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Abstract

Recommendations were made recently to limit or stop the use of oral and systemic

immunotherapies for skin diseases due to potential risks to the patients during the current

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic.

Herein, we attempt to identify potentially safe immunotherapies that may be used in the

treatment of cutaneous diseases during the current COVID-19 pandemic. We performed a

literature review to approximate the risk of SARS-CoV-2 infection, including available data

on the roles of relevant cytokines, cell subsets, and their mediators in eliciting an optimal

immune response against respiratory viruses in murine gene deletion models and humans

with congenital deficiencies were reviewed for viral infections risk and if possible

coronaviruses specifically. Furthermore, reported risk of infections of biologic and non-

biologic therapeutics for skin diseases from clinical trials and drug data registries were

evaluated. Many of the immunotherapies used in dermatology have data to support their

safe use during the COVID-19 pandemic including the biologics that target IgE, IL-4/13,

TNF-a, IL-17, IL-12, and IL-23. Furthermore, we provide evidence to show that oral

immunosuppressive medications such as methotrexate and cyclosporine do not

significantly increase the risk to patients. Most biologic and conventional immunotherapies,

based on doses and indications in dermatology, do not appear to increase risk of viral

susceptibility and are most likely safe for use during the COVID-19 pandemic. The

limitation of this study is availability of data on COVID-19.

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), also named 2019 novel coronavirus disease COVID-19,

is the causative agent of the ongoing pandemic.1 It is not known

if patients on immunotherapies for skin disorders are more sus-

ceptible to SARS-CoV-2. This uncertainty can result in anxiety

for prescribing physicians and treated patients. Several formal

and informal recommendations were made to limit or stop

immunomodulator therapies in the “COVID-19 era.”2,3 With our

knowledge of the immunopathogenesis of coronaviruses and as

our understanding of SARS-CoV-2 evolves, it is important to

place the emphasis on evidence-based medicine to objectively

evaluate SARS-CoV-2 risk in the context of dermatologic indica-

tions and doses.

Part 1: Proinflammatory cytokine surge in severe SARS-

CoV-2 (COVID-19) infection

The human pathogenic forms of coronaviruses usually cause

mild-to-moderate upper respiratory tract illnesses (URTI) with

few exceptions with life-threatening implications such as severe

acute respiratory syndrome (SARS) and Middle East respiratory

syndrome (MERS). COVID-19 is marked by symptoms that can

include fever, dry cough, fatigue, and shortness of breath. A

subset of COVID-19 patients succumb to severe disease with

manifestations of acute respiratory distress syndrome (ARDS),

cardiac injury, and secondary infections with a high mortality

rate.4 It is postulated that a dysregulated immune response to

the infection is a consequence of the patients’ comorbidities.5

Dysregulation of the adaptive T-cell-mediated immune response

is strongly implicated in pathogenesis of COVID-19.5 Elevated
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levels of proinflammatory cytokines were shown in patients with

severe COVID-19, including plasma levels of tumor necrosis

factor a (TNF-a), interleukin (IL)-2, IL-6, G-CSF, IP10, MCP-1,

and MIP-1a.5,6 This is consistent with the reported elevation of

proinflammatory cytokines in SARS7 and MERS infections.8

The massive inflammatory cell infiltration and elevated proin-

flammatory cytokine/chemokine responses result in acute lung

injury and ARDS.4,9,10

Part 2: Infectious risks associated with biologics:

evaluating cytokine knockout data and reviewing data

from randomized controlled trials (RCTs) and biologic

treatment registries

TNF-a
Infecting TNF-a�/�, TNF receptor 1 (R1)�/�, and TNFR2�/�

mice with mouse hepatitis virus-3 (MHV-3, belongs to the coro-

navirus family) revealed that a deficiency of either TNF-a or

TNFR1 decreased morbidity and mortality (Table 1).11 TNF

receptors 1/2 knock-out mice infected with SARS-CoV were

protected from infection-related morbidity.12 Collectively, TNF-a

promotes the deleterious effects of coronavirus infection pre-

sumably through excessive inflammation. From clinical trials

(Table 2), the relative risk of adalimumab, certolizumab, etaner-

cept, and infliximab for URTI (2.06, 1.54, 2.44, and 0.93) and

nasopharyngitis (0.82, 1.5, 1.39, and 0.75), respectively, is ele-

vated compared to placebo, but the absolute risk remains small.

