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Background. Coronary artery disease (CAD) is a type of heart disease with a high morbidity rate. This study is aimed at identifying
potential biomarkers closely related to the progression of CAD. Materials and Methods. A microarray dataset of GSE59867 was
downloaded from a public database, Gene Expression Omnibus, which included 46 cases of stable CAD without a history of
myocardial infarction (MI), 30 cases of MI without heart failure (HF), and 34 cases of MI with HF. Differentially expressed long
noncoding RNAs (DElncRNAs) and mRNAs (DEmRNAs) were identified by the limma package, and functions of DEmRNAs
were annotated by Gene Ontology and KEGG pathways. In addition, weighed gene coexpression network analysis (WGCNA)
was used to construct a coexpression network of DEmRNAs, and a disease-related lncRNAs-mRNAs-pathway network was
constructed. Finally, the datasets of GSE61145 and GSE57338 were used to verify the expression levels of the above highly
correlated candidates. Results. A total of 2362 upregulated mRNAs and 2816 downregulated mRNAs, as well as 235 upregulated
lncRNAs and 113 downregulated lncRNAs were screened. These genes were significantly enriched in “cytokine-cytokine
receptor interaction,” “RIG-I-like receptor signaling pathway,” and “natural killer cell-mediated cytotoxicity.” Five modules
including 1201 DEmRNAs were enriched in WGCNA. A coexpression network including 19 DElncRNAs and 413 DEmRNAs
was constructed. These genes were significantly enriched in “phosphatidylinositol signaling system,” “insulin signaling pathway,”
and “MAPK signaling pathway”. Disease-related gene-pathway network suggested FASN in “insulin signaling pathway,” DGKZ
in “phosphatidylinositol signaling system,” and TNFRSF1A in “MAPK signaling pathway” were involved in MI. Conclusion.
FASN, DGKZ, and TNFRSF1A were revealed to be CAD progression-associated genes by WGCNA coexpression network analysis.

1. Introduction

Coronary artery disease (CAD) is the most common type of
cardiovascular event [1]. The mortality of CAD has been
increased from 5.74 million deaths at 1990 to 8.14 million
deaths at 2013 [2]. Metabolic syndrome such as insulin resis-
tance/glucose intolerance (diabetes), high blood pressure,
and obesity would significantly exacerbate the disease [1].
Myocardial infarction (MI) is a type of the complications of

CAD with a high morbidity rate and a mortality rate of 5%
[3]. Acute MI induces left ventricular remodeling, which is
a predictive sign for a future heart failure (HF). CAD and
its complications remain the number one cause of hospital
admission diagnosis in elderly patients [4].

Though considerable efforts have been made during the
past decades, the pathophysiologic mechanisms in the devel-
opment and progression of MI and HF remain elusive and
require further investigation. Molecular biology studies have
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demonstrated that several genes are associated with the
development and progression of CAD [5]. TREML4 (trigger-
ing receptor expressed on myeloid cell-like 4), which was
upregulated in coronary artery calcification, was reported
to be involved in the formation of calcified atheromatous
plaque [6]. Some genes, such as GLO1 (glyoxalase I) and
PPIL1 (peptidylprolyl isomerase I), play important regula-
tory roles in CAD risk processes including metabolism,
signal transduction, coagulation, immunity, and proteolysis
[7]. In addition, Maciejak et al. [8] used microarrays to
analyze differentially expressed mRNA in HF and identified
a set of genes including FMN1, JDP2, and RNASE1, which
were transcriptomic biomarkers of HF development. The
candidate genes involved in the molecular mechanism of
CAD with clinical implications would be used as potential
novel biomarkers and targets for therapeutic intervention
of CAD. However, no effective genes could be used in a
clinical setting currently, and the cellular mechanisms of
genes involved in the pathological process of CAD remain
largely unexplained.

In the current study, a microarray dataset was down-
loaded from the public database of Gene Expression Omni-
bus (GEO, http://www.ncbi.nlm.nih.gov/geo) and was
reanalyzed using the widely used bioinformatics methods to
identify potential genes related with CAD progression. This
study may help to reveal the relationship between candidate
genes with altered expression and the development and pro-
gression of CAD.

