Indel TLOD > = 

10 for Mutect2, and QUAL > = 15 for Cadabra. Variants were additionally filtered using a 

panel of normals constructed using the Mutect2-GATK best practices. Structural variants 

were called using Manta (Chen et al., 2016) and copy number variants were called with 

CNVKit (Talevich et al., 2016). Mutation signature analysis was performed using 

deconstructSigs (Rosenthal et al., 2016). Circos plots were created with Circa (http://

omgenomics.com/circa).

Statistical Analyses—Two-tailed statistical tests for experimental data were conducted 

using Graphpad Prism version 8. The specific test used in each analysis is indicated in the 

corresponding figure legend.

DATA AND CODE AVAILABILITY

The custom algorithms developed for this study are available at https://github.com/pkMyt1/

Volur. Whole genome sequencing reads for murine breast cancers with matched normal liver 

have been uploaded to NCBI Sequence Read Archive (SRA) with accession number 

PRJNA595908. Single cell whole genome sequencing BAM files and copy number segment 

files have not been uploaded to SRA due to data format incompatibility, and can be 

requested from the Lead Contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mre11-mediated tumor suppression is p53 independent

• Mre11 suppresses DNA damage at oncogene-induced R loops

• Breast cancers with Mre11 dysfunction exhibit a genomic loss signature

• Mre11 dysfunction induces sensitivity to PARP and ATR inhibitors
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Figure 1. Oncogene Expression Rapidly Induces Copy Number Aberrations in Individual 
pMMECs
(A) Schematic representation of the single-cell, whole-genome sequencing process. WT or 

Mre11ATLD pMMECs were transduced with EGFP or Her2-EGFP. Growth curves on an 

irradiated feeder layer are shown. The mean of three biological replicates is shown with 

error bars depicting the standard error of the mean (SEM). ***p < 0.001, calculated using a 

two-tailed t test on log transformed day 14 data. On day 14, fluorescence-activated cell 

sorting (FACS) was performed to sort single EGFP+ cells into a 96-well microtiter plate. 

These cells were then processed for sequencing as described in the methods.

(B) Heatmap showing copy number of individual segments for each cell. The individual 

cells are clustered by geometric distance, which does not reveal any clonal relationships. The 

histograms at the right show the total fraction of aberrant genome per cell. p values were 

calculated by two-tailed Mann-Whitney test. ****p < 0.0001; *p < 0.05.
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See also Figure S1.
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Figure 2. Mre11 Dysfunction Alters the Profile of Copy Number Aberrations to Favor Genomic 
Loss
(A) Scatterplot showing total aberrations per cell in the different genotypes of pMMECs 

(mean ± SEM). **p < 0.01; ****p < 0.0001 bytwo-tailed Mann-Whitney test.

(B) Violin plots depicting the size distribution of aberrant copy number regions in each cell 

type. The line represents the median value. ***p < 0.001; ****p < 0.0001 by two-tailed 

Mann-Whitney test.

(C) Scatterplot CNA segment size for deletions and insertions, demonstrating a bias toward 

genomic deletions in Mre11ATLD genotypes. Error bars are median ± 95% confidence level. 

****p < 0.0001 by two-tailed Mann-Whitney test.

(D) Cumulative size distribution CNA deletions and insertions for WT+EGFP (green), WT
+Her2 (purple), Mre11ATLD+EGFP (blue), and Mre11ATLD+Her2 (red) pMMECs.

(E) Breakpoint regions in Mre11ATLD+Her2 cells are associated with the largest genes (>300 

kb). Violin plots show an empirical null distribution of overlaps generated by shuffle 

permutation of the observed CNA data, as described in the methods. Black line in violin 

plots is the median value, and the black dot is the observed value. p values are approximated 

from the empirical null distribution. *p = 0.03–0.05; **p = 0.01–0.03; ***p < 0.01.

(F) Expression ofHer2 increases the number of R-loop DNA-RNA hybrids, detected by S9.6 

immunofluorescence staining of WT pMMECs transduced with EGFP control or Her2. 