Furthermore, in the Psoriasis Longitudinal Assessment and

Registry (PSOLAR), biologics that targeted TNF-a had little-to-

no increased risk of infections.13 It is important to note that defi-

nitions of URTI and nasopharyngitis in dermatology clinical trials

are not adjudicated with nasopharyngeal swabs to confirm the

presence of rhinovirus or influenza infection and that upper res-

piratory symptoms due to allergic phenomena could be a con-

founder. Given the proposed role of TNF-a in acute lung injury

and ARDS in COVID-19, TNF-a is a potential target for treating

patients with COVID-19.14 Consequently, the efficacy and

safety of adalimumab against COVID-19-induced cytokine storm

are being evaluated in an ongoing clinical trial.15

CD20

The B-lymphocyte antigen CD20 is highly expressed on B cells

starting at the pre-B-cell stage and on mature B cells, and it is

downregulated during terminal differentiation into plasma cells.

While the precise function of CD20 is not fully elucidated, IgM

expression in immature and mature B cells from CD20-deficient

mice was markedly reduced compared to wildtype.16 Further-

more, reduced humoral immunity to adeno-associated viral anti-

gens was demonstrated in CD20-deficient mice.17 A patient

who lacked CD20 expression due to homozygous mutations

reported intermittent respiratory infections, associated with per-

sistent hypogammaglobulinemia and strong reductions in circu-

lating memory B cells.18 No significant differences in URTI,

nasopharyngitis, bronchitis, cough, and sinusitis between ritux-

imab (anti-CD20)19 and placebo were demonstrated in a dou-

ble-blind RCT for rheumatoid arthritis (RA).20 However, in a

prospective, open-label RCT, it was noted that lung infections/

pneumonia were higher in the rituximab treatment arm by more

than twofold (11% vs. 5% in control, no confidence intervals

were presented).21 The role of CD20+ cells in presenting anti-

gen to T cells and in generation of antibodies to protect from

new infections remains unclear.

