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Abstract: Polyvinylidene fluoride (PVDF)-based piezoelectric materials (PEMs) have found extensive
applications in energy harvesting which are being extended consistently to diverse fields requiring
strenuous service conditions. Hence, there is a pressing need to mass produce PVDF-based PEMs
with the highest possible energy harvesting ability under a given set of conditions. To achieve high
yield and efficiency, solution blow spinning (SBS) technique is attracting a lot of interest due to its
operational simplicity and high throughput. SBS is arguably still in its infancy when the objective
is to mass produce high efficiency PVDF-based PEMs. Therefore, a deeper understanding of the
critical parameters regarding design and processing of SBS is essential. The key objective of this
review is to critically analyze the key aspects of SBS to produce high efficiency PVDF-based PEMs.
As piezoelectric properties of neat PVDF are not intrinsically much significant, various additives
are commonly incorporated to enhance its piezoelectricity. Therefore, PVDF-based copolymers and
nanocomposites are also included in this review. We discuss both theoretical and experimental
results regarding SBS process parameters such as solvents, dissolution methods, feed rate, viscosity,
air pressure and velocity, and nozzle design. Morphological features and mechanical properties
of PVDF-based nanofibers were also discussed and important applications have been presented.
For completeness, key findings from electrospinning were also included. At the end, some insights
are given to better direct the efforts in the field of PVDF-based PEMs using SBS technique.
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1. Introduction

In 1880, Jacques and Pierre discovered that certain materials can generate electrical energy
when subjected to mechanical strain through a phenomenon called piezoelectricity, and the materials
exhibiting this characteristic are called piezoelectric materials (PEMs) [1]. One of the naturally occurring
PEMs is quartz whose crystalline and amorphous structures are shown in Figure 1a,b, respectively [2].
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There are two kinds of piezoelectric effects: direct and converse [3] In direct piezoelectric effect,
voltage is generated at the application of mechanical strain while in converse piezoelectric effect,
mechanical strain is generated upon the application of voltage as schematically shown in Figure 2 [4].
Piezoelectric efficiency is generally measured in terms of piezoelectric charge constant (dij) (C/N)
which is defined as the amount of charge density (C/m2) generated upon the application of mechanical
stress of 1 N/m2 [5]. The subscripts i and j tell the direction of applied force and orientation of
dipoles, respectively. The piezoelectric charge constant is related to piezoelectric voltage constant (gij)

(Vm/N or m2/N) and is given by gi j =
(
εT

)−1
di j, where εT is permittivity under constant stress

→

T [6].
The absolute permittivity of the material ε (F/m) is given by ε = εrε0, where ε0 is permittivity of free
space (8.854 × 10−12 F/m), and εr is dielectric constant (or relative permittivity) of the material [6].
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PEMs can be embedded into the final products of daily use, for example, gas sensors,
pressure sensors, parking sensors, and piezoelectric motors and mobile phones [7–9]. Although most
used PEMs are ceramic-based, however, due to their brittleness and high density, they are not
ideal candidates for applications demanding flexibility such as flexible electronic screens [10,11].
In 1969, polyvinylidene fluoride (PVDF) was first reported as thermoplastic polymer PEM exhibiting
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the piezoelectric activity [12]. Different polymorphs of PVDF on the basis of repeating units of
-CH2-CF2- are α, β, γ, δ, and ε, and are shown in Figure 3 [13,14]. The different phases are based
on chain conformations; all-trans (TTTT) for β-phase, TGTG (trans-gauche-trans-gauche) for α and
δ, and T3GT3G for γ and ε [15]. Generally, PVDF exists as α-phase which is non-polar due to
random alignment of hydrogen and fluorine ‘dipoles’, γ- and δ-phases are weakly polar as they
exhibit some alignment of so-called dipoles [16]. The β-phase displays the best piezoelectric and
ferroelectric properties as all-trans chains cause all dipoles to orient in one particular direction giving a
piezoelectric response [17]. Various ways have been reported to enhanceβ-phase such as annealing [18],
solution casting [19], and spin coating [20]. It has also been reported that the β-phase can be obtained
directly by high-temperature quenching from a melt or by casting from dimethyl acetamide (DMAc),
a strongly polar solvent [21].

The most widely used method to nucleate β-phase is either by mechanical stretching in uniaxial
direction or by the application of high electric field [22]. However, it has been shown that fraction of
β-phase increases mainly due to stretching and minimally due to electric field [21]. Uniaxial stretching
tends the polymer chains to orient themselves and charge neutrality favors H and F atoms to segregate
on opposite sides of the polymer chain resulting in piezoelectric β-phase [23]. As the stretching
rate increases, fraction of α-phase decreases while β and γ phases dominate [23]. The fraction of
β-phase saturates at a stretching rate of ~50 mm/min while the α-phase completely disappears at a
~600 mm/min [23]. In situ observation during uniaxial stretching shows that the deformation of the
crystalline structure begins from the middle of α-spherulite and extends to one after another resulting
in large-scale transformation from α to β phase [24]. Li et al. [24] carried out in situ microscopy as
shown in Figure 4. They reported that stretching temperature (Ts) can influence phase transformation
and recommended a temperature of 100 ◦C [24].