Scatterplot of the number of S9.6 foci per nucleus in control and Her2-expressing cells is 

shown. On the right are representative images ofS9.6 nuclear foci used to generate the 

scatterplot. ****p < 0.0001 using a two-tailed t test. Scale bar represents 5 μm.

See also Figure S2.

Fagan-Solis et al. Page 28

Cell Rep. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Mre11 Suppresses Oncogenic Proliferation in pMMECs Independently of Trp53 and 
ATM
(A) Graphic representing how pMMECs are harvested from the mice and manipulated in 
vitro to assess growth rates.

(B) Description of compound transgenic mice used for pMMEC experiments and resulting 

genotypes after introduction of Cre recombinase.

(C) pMMEC growth curves examining the effect of Myc overexpression and/or Mre11 
hypomorphic mutation. Cell counts are normalized to their respective day 0 counts.

(D) Significant effect of Mre11 mutation on oncogenic growth induced by Myc 

overexpression or Rb1 deletion in p53-deficient pMMECs. Cell counts are normalized to 

their respective day 0 counts.

(E) ATM inhibitor Ku55933 does not phenocopy the growth-stimulating effects of Mre11 
mutation in Rb1−/−Trp53−/− pMMECs. Statistical significance in (C)–(E) was determined by 

two-tailed t test on log-transformed data comparing day 12. The p values were adjusted for 

multiple comparisons by the method of Holm-Sidak. Data are represented as mean ± SEM.

See also Figure S3.
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Figure 4. Mre11 Suppresses Oncogene-Induced DNA Damage and R-Loops in p53-Proficient and 
p53-Deficient Models
(A) Mre11 suppresses oncogene-induced γH2AX foci formation in both p53-proficient and 

p53-deficient pMMECs. Bar graphs show quantification of the percent of nuclei containing 

≥5 γH2AXfoci in the different genotypes. Representative images (right) of the nuclei 

containing γH2AX foci are shown. White bar indicates 5 μm.

(B) Bar graphs depicting the fold change in tail DNA percent for both alkaline (left) and 

neutral (right) COMET assays in pMMECs with the genotypes shown post-Cre-sgRNA 

transduction. Representative images of alkaline and neutral COMETs in R26Cas9+sgControl, 
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R26Cas9/Myc+sgControl, and R26Cas9/Myc+sgMre11 pMMECs are shown. Data are 

represented as mean ± SEM.

(C) Mre11 suppresses oncogene-induced R-loop formation independently of Trp53. 

Scatterplot shows a quantification of the nuclear S9.6foci in pMMECs from the genetic 

backgrounds shown after transduction with Cre-sgControl versus Cre-sgMre11. 

Representative images (right) of the nuclei containing S9.6 foci are shown. White bar 

indicates 5 μm.

(D) S9.6 (R-loop) foci after RNase H1 overexpression in R26CasaRb1fl/flTrp53fl/fl pMMECs 

transduced with Cre-sgControl or Cre-sgMre11.

(E and F) Additionally, RNase H1 overexpression counteracts the increase in (E) γH2AX 

and (F) p-RPA2 foci seen in Mre11 hypomorphic R26CasaRb1fl/flTrp53fl/fl pMMECs.

***p < 0.001; ****p < 0.0001. p values are calculated using a two-tailed Mann-Whitney 

test.

See also Figure S4.
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Figure 5. Cell Proliferation, R-Loops,and Genomic LossSignatureAre Elevated 
inRb1−/−Trp53−/− MammaryTumors Engineeredwith Mre11 Hypomorphism
(A) Representative images of mammary hyperplasia 2 weeks after intraductal injection of 

R26Cas9Rb1fl/flTrp53fl/fl or R26Cas9/Myc mice with Cre-sgControl or Cre-sgMrell-expressing 

lentivirus.