IL-12/23

The IL-12/IL-23 common pathway plays a key role in the induc-

tion of inflammation in adaptive immune responses, where IL-

12 induces a Th1 immune response with a downstream induc-

tion of cytokines such as TNF, interferon (IFN)-c, and IL-23 pro-

motes a Th17 immune response through the induction of

inflammatory cytokines such as IL-17 and IL-22.22 Mice defec-

tive in both IL-12/23 (p40�/�) and IL-12 alone (p35�/�) were

infected with a murine coronavirus (MHV).23 IL-12 and IL-12/23

knockout mice had similar survival to wild-type animals.23

Therefore, IL-12 does not seem to contribute to antiviral func-

tion or survival. Mice deficient in IL-23 alone (p19�/�) were

infected with murine coronavirus, and viral control was similar

to wild-type mice, demonstrating that IL-23 does not signifi-

cantly confer protection from infection.24 This was also demon-

strated thorough neutralization of mice using anti-IL-23p19-

specific and anti-IL-12/23p40 antibodies, followed by infection

of mice with MHV.25 In the absence of IL-12/23 signaling,

specific antiviral T-cell response was intact.25 Clinical trials

using IL-12/23 or IL-23 inhibitors demonstrated no significant

increase in respiratory adverse events (Table 2). Furthermore,

the PSOLAR study reported that ustekinumab had no increased

risk of serious infections.13 Of note, a recent case study

reported COVID-19 in a patient during IL-23 inhibitor (guselku-

mab) treatment for psoriasis, and the patient had a good out-

come.26

IL-17

IL-17 is a proinflammatory cytokine with important roles in T-

cell activation and neutrophil mobilization and activation.27 IL-17

expression is induced during influenza infection as part of the

Th1 immune response that contributes to viral clearance.28

However, a growing body of evidence suggests that IL-17 is

also associated with promotion of viral infections and tissue

pathology. This is thought to occur through direct suppression

of IFN-c and the pivotal regulators of Th1-cell development T-

bet and eomesodermin.29,30 IL-17 in some settings was shown

to induce tissue pathology in response to viral infections

through neutrophil infiltration. Mouse models developed

increased IL-17A-dependent lung pathology upon respiratory

syncytial virus (RSV) infection.31 IL-17RA-/- mice challenged

with influenza had decreased morbidity and mortality, and this

correlated with decreased levels of proinflammatory cytokines
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including TNF-a, IL-1b, and IL-6.32 In humans, chronic mucocu-

taneous candidiasis has been attributed to the disruption of Th1

and Th17 pathways. This was illustrated in patients with identi-

fied mutations in IL-17RA and STAT1 genes.33 These patients

have no increased risk of viral infections.34 Clinical trials using

IL-17 inhibitors demonstrated no significant increase in respira-

tory adverse events (Table 2). A recent case report reported a

patient receiving therapy with an IL-17 inhibitor (ixekizumab)

who was completely asymptomatic but tested positive for

COVID-19.35

Table 1 Cytokines and their mediators and impact on viral immunity in mice – knockout data

Target

Respiratory virus

susceptibility Coronavirus susceptibility Interpretation of effect of knockout References

TNF-a TNF-a�/� mice were less

susceptible to MHV-3 and have

improved survival

TNF signaling plays an important role in the

pathology of coronavirus mouse hepatitis virus.

Interruption of this signaling pathway could be

useful for clinical therapy

11

TNF receptor TNFR1�/�mice were less

susceptible to MHV-3 and had

improved survival.

TNFRs null mutant mice that were

infected with SARS-CoV were

protected from weight loss

associated with infection

Signaling through TNF receptors is implicated in

promoting coronaviruses pathogenesis,

presumably through excessive inflammation

11,12

IL-17RA IL-17RA�/� were less

susceptible to influenza virus

with decreased morbidity and

mortality.

IL-17RA knockout protected

mice from lung damage

IL-17RA is dispensable for the recruitment of

CD8+ T cells specific for influenza. IL-17

signaling in fact plays a key role in promoting a

neutrophil response which leads to excessive

inflammation in some viral infections

32

IL-12 IL-12 (p35�/�) mice were less

susceptible to JHMV.

IL-12 (p35�/�) mice had same

susceptibility to MHV as WT

IL-12 enhances the magnitude of the

inflammatory response in the viral infections

after infection, albeit without affecting viral

control.

MHV-infected mice lacking IL-12 produced a

polarized Th1-type cytokine response

23,24

IL-12/23 IL-12 and IL-23 (p40�/�) mice

were less susceptible to JHMV

Reduced morbidity in infected IL-12-deficient

mice

24

IL-23 IL-23 (p19�/�) mice had similar

susceptibility to JHMV as WT

IL-23 appears to be dispensable for the

recruitment of specific antiviral immune

response

24

CD20 Likely more susceptible.

Neutralizing Ab response to

adeno-associated virus was

significantly reduced in

CD20�/� mice

Reduced humoral immunity to adeno-associated

viral antigens

16,17

IL-1R IL-1R1�/� mice had reduced

inflammatory lung pathology

but more mortality to

influenza virus

IL-1R1�/� mice or IL-1R

antagonist (IL-1Ra) treated mice

show reductions in MHV-3 viral

replication, disease progress,

and mortality.

MyD88�/� mice (defective IL-1

signaling) were more susceptible

to SARS-CoV virus

Optimal IL-1R signaling and inflammatory cell

recruitment to the lung appear to be required for

protection

36,37,111

IL-4 IL-4�/� or IL-4 overexpressed

mice had same susceptibility

to RSV as WT.