2. Materials and Methods

2.1. Data Source. The gene expression dataset of GSE59867
[8] was downloaded from GEO database. This dataset
included gene expression profiles derived from the periph-
eral blood of 390 MI cases and 46 stable CAD patients
without a history of MI. We selected gene expression data
of 30 MI patients without HF, 34 MI patients with HF,
and 46 stable CAD patients. Besides, the samples of 30
MI without HF and 34 MI with HF were further divided
into 4 groups with different times: 1 day after MI, 4-6
days after MI, 1 month after MI, and 6 months after MI. This
dataset was based on the platform GPL6244 Affymetrix
Human Gene 1.0 ST Array. In addition, GSE61145 [9] and
GSE57338 [10] were also obtained from GEO and used as
the validation datasets. Seven normal samples and seven
ST-elevation MI (STEMI) samples were chosen from the
dataset of GSE61145, while 136 individuals with normal
hearts and 95 patients with HF were selected from the dataset
of GSE57338.

2.2. Identification of Differentially Expressed Genes (DEGs).
The original data GSE59867 (.txt) were downloaded and
log2 transformed using the limma package (version: 3.32.5)
[11] in R3.4.1 for normalizing the microarray data. The
platform annotation files, transcript IDs, and RefSeq ID were
downloaded as previously described [12, 13]. The expression
profiles were reannotated into mRNAs and lncRNAs by
using the HUGO Gene Nomenclature Committee (HGNC)
(http://www.genenames.org/) [14] which included 3979

lncRNAs and 19198 protein coding genes. Briefly, the
reference genome of the human genome (GRCh38) pro-
vided by the HGNC database (https://www.gencodegenes
.org/human/) was used to realign, and the unique align-
ment sequence remained. Meanwhile, based on the corre-
sponding gtf gene annotation files, we kept annotation
information for “protein-coding” genes as mRNA and
genes of “antisense,” “sense-intronic,” “lincRNA,” “sense-
overlapping,” “processed transcript,” “3prime–overlapping-
ncRNA,” and “noncoding” as lncRNA. After removing the
unmatched probes of gene symbol, 595 lncRNAs and
17790 mRNAs were obtained.

All samples were divided into three groups: stable CAD
samples, MI without HF, and MI with HF. The limma pack-
age in R 3.4.1 [15] was used to screen the differentially
expressed lncRNAs (DElncRNAs) and DEmRNAs in three
pairwise comparisons. The FDR ðfalse discovery rateÞ < 0:05
and ∣log fold change ðFCÞ ∣ >0:5 were used as the cut-off
criteria. Bidirectional hierarchical clustering was performed
by using pheatmap (version 1.0.8) (https://cran.r-project
.org/package=pheatmap) in R 3.4.1. Further, the DEmRNAs
were used to perform Gene Ontology (GO) and KEGG path-
way enrichment analyses using DAVID 6.8 (https://david
.ncifcrf.gov/) [16, 17].

2.3. Coexpression Network Construction by WGCNA. A coex-
pression network was built using weighed gene coexpression
network analysis (WGCNA) package (version 1.61) in R
[18]. The overlapped differentially expressed genes (DEGs)
between each pairwise comparison were submitted for
WGCNA analysis to screen modules significantly associated
with disease status and time points. The parameters were
set as (1) more than or equal to 100 DEGs included in one
module, (2) cutHeight = 0:95, and (3) P < 0:05. A WGCNA
map was constructed which divided the DEGs into several
modules based on the above analysis. For the lncRNAs and
mRNAs in the modules screened from the previous step,
cor function (http://77.66.12.57/R-help/cor.test.html) in R
was utilized to calculate the Pearson correlation coefficient
(PCC) among their expression levels. A coexpression net-
work was then built and visualized by Cytoscape 3.6.1 [19]
(http://www.cytoscape.org/). The genes in the coexpression
network were submitted for pathway enrichment analysis
using DAVID.

2.4. Construction of Disease-Related lncRNA-mRNA-
Pathway Network. The MI- or HF-related KEGG pathways
and genes were searched in the Comparative Toxicoge-
nomics Database (CTD) 2017 update (http://ctdbase.org/)
by searching words of “heart failure” or “myocardial infarc-
tion”. The resulting pathways and genes were compared with
those pathways and genes in the coexpression network. The
overlapped pathways and genes were used to construct a
disease-related gene and pathway network. Finally, the
expression levels of important genes in the network were
plotted at different times (1 d (admission), 4-6 d (discharge),
and 1m and 6m (stable phase)) under different disease
representations.
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Figure 1: Continued.
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2.5. Statistical Analysis. R packages (V 3.4.1, University of
Auckland, Auckland, New Zealand) were used to statistically
analyze. P < 0:05 was considered statistically significant.