(B) Quantification of mammary hyperplasia in R26Cas9Rb1fl/flTrp53fl/fl mice as shown 

in(A). The fifth, non-injected, mammary gland serves as a negative control. Data are 

represented as mean ± SEM. Significance was determined using two-tailed Mann-Whitney 

test.
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(C) Kaplan-Meier tumor-free survival plot of R26Cas9Rb1fl/flTrp53fl/fl mice after mammary 

intraductal injection of either Cre-sgControl or Cre-sgMre11 lentivirus. p value was 

calculated using a two-tailed Gehan-Breslow-Wilcoxon test.

(D) Mre11, Rad50, and Nbs1 protein levels in tumorsfrom mice in (C), validating protein 

destabilization induced by CRISPR/Cas9-mediated Mre11 mutagenesis.

(E) Cellsfrom the sgMre11 tumors growfaster in vitro than cellsfrom the sgControl tumors. 

Three independenttumor lines are shown for each genotype. Growth curves were acquired 

using the Incucyte Live Cell Analysis system. Data are represented as mean ± SEM.

(F) Cellsfrom sgMre11-derived tumors have more R-loops than cells from sgControl tumors. 

Three independent tumor lines of each genotype were evaluated by immunofluorescence 

using the S9.6 antibody. Data are represented as mean ± standard deviation. Significance 

was determined using a two-tailed Mann-Whitney test.

(G) Representative circos plot of structural variations identified by whole-genome 

sequencing of WT or Mre11 hypomorphic mammary tumors derived from the 

R26Cas9Rb1fl/flTrp53fl/fl model. Purple lines indicate translocations between different 

chromosomes. Blue lines indicate intra-chromosomal rearrangements.

(H) Analysis of structural aberrations identified from tumor-normal WGS from three WT 
and three Mre11 hypomorphic mammary tumors from the R26Cas9Rb1fl/flTrp53fl/fl model. 

Deletions (>50 bp) are highly over-represented in Mrell hypomorphic Rb1−/−Trp53−/− 

mammary tumors. Data are represented as mean ± SEM. Q value was estimated using a two-

tailed t test with false discovery rate correction using Graphpad Prism v8. All other 

comparisons were not statistically significant (i.e., Q < 0.05).

See also Figure S5.
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Figure 6. Favorable Clinical Outcomes and Therapeutic Vulnerabilities of Mre11 Hypomorphic 
p53-Deficient Breast Cancers
(A) Immunohistochemistry for(1)Mre11 and (2) Nbs1 performed on tissue microarrays of 

primary triple-negative breast cancers (n = 254). In both cases (1 and 2), the left panel 

represents an example of a “normal” expressor and the right case represents an example of a 

“low” expressing tumor.

(B) Kaplan-Meier breast-cancer-specific survival of patients with TNBC that had normal 

expression of Mre11 and Nbs1 or patients with TNBC that had low expression of both 

Mre11 and Nbs1 (i.e., Mre11 complex low). p value was calculated by a two-tailed log rank 

test.

(C) In vitro sensitivity of sgControl and sgMre11 Rb1−/−Trp53−/− mammary tumor lines 

treated with the indicated doses of cisplatin, doxorubicin, camptothecin, and Taxol. Percent 

confluence was measured using an Incucyte Live-Cell Analysis System 7 days after drug 

exposure.
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(D) Similar drug sensitivity assays using the ATR inhibitorVE-821 and PARP 

inhibitorBMN-673. The data shown represent the average of at least two independent cell 

lines for each genotype with three replicates each. Significance was determined using a two-

tailed t test at the highest drug dosage. Data are represented as mean ± SEM.

See also Figure S6.
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Figure 7. Model Depicting Genome Stabilizing Functions of Mre11 at Oncogene-Induced 
Transcription-Replication Conflicts
Mre11 dysfunction during oncogenic breast neoplasia results in accumulation of R-loops, 

replication-associated DSBs, under-repllcated DNA, an enrichment of genomic deletions, 

and uncontrolled proliferation. See the Discussion for further details.
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