Overexpression of IL-4

delayed viral clearance

Absence of IL-4 signaling does not seem to

affect susceptibility to some viruses

40

TNF, tumor necrosis factor; TNFR1, tumor necrosis factor receptor 1; SARS-CoV, severe acute respiratory syndrome coronavirus 2; IL-17RA,

IL-17 receptor antagonist; JHMV, JHM strain of mouse hepatitis virus, a neurotropic coronavirus; MHV, mouse hepatitis virus, a coronavirus;

RSV, respiratory syncytial virus; WT, wildtype.
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IL-1

IL-1 is a key player in the regulation of inflammation. IL-1 sig-

naling may enhance or attenuate viral replication depending on

the setting. Mice deficient in MyD88, an adapter protein that

mediates Toll-like receptor (TLR), IL-1R, and IL-18R signaling,

are more susceptible to SARS-CoV infection.36 On the other

hand, mice that were infected with MHV-3 had high levels of

IL-1b in the serum and liver.37 IL-1b receptor-I deficient (IL-

1R1 -/-) or IL-1R antagonist (IL-1Ra)-treated mice infected with

MHV-3 showed attenuation in viral replication and mortality,

demonstrating that IL-1 may contribute to the pathogenesis of

coronavirus in mice.37 Patients with unopposed activation of

IL-1 due to recessive mutations in IL1RN, the gene encoding

IL-1–receptor antagonist, had elevated levels of proinflamma-

tory cytokines TNF-a, IL-6, and IL-17, and some of these

patients presented with respiratory distress.38 Treatment of

these patients with IL-1 receptor antagonist decreased mortal-

ity.38 The use of anakinra in clinical trials was associated with

a slightly higher frequency of serious infectious episodes, pri-

marily pneumonia (2.1% vs. 0.4%, comparative risk 5.25), than

the placebo group.39 It appears that normal IL-1 expression/

function is required to mount an optimal antiviral immune

response.

IL-4

IL-4 is a key regulator in humoral and Th2 adaptive immunity.

Mouse models demonstrated that the constitutive overexpres-

sion of IL-4 prior to RSV infection delayed viral clearance,

increased the density of the lymphocytic infiltrate in the lungs,

and diminished induction of primary cytotoxic T lymphocyte

responses.40 Conversely, IL-4�/� mice cleared RSV readily after

primary infection, with minimal pathology.40 A pooled analysis of

two phase III RCTs demonstrated safety of dupilumab, where

URTIs, nasopharyngitis, and severe infection rates were compa-

rable to the placebo group.41 Recently, several case reports

demonstrated no evidence of increased risk for COVID-19 infec-

tion in patients treated with dupilumab.42-45

Anti-immunoglobulin E

Anti-IgE biologics (e.g., omalizumab) block IgE molecule binding

to receptors on mast cells and basophils and are approved for

urticaria. Omalizumab was shown in multiple trials to be a safe

biological therapy with no significant increase in adverse respi-

ratory events.46-48

Intravenous immunoglobulin

Intravenous immunoglobulin (IVIg) is used for several dermato-

logical diseases. IVIg has been shown to have a good safety

profile with no significant increase in the rates of nasopharyngi-

tis and URTI.49,50 Of note, a clinical trial on IVIg and pemphigus

demonstrated that the incidence of adverse drug reactions was

6/21(28.6%) in the 400 mg/kg/day group and 7/20 (35.0%) in
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Table 3 Trial data on systemic medications and the risk of infection

Trial Trial Type

Type of

infectious

risk assessed Number

Cyclosporine Grattan et al.54 Randomized, double-blind,

placebo controlled

URTI 10% of 20 vs. not reported/10 placebo

Flu-like symptoms 15% of 20 vs. not reported/10 placebo

Vena et al.125 Randomized, double-blind,

placebo controlled

Infections 3.2% of 62 vs. 8.6% of 35

Karanikolas et al.126 Non-randomized, unblinded, ADA

vs. CsA

Any infection 3.5% CsA of 57 vs. 10.3% of 58 ADA

Any serious

infection

0% of 57 CsA vs. 1.7% of 58 ADA

URTI 1.8% of 57 CAsA vs. 8.6% of 58 ADA

Lai et al.127 Randomized, double-blind,

placebo controlled

Infections (UTIa) 5.6% of 18 vs. 0% of 18 placebo

Mycophenolate

mofetil

Beissert et al.128 Randomized, non-blinded,

methylpred + MMF vs.

methylpred + AZA

Grade 3 Infections

(severe)b
11% of 35 Methylpred + MMF vs. 0% of 38

Methylpred + AZA

Grade 4 Infections

(life threatening)

0% of 35 Methylpred + MMF vs. 3% of 38

Methylpred + AZA

Beissert et al.62 Randomized non-blinded,

Prednisone (Pred) + MMF vs.