PVDF-based PEMs are classified as stimuli responsive materials and have been employed
as standalone or as matrices in composites and layered structures to fabricate stimuli responsive
systems for applications such as drug delivery and tissue engineering [25]. One of the applications
of PVDF-based PEMs is intelligent clothing to sense user activities in sports and personalized
health care [26]. Various fabrication methods have been employed to produce fibers, such as gas jet
spinning, nozzle-free centrifugal spinning, rotary jet spinning, melt blow spinning and flash-spinning.
Out of all these, electrospinning has been extensively used for the fabrication of fibers; however, it has
some limitations. Firstly, it can only be used for systems that are electrically conductive to conduct
voltage applied during electrospinning process, and secondly, formation of a high fraction of β-phase is
dependent on very high electric field making the process a safety hazard [27]. As there is electric field
involved, it also requires the use of conductive collectors. It also has low yield making it a laborious
process and unfit for scale-up.
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and setup are shown in Figure 5 [29]. The advantage of SBS is that it can be applied to both electrically 
conducting and insulating systems and does not require the application of electric field and 
conductive collectors to initiate fiber processing. Moreover, yield of fiber production is very high 
making it suitable for industrialization [30]. Parameters that influence the fiber production using SBS 
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after being stretched at 100 ◦C temperature and 1 mms−1 stretching rate. (a) The polarized photo of
stretched samples observed by polarized module of 3D Digital Microscope; (b) the corresponding
contour chart of F(β) of samples calculated from IR scanning [24].

Solution blow spinning (SBS) has emerged as an alternative technique to produce sub-micron/nano
sized fibers and can relieve the user of the limitations posed by electrospinning. In SBS,
polymeric precursor is dissolved into a suitable solvent to reduce its viscosity as thin fibers cannot be
produced with very viscous polymer melt. The solution is then injected through a nozzle which is
surrounded by a concentric outer pipe from which air is purged out. The solution interacts with the air
and forms short fibers which fall on a collector. The photos and schematic of various components and
setup are shown in Figure 5 [29]. The advantage of SBS is that it can be applied to both electrically
conducting and insulating systems and does not require the application of electric field and conductive
collectors to initiate fiber processing. Moreover, yield of fiber production is very high making it suitable
for industrialization [30]. Parameters that influence the fiber production using SBS are discussed in the
next sections.

2. Nanofillers

The piezoelectric properties of neat PVDF are intrinsically lower than their inorganic
counterparts [31]. One of the ways of enhancing piezoelectric properties is making
copolymers. The copolymers of PVDF have chemical compatibility in high pH solutions,
high impact strength at ambient and low temperatures and better clarity [32]. Some of
the copolymers of PVDF include poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)]
and poly(vinylidene fluoride-trifluoroethylene [(P(VDF-TrFE)] [33]. It has been reported that the
addition of trifluoroethylene (TrFE) in PVDF can promote the formation of β-phase due to the steric
hindrance effect [34]. However, copolymers have been thoroughly reviewed [35] and will not be
further discussed in this review. As inorganic PEMs have very high piezoelectricity, inorganic materials
have been commonly incorporated in PVDF to enhance its piezoelectric properties [36]. The fraction of
β-phase obtained using different nanofillers is shown in Figure 6. The nanofillers act as heterogeneous
nucleation sites for β-phase and a hindering agent for the α-phase [37]. When a nanofiller is
placed between the isolated polymer chains, it forms micro-capacitor structures due to interfacial
interactions [38,39]. It increases the local electric field that promotes both migration and accumulation
of charge carriers at the interface [38,40]. This interfacial polarization that causes the enhancement of a
dielectric constant, is explained by Maxwell-Wagner-Sillars (MWS) effect [38]. However, it should be
noted that not all nanofillers can enhance fraction of β-phase and some might inhibit the formation
of β-phase. The incorporation of hydroxyapatite (HA) decreased the crystallinity and fraction of
β-phase in HA/PVDF nanofibers [30]. Similar results were reported by Li et al. [41] where fraction
of β-phase significantly dropped with unmodified zinc oxide (ZnO) nanoparticles mainly due to
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their agglomeration. The hybrid nanofillers produce synergistic effects in polymers that are useful
to improve mechanical properties; however, when ZnO nanorods and graphene nanoplatelets were
incorporated into PVDF along with hydrated metal salts, a drastic reduction in d33 was recorded [42].
It can be because of nanofillers assuming a competitive role with respect to H-bond formation between
PVDF and the dissolved metal salt.
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out of nozzle due to attenuation force applied by high speed air [43]. (B) Schematic of SBS setup [44].
(C) Image of direct deposition of poly(styrene-block-isoprene-block-styrene) block copolymer fibers
using a homemade solution blow spinning device [43]. (D) Commercial airbrush used for solution
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The agglomeration of nanofillers is deleterious to the mechanical properties of polymer-based
nanocomposites [55]. It is further reported that agglomeration of nanofillers is not beneficial to
achieve a higher fraction of β-phase. The FT-IR spectra and β-phase content of single-layer (SL)
and double-layer (DL) samples of PVDF/BaTiO3 nanocomposites are shown in Figure 7. The 840 cm−1

band, which relates to stretching of CF2 and C-C bonds, corresponds to the β-phase. The 880 cm−1

band, which could be ascribed to the rocking of C-C skeleton vibration, corresponds to non-polar
α-phase [56]. The content of α-phase and β-phase is usually determined by the area ratio of 840 cm−1

band and 880 cm−1 band. The β-phase can be quantified using Beer–Lambert law as shown in
Equation (1) [57];