3. Results

3.1. Identification of DEGs among the Three Groups. The
dataset GSE59867 was downloaded from the GEO database,
and DEGs between stable CAD patients and MI patients
without HF, stable CAD patients and MI patients with HF,
and MI patients without HF and MI patients with HF
were identified using the limma package. The number of
DEmRNAs and DElncRNAs was displayed in Figure 1.
Totally, 1264 DEmRNAs and 109 DElncRNAs between
stable CAD patients and MI patients without HF, 2231
DEmRNAs and 150 DElncRNAs between stable CAD
patients and MI patients with HF, and 1683 DEmRNAs
and 89 DElncRNAs between MI patients without HF and
MI patients with HF were identified. A total of 4039 DEGs
were overlapped among the three comparisons. The scatter
distribution and hierarchical clustering map of DEGs in each
pairwise comparison were displayed in Figure 2. From these
results, the DEGs in each comparison can separate the
samples in different groups obviously, suggesting that the
DEGs are sample characteristic and credible.

3.2. Functional Enrichment Analysis of DEGs. The DEmR-
NAs were submitted to GO and KEGG pathway enrichment
analyses further. Twenty-four, 26, and 23 GO biological
processes and 13, 13, and 14 KEGG pathways, respectively,
were enriched by the DEmRNAs between the three
comparisons. As shown in Figure 3, the DEmRNAs between
stable CAD patients and MI patients without HF were
enriched into pathways including “calcium signaling path-
way,” “Jak-STAT signaling pathway,” “neuroactive ligand-
receptor interaction,” and “RIG-I-like receptor signaling
pathway” as well as biological processes of “MAPKKK cas-
cade,” “cell cycle,” and “positive regulation of cell prolifera-
tion.” The DEGs between stable CAD patients and MI
patients with HF were enriched into pathways including
“MAPK signaling pathway,” “cytokine-cytokine receptor
interaction,” “cell cycle,” and “focal adhesion” as well as bio-
logical processes such as “phosphorus metabolic process,”
“apoptosis,” and “defense response.”. The DEGs between MI
patients with HF and MI patients without HF were enriched
into pathways including “pathways in cancer,” “MAPK sig-
naling pathway,” and “focal adhesion” as well as biological
processes such as “regulation of programmed cell death,”
“regulation of apoptosis,” and “regulation of cell death.”.

3.3. Disease-Related Modules Identified by WGCNA. The
4039 overlapped DEGs were submitted to WGCNA analysis.
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Figure 1: The scatter distribution map and bidirectional hierarchical clustering map based on DEG expression level in the CAD vs. MI
without HF group (a), CAD vs. MI with HF group (b), and MI with HF vs. MI without HF group (c).
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To qualify the scale-free network distribution, the minimum
power value was set as the value when the squared correlation
coefficients first reached 0.8. As shown in Figure 4(a), the
power value is 16 (Figure 4(a)). At this point, the average
degree of the coexpression network is 1, which is completely
in conformity with small-world network properties. A
hierarchical cluster tree including 10 modules was obtained
(Figure 4(b)). The correlations between each module and
sample characterizations were calculated. Results showed
that blue, magenta, red, turquoise, and yellow modules were
significantly positively correlated with disease progression
and time points (Figure 4(c)). The 1201 DEGs including
83 DElncRNAs and 1119 DEmRNAs were submitted for
further study.

3.4. Construction of Coexpression Network. The PCCs among
the 1201 DEGs were calculated, and the relationships with
PCC > 0:7 were retained. A coexpression network was built
using these relationships (Figure 5). This network was
composed of 19 DElncRNAs and 413 DEmRNAs. KEGG
pathway annotation was performed for the nodes in the coex-
pression network. A total of 13 pathways were significantly
enriched including “phosphatidylinositol signaling system,”
“Jak-STAT signaling pathway,” “neurotrophin signaling path-
way,” “MAPK signaling pathway,” and “focal adhesion”.

3.5. Construction of Disease-Related lncRNA-mRNA-
Pathway Network. A total of 201 HF-related KEGG pathways
and 104 HF-related genes as well as 190 MI-related KEGGs
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Figure 2: The DEGs (a) and DElncRNAs (b) in each comparison showed significant differences in the direction distribution of the histogram.
(c) The Venn diagram was compared between the two groups.
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and MI-related genes were obtained from CTD. Five KEGG
pathways including 4 disease genes related to both HF and
MI were extracted. A disease-related lncRNA-mRNA-
pathway network was built (Figure 6(a)). This network
consisted of 3 lncRNAs (ARRDC1-AS1, AATBC, and
MIRLET7BHG), 5 disease-related pathways (hsa04910: insu-
lin signaling pathway, hsa04010: MAPK signaling pathway,
hsa04060: cytokine-cytokine receptor interaction, hsa04810:
regulation of actin cytoskeleton, and hsa04070: phos-
phatidylinositol signaling system), 4 disease-related mRNAs
(DGKZ, SLC9A1, TNFRSF1A, and FASN), and 32 genes in
the disease pathways. From this network, the disease gene
FASN was involved in the “insulin signaling pathway,”
DGKZ was involved in the “phosphatidylinositol signaling