Pred monotherapyc

Nasopharyngitis 12% of 58 Pred + MMF vs. 0% of 36 Pred

URTI 10% of 58 Pred + MMF vs. 3% of 36 Pred

Influenza viral 0% of 58 Pred + MMF vs. 3% of 36 Pred

LRTI 3% of 58 Pred + MMF vs. 0% of 36 Pred

Overall Infections 59% of 58 Pred + MMF vs. 36% of 36 Pred

P = 0.04

Akhyani et al.129 Randomized, open-label MMF vs.

MTX

Infectionsd 0% of 20 vs. 0% of 18 MTX

Ioannides et al.130 Randomized, non-blinded,

methylpred vs.

methylpred + MMF

Internal Infection 8% of 24 Methylpred + MMF vs. 4% of 23

Methylpred (P = 1.0000)

Zhou et al.131 Open-label Infection 0% of 23

Azathioprine Meggitt et al.68 Randomized, double-blind,

placebo controlled

LRTI 5% of 41 vs. 0% of 20

URTI 5% of 41 vs. 5% of 20

Berth-Jones et al.67 Double blind, randomized,

placebo crossover

URTI 20% of 25 vs. 8% of 25

Schram et al. 69 Randomized, single blind

compared to methotrexate

Infection 70% of 22 vs. 64% of 20 MTX

Moderate intensity

infection

36% of 22 vs. 25% of 20 MTX

Methotrexate METOP73 Randomized, double-blind,

placebo-controlled

Any infection 44% of 91 weeks 0–16 and 41% of 76 weeks

16–52 vs. 45% of 29 weeks 0–16 placebo

Serious infection 0% of 91 vs. 3% of 29 placebo

Pasnoor et al.74 Randomized, double-blind,

placebo-controlled

Infection 16% of 175 vs. 11% of 161 placebo

Kingsley et al.75 Randomized, double-blind,

placebo-controlled

Respiratory tract

infection

28% of 109 vs. 22% of 112 placebo

Apremilast UNVEIL84 Double-blind, placebo-controlled,

52 weeks

Nasopharyngitis 10% of 211 vs. N/A placebo

URTI 7% of 211 vs. N/A placebo

LIBERATE85 Randomized, double-blind, Aprem

vs. Enbrel vs. placebo with

Aprem extensiona

URTI 7% of 74 vs. 7% of 73 placebo/Aprem

Nasopharyngitis 3% of 74 vs. 6% of 73 placebo/Aprem

Bronchitis 5% of 74 vs. 1% of 73 placebo/Aprem

Bissonette et al.86 Randomized, double-blind,

placebo-controlled

URTI 26% of 53 vs. 14% of 50 placebog

Bronchitis 6% of 50 vs. 0% of 50 placebo

ESTEEM 187 Randomized, double-blind,

placebo-controlled

URTI 10% of 560

EAIR/100 py = 37.6 vs. 7% of 282 EAIR/

100 py = 27.3 placebo

Nasopharyngitis 7% of 560

EAIR/100 py = 26.6 vs. 8% of 282 EAIR/

100 py = 30.1

ESTEEM 288 Randomized, double-blind,

placebo-controlled

URTI 5% of 272 EAIR/100 py = 17.3 vs. 4% of 136

EAIR/100 py = 16.7
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the 200 mg group including one URTI vs. 5/20(25.0%) in the

placebo group.51

Parts 3: Non-biologic systemic agents and risk of

infection

Cyclosporine

Cyclosporine is a calcineurin inhibitor that blocks IL-2 signaling

and T-cell proliferation.52,53 The most common infectious side

effects from cyclosporine were flu-like symptoms seen in 15%

of patients enrolled in an RCT for chronic idiopathic urticaria.54

Psoriasis registries examining cyclosporine reported infection

rates of 8.1–17.7 infections per 100 patient-years55-57 with sev-

ere or serious infection rates of 1.4 and 2.0 per 100 patient-

years, slightly higher than comparators.56,57 Of note, cyclospor-

ine has been shown to inhibit the replication of diverse coron-

aviruses including SARS as demonstrated by in vitro

experiments.58,59

Mycophenolate mofetil

Mycophenolate mofetil (MMF) is an antimetabolite that blocks

B-cell and T-cell maturation.60,61 Most reported trials examined

MMF with an oral corticosteroid or other steroid-sparing agent.

Trials that combined MMF with corticosteroids had significantly

higher rates of infections, up to 59%.62 MMF is reported to

increase patients’ susceptibility to viral infections,63 and an

increase in nasopharyngitis and URTIs was noted comparing

prednisone plus MMF to prednisone monotherapy in pemphigus

vulgaris.62 Of note, MMF was used to treat eight patients with

MERS with a 100% survival rate; however, when analyzing the

severity of illness and treatment, MMF was given to less

severely ill patients.64

Azathioprine

Azathioprine inhibits purine synthesis and downregulates B-cell

and T-cell function.65,66 Documented types of infection with use

of azathioprine include lower respiratory tract infections (LRTI)

and URTI, which had rates of 5% and 5–20%, respectively.67,68

Thirty-six percent of patients in one study had infections of

moderate intensity.69 There were no registries evaluating the

prevalence of infections during azathioprine therapy for derma-

tologic uses. One systematic review evaluating the off-label use

of azathioprine found mild infections reported in 0.36% of

patients and severe infections in only 0.30% of patients70

(Table 3).

Methotrexate

The use of methotrexate (MTX),71 a folic acid antagonist that

inhibits nucleotide synthesis,72 had slightly increased risk of

infections ranging from 16 to 44% vs. 3 to 45% compared to

placebo in three RCTs.73-75 A large cardiovascular trial using

15–20 mg doses of methotrexate showed rates of serious

Table 3 Continued

Trial Trial Type

Type of

infectious

risk assessed Number

Nasopharyngitis 7% of 272

EAIR/100 py = 27.3 vs. 4% of 136 EAIR/

100 py = 16.9 placebo

Any type of

infection

25% vs. 21% placebo

Vossen et al.88 Randomized, double-blind,

placebo-controlled

Common cold 26% of 15 vs. 20% of 5 placebo

Thalidomide Droitcourt et al.132 Randomized, double-blind,

placebo-controlled

Cough and fever 5% of 20 vs. 0% of 19 placebo

Kaur et al.133 Randomized, double-blind,

thalidomide vs. prednisolone

Infectiond,e 0% of 30 vs. 0% of 30 prednisolone

Lazzerini et al.134 Randomized, double-blind,

placebo-controlled

Infectiond 0% of 12 vs. 0% of 31 placebo

Hamuryudan et al.135 Randomized, double-blind,

placebo-controlled

Infectiond 0% of 63 vs. 0% of 32 placebo

URTI, upper respiratory infection; ADA, adalimumab; CsA, Cyclosporine; UTI, urinary tract infection; MEP, methylprednisolone; MMF,

mycophenolate mofetil; AZA, azathioprine; Pred, prednisone; LRTI, lower respiratory infection; MTX, methotrexate; Aprem, apremilast; EAIR,

exposure-adjusted incidence rate; py, patient years.
aUrinary tract infection.
bThree infections were URTIs; one infection was recurrent HSV.
cNo patients withdrew due to infection.
dNo infections reported in paper.
eOne patient had amoebic dysentery within 2 weeks of initiation of study and stopped therapy.
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infection were similar to the placebo group.76 A review of infec-