system,” SLC9A1 was involved in “regulation of actin
cytoskeleton,” and TNFRSF1A was involved in the “MAPK
signaling pathway.” The lncRNA ARRDC1-AS1 might coex-
press with FASN and DGKZ to be involved in the “insulin
signaling pathway” and “phosphatidylinositol signaling sys-
tem.” The lncRNA AATBCmight coexpress with TNFRSF1A
to be involved in “cytokine-cytokine receptor interaction.”
The lncRNA MIRLET7BHG might coexpress with FASN to
be involved in the “insulin signaling pathway.” These
lncRNAs and pathways might be closely related with the
progression of CAD.

The changes in the expression levels of four disease genes
and three coexpressed lncRNAs in different phases (CAD,
MI without HF and MI with HF) and at different times in
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the same disease phase were shown in Figure 6(b). It was
found that the expression level of TNFRSF1A was the highest
both in different phases and at different times in the same
disease phase, while the expression level of FASN was the
lowest compared with the other genes (Figure 6(b)).

3.6. Validation of the Candidate Genes. The expression levels
of these closely related genes, including three lncRNAs
ARRDC1-AS1, AATBC, and MIRLET7BHG, as well as four

mRNAs DGKZ, SLC9A1, TNFRSF1A, and FASN were veri-
fied in the validation datasets (GSE61145 and GSE57338).
The results showed that in the GSE61145 dataset, the
expression levels of AATBC, DGKZ, FASN, SLC9A1, and
TNFRSF1A were significantly upregulated in the STEMI
group, compared with the normal group (P < 0:05,
Figure 7(a)). In the GSE57338 dataset, the expression levels
of AATBC, MIRLET7BHG, DGKZ, FASN, and TNFRSF1A
were significantly upregulated in the patients with HF group,
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compared with the normal group (P < 0:05, Figure 7(b)).
These results indicated that the consistency rate for the vali-
dation datasets and the training dataset was 85.71%. This
reveals that the four disease mRNAs and their coexpressed
lncRNAs may be acted as the potential candidates associated
with the progression of HF in CAD.

4. Discussion

CAD has become a major health concern in the last few
decades; therefore, future studies need to concentrate on
controlling CAD risk factors [20]. In the present study, the
dataset of GSE59867 was downloaded from the GEO
database to analyze DEGs associated with the development
of CAD. Totally, 1264 DEmRNAs and 109 DElncRNAs
between stable CAD patients and MI patients without HF,
2231 DEmRNAs and 150 DElncRNAs between stable CAD
patients and MI patients with HF, and 1683 DEmRNAs and
89 DElncRNAs between MI patients without HF and MI
patients with HF were identified. A DElncRNA-DEmRNA
coexpression network was built byWGCNA, and KEGG anal-
ysis suggested that these genes were significantly enriched in
13 pathways. Finally, four disease mRNAs (DGKZ, SLC9A1,
TNFRSF1A, and FASN) and three coexpressed lncRNAs
(ARRDC1-AS1, AATBC, and MIRLET7BHG) were identified
as the potential candidates in the development of CAD.
The differential expressions of the seven genes were success-
fully validated by the independent datasets of GSE61145
and GSE57338.

In this study, we used WGCNA to build a DElncRNA-
DEmRNA coexpression network and analyzed the DEGs in
this network. WGCNA, a bioinformatics application, describes
the correlation patterns between gene chip samples and pro-
vides direct biologically functional interpretations of gene net-
work modules [18]. It has been successfully used to build the
gene coexpression network of various diseases to explore their
potential biomarkers [21]. In fact, the microarray dataset of
GSE59867 was not analyzed by WGCNA first in this study.

Mo et al. [22] used the dataset of GSE59867 as the validation
dataset to verify the four gene signatures (NCF2, MYO1F,
S1PR4, and FCN1) identified by WGCNA in GSE90074. A
recent study by Niu et al. identified 6 hub genes (BCL3, HCK,
PPIF, S100A9, SERPINA1, and TBC1D9B) by analyzing
GSE59867 usingWGCNA [23]. Though using the same dataset
and similar analysis method, our study was different from their
study. The input of WGCNA was the genes exhibiting the top
50% in high expression variance. In our study, the input of
WGCNA was the 4039 overlapped DEGs. Therefore, the
lncRNAs andmRNAs in the coexpression network were differ-
entially expressed during CAD development.