tious risks in rheumatoid arthritis (RA) patients indicated that

although MTX has previously been implicated not only with

increased risk of infection but also increased severity, the evi-

dence was not clear.77 The review concluded that MTX appears

to be associated with minimal, if any, increased infection risk in

the RA population.77

Hydroxychloroquine

Hydroxychloroquine is an antimalarial medication that inhibits

lysosomal functions and interferes with a myriad of immune

pathways.78 Its exact mechanism in many dermatologic pro-

cesses has never been fully elucidated. Hydroxychloroquine

has been shown to have a favorable side effect profile in terms

of infection risk in many clinical trials.79,80 It is currently under

investigation in numerous phase 2 clinical trials as treatment for

COVID-19 as it may inhibit viral fusion to the host cell and inhi-

bit viral assembly and release.81

Apremilast

Apremilast is a phosphodiesterase 4 (PDE4) inhibitor,82 with

side effects including nasopharyngitis and URTI.83 The inci-

dence of URTI in the apremilast-treated groups is comparable

to placebo ranging from 4.8 to 26.0% and 4.4 to 14.0%, with

higher rates being accounted for from one study examining

apremilast in palmoplantar psoriasis (Table 3). Overall, rates of

infection were not increased in patients treated with apremi-

last.84-89 A recent case was reported of a patient with erythro-

dermic psoriasis, with contraindication to most treatments due

to a recurrent brain oligodendroglioma who had psoriasis

Table 4 Registry, databases, systematic reviews, and meta-analyses on systemic medications and the risk of infection

Level of evidence

Type of infectious

risk assessed Outcome

Cyclosporine Biobadaderm Registry55 2019 Infections and infestations Incidence per 1,000 py = 177 (136–231)

Biobadaderm Registry57 2017 Infection Rate/1,000 py = 171.6 (127.3–231.4)

Serious and deadly infections Rate/1,000 py = 20 (8.3–47.9)

PsoBest Registry56 Infections (non-severea) Rate/100 py = 8.1 [95% CI 5–13]

Infections (severeb) Rate/100 py = 1.4 [95% CI 0.25–4]c

Schmitt et al.136 Meta-analysis Infections 0–12% per month of treatment

Mycophenolate mofetil Sparse data

Azathioprine Sood et al.137 Prospective

database

Flu-like illness 13/255 (5%)

Schram et al.70 Systematic

review

Mild infection 36/1,128 (0.36%)

Severe infection 3/1,128 (0.3%)

Methotrexate Biobadaderm Registry55 2019 Infections and infestations Incidence per 1,000 patient years = 112 (98–129)

Biobadaderm Registry128 2017 Infection Rate/1,000 py = 113.1 (95.2–134.3)

Serious and fatal infectiond Rate/1,000 py = 9.6 (5.3–17.3)

SDNTT Registry138 Infections 0/66 (0%)

PsoBest Registry56 Infections (non-severea) Rate/100 py = 6 (95% CI 5–8)c

Infections (severe b) Rate/100 py = 0.75 (95% CI 0.25–1.50)c

Apremilast Biobadaderm Registry55 Infections and infestations Incidence per 1,000 patient years = 105

(95% CI 64–175)

Papadavid et al.139 Prospective

observational

Infection 3/50 (6.0)

Thalidomide Sparse data

Systemic Corticosteroids Hoes et al.98 Meta-analysis

(low- to medium-dose oral

glucocorticoids)

Infections 9% AE/100 py = 12 (95% CI 8–16)

Non-biologic Systemics Rate/1,000 py (95% CI)

Biobadaderm Registry140 All infections 88.35 (75.19–103.15)

Serious infections 9.80 (5.90–15.31)

Clalit Database140 All infections 48.14 (42.50–54.32)

Serious infections 32.6 (28.00–37.67)

Psocare Registry140 All infections 21.77 (17.00–37.46)

Serious infections 12.21 (8.73–16.63)

py, patient years; CI, confidence interval; AE, adverse event.
a Non-severe infections: all other.
b Severe infections: requiring antibiotics, inpatient stay or life-threatening.
c Estimated from a bar graph.
d Serious infections: resulted in death, life-threatening, required prolonged hospitalization, caused persistent disability.

International Journal of Dermatology 2020, 59, 1043–1056 ª 2020 the International Society of Dermatology

Review COVID-19 and impact on dermatological treatments Ghazawi et al.1050



partially controlled on apremilast. The patient contracted

COVID-19 while on apremilast treatment and has fully recov-

ered despite being at high risk of complications from COVID-19

(obesity, recent chemotherapy, and active malignancy); his

apremilast treatment was not interrupted.90

Thalidomide

Thalidomide,91 an immunomodulatory drug with a range of

activity that is not fully characterized,92 is effective for various

refractory dermatoses, but its side effect profile is unfavorable,

and risks of teratogenicity and neuropathy often preclude its

use.91 Table 3 highlights four RCTs where there was no

increased risk of infection in thalidomide compared to placebo.

Oral corticosteroids

Prolonged use of oral corticosteroids is generally avoided due

to side effects.93 None of the following studies reported infection

as an adverse reaction.94-97 A meta-analysis including 2,382

patients from 28 studies showed a rate of infectious adverse

events of 9% in all patients (AE/100 py = 12, 95% CI: 8–16).98

Pooled data from 71 RCTs for steroids vs. no steroids found

the relative risk of infections was increased by 60% (95% CI

30–90) for those receiving steroids (Table 4).99 In a large cohort

of patients with inflammatory bowel disease that was collected

through an international registry, the outcomes of the use of

high-dose corticosteroids, among other immunosuppressives, in

COVID-19-positive patients was evaluated.100 The study

demonstrated a strong positive association between systemic

corticosteroid use and increased mortality/ICU admission of

COVID-19 patients. The study also indicated that TNF antago-

nist, methotrexate, and IL-12/23 inhibitors do not appear to be

associated with severe COVID-19.100 We note that the effects

of low-dose dexamethasone against COVID-19 are currently

being evaluated in the RECOVERY trial.101

Part 4: Non-biologic agents in transplant recipients with

coronavirus

It is known that transplant patients are at higher risk of severe

infections, including more severe and complicated influenza.102

However, coronaviruses have not been shown to cause more

severe disease in transplant recipients compared to other com-

mon viruses such as adenovirus and rhinovirus.103

COVID-19 in transplant recipients

Immunosuppression is not a comorbidity that is commonly

reported in COVID-19 patients despite it commonly being

referred to as a risk factor.104 The limited data do not suggest

increased risk of severe complications compared to the general

population. Lei et al.105 reported two heart transplant patients in

China who survived COVID-19 infections. Two reported renal

transplant patients who contracted COVID-19 and succumbed

to the illness had similar clinical courses compared to non-trans-

plant patients.106 Transplant recipients may practice more strin-

gent physical distancing practices compared to the general

population, resulting in falsely low numbers.

SARS in transplant recipients

The literature surrounding SARS and transplant recipients is

sparse. Risk factors for severe SARS included hypertension,

diabetes, coronary heart disease, hepatitis, and pregnancy with

a mortality rate with ≥1 risk factor compared to none of 54.5%

vs. 7.5%; P < 0.01.107 There is no evidence that suggests

transplant recipients had poorer outcome in the SARS epi-

demic.

MERS in transplant recipients

A retrospective cohort study of a MERS outbreak in Korea

revealed that the number of affected immunosuppressed

patients was low and did not identify any transplant patients.108

Immunosuppression was not identified as a poor prognostic fac-

tor in MERS infection.109

Closing remarks

Immunomodulatory regimens have revolutionized the treatment

of dermatological diseases. With the current COVID-19 pan-

demic, it is imperative to examine the evidence and conduct a

risk–benefit analysis for each patient. There may be patients

who require more or less treatment, for instance some patients

with existing comorbidities may require a more conservative

Figure 1 A pictorial representation of COVID-19 risk assessment of dermatologic treatments where green represents "safe" and red

represents "higher risk"
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approach.110 The greatest risk of infections in biologics appear

to occur with CD20 inhibition (Fig. 1). For non-biologic

immunotherapies, the greatest risk of infection appears to occur

with the use of high doses of oral corticosteroids. A slight

increased infection risk is seen with cyclosporine, although

cyclosporine has been shown to inhibit coronavirus replication

and did not increase susceptibility in transplant patients.
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