In the disease-related lncRNA-mRNA-pathway network,
FASN was involved in the “insulin signaling pathway,”
DGKZ was involved in the “phosphatidylinositol signaling
system,” and TNFRSF1A was involved in the “MAPK signal-
ing pathway.” Fatty acid synthase (FASN) is the sole cytosolic
mammalian enzyme for de novo lipid synthesis. One of the
features of cancer cells is the increased de novo lipogenesis,
and FASN is part of the metabolic reprogramming cancer
hallmark [24–26]. The expression of FASN is significantly
upregulated in many cancer types while it is extremely low
in nonmalignant tissues [27]. Numerous studies have
reported its importance for cancer cell survival and its associ-
ation with poor prognosis. For example, Wu et al. demon-
strated that FASN could suppress the expression of NF-κB
but increase the expression of specificity protein 1 and regu-
late DNA repair to increase survival against genotoxic insults
[28]. FASN has received much attention as a cancer thera-
peutic target [24]. Several FASN inhibitors have been devel-
oped for cancer therapy during the past decades, such as
orlistat [29]. However, the expression of FASN in CAD has
few been reported. Myocardial FA substrate metabolism is a
feature of late-stage HF [30]. The protein level of FASN in
cardiac tissue specimens of HF patients was significantly
increased compared to those of control patients [31]. In this
study, the lncRNAs ARRDC1-AS1 and MIRLET7BHG could
coexpress with FASN to be involved in “insulin signaling

Figure 5: The lncRNA-mRNA coexpression network. The red and blue nodes represent lncRNAs and mRNAs, respectively.

10 Computational and Mathematical Methods in Medicine



pathway.” The lncRNA ARRDC1-AS1 was involved in a
9-lncRNA signature to predict recurrence of breast cancer
[32]. However, ARRDC1-AS1 was not reported in CAD pre-
viously. MIRLET7BHG is the miRNA let-7b host gene and
has been previously reported to be implicated in metabolic

disorders [33]. It was reported to be correlated with body
mass index in polycystic ovary syndrome [34]. miRNA
let-7B, transcribed from the lncRNA MIRLET7BHG, has
been reported to be associated with cardiovascular diseases
by many studies. hsa-let-7b was identified as a potential
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candidate regulator in acute MI [35, 36]. It was significantly
upregulated in mobilized CD34+ progenitor cells in patients
with segment-elevation MI [37]. Our results suggested that
ARRDC1-AS1 and MIRLET7BHG might have interacted
with FASN to be involved in regulating insulin signaling
pathways in patients with CAD.

DGKZ was involved in the “phosphatidylinositol signal-
ing system,” and TNFRSF1A was involved in the “MAPK
signaling pathway.” The PI3K/Akt signaling pathway is a
critical pathway in the “phosphatidylinositol signaling sys-
tem” and is a key signaling pathway involved in many life
activities including cell division, differentiation, and apopto-
sis. PI3K/Akt signaling pathway was closely related to cardio-
vascular disease [38]. It was reported that insulin can protect
cardiomyocytes from apoptosis by activating PI3K and Akt
[39]. PI3K signaling is required for Exendin-4 to stimulate
proliferation [40] and for oxidized low-density lipoprotein
to promote angiogenesis in human coronary artery endothe-
lial cells [41]. The PI3K family could be used as potential
therapeutic targets for cardiovascular diseases including
CAD [42]. In-depth studies of this series of related pathways
and participating genes and lncRNAs have helped to identify
more potent biomarkers of MI and HF.

The major limitation of this study is that the identified
critical lncRNAs and genes were not verified on independent
patients as well as in vivo or in vitro experiments. Future
studies should be conducted to confirm the results of this
study.

5. Conclusion

From the above, FASN, DGKZ, and TNFRSF1A, in “insulin
signaling pathway,” “phosphatidylinositol signaling system,”
and “MAPK signaling pathway”, would be potentially associ-

ated with the path mechanism of CAD. In addition, the
cross-action effects among genetic and molecular processes
would closely work in CAD. These three genes would be
potentially represented by a novel molecular, mechanistic
explanation for the pathologic basis of CAD and may be used
as candidate targets for therapeutic discovery in CAD.

Data Availability

The data used to support the findings of this study have been
deposited in the gene expression omnibus repository with
accession number of GSE59867.
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