Fβ =
Aβ(

Kβ
Kα ×Aα

)
+ Aβ

(1)

where Aα and Aβ are the absorption of α and β-phases, respectively, Kα and Kβ are the absorption
coefficients at the corresponding wave number, which are 7.7 × 104 and 6.1 × 104 cm2/mol, respectively.
As can be seen, the fraction of β-phase decreased in both SL/DL samples when concentration of
BaTiO3 increased beyond 15 vol%. Sultana et al. [48] incorporated methylammonium lead iodide
(CH3NH3PbI3) (MAPI) into PVDF and reported that the fraction of β-phase initially increased with the
incorporation of MAPI, saturated at 10 wt%, and then gradually started to decrease. Hoque et al. [47]
also reported that when the concentration of hydrated metallic salts increased beyond certain value,
the fraction ofβ-phase started to decrease. The dielectric constant increased initially and then decreased
upon further increase in salt concentration caused by agglomerates hindering the free chain movement
of PVDF matrix [58]. Hence, a suitable concentration of nanofillers must be incorporated to avoid
agglomeration and a subsequent reduction in β-phase content.
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2.1. Carbonaceous Nanofillers

Carbonaceous nanofillers have been most commonly employed to enhance the fraction of β-phase
in PVDF and in general mechanical properties of polymer nanocomposites [59]. The carbon atoms in
graphene have a zig-zag structure which matches the zig-zag structure of the β-phase and therefore can
be a strong nucleating agent [60]. Graphene oxide (GO) was more effective in enhancing piezoelectric
and pyroelectric properties of PVDF than graphene [61]. Achaby et al. [37] found that the α-peaks
completely disappeared at the incorporation of 0.075 wt% GO and a solely β-phase was observed.
They concluded that a 0.1 wt% of GO is sufficient to nucleate all PVDF chains into β-phase.

The attachment of PVDF chains to the GO sheets is caused by the interaction between CF2 in
PVDF and the -C=O and COOH groups of the GO (hydrophilic interactions) [62].
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2.2. Metallic Oxides

Metallic oxides, such as hematite (Fe2O3) and cobalt oxide (Co3O4), have also been employed
as nanofillers [63]. PVDF nanofibers reinforced with 2 wt% Ce-Fe2O3 (Ce is cerium with atomic
number 58) and Ce-Co3O4 recorded peak-to-peak output voltages of 20 V and 15 V with corresponding
output currents of 0.010 and 0.005 µA/cm2, under the force of 2.5 N, respectively [63]. The transition
metal cations influence the PVDF properties by affecting its chemical environment through covalent
interactions as schematically shown in Figure 8 [63]. The nanofillers act as heterogeneous nucleation
site and the positively charged surface of nanofillers attracts negative ends of PVDF dipoles. It results
in the nucleation of electroactive crystalline phase. The growth of these nuclei is driven by electrostatic
attraction-repulsion balance between dipoles. He et al. [64] also addressed the formation of electroactive
phases by the electrical interfacial interaction between the positively charged organosilicate surface
and the partially negative -CF2- bonds of the PVDF matrix.
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2.3. Hydrated Metal Salts

Hydrated metal salts have also been commonly incorporated into PVDF. The d33 and fraction of
β-phase improve as the mean spherulite diameter of hydrated metal salts decreases [42]. A smaller
particle exposes more surface per unit volume for β-phase to heterogeneously nucleate and is therefore
more effective than a bigger particle. It was further observed that rare-earth ions such as Er3+ (Er is
erbium with atomic number 68) are more effective nucleating agents for β-phase than transition metal
ions such as Fe3+ (Fe is iron with atomic number 26) [47]. An enhancement in piezoelectric properties
of PVDF by the incorporation of hydrated metal salts can be due to the large accumulation of surface
charge between salt surface and PVDF matrix via MWS interfacial polarization [65]. A similar effect
of interaction with the positively charged nanoparticles and the - CF2- dipoles of the PVDF chains,
through which the stabilization of electroactive phase was achieved by Liu et al. [66]. Liang et al. [67]
also suggested that the formation of electroactive phases in PVDF is due to the ion-dipole interactions
between the positively charged molecules and -CF2- dipoles in PVDF or the negatively charged
molecules and the -CH2- dipoles in PVDF chains. The piezoelectric properties degraded at higher
fraction of nanofillers. Dhakras et al. [49] produced nickel chloride hexahydrate NiCl2.6H2O/PVDF
nanofibers and reported that when the concentration of the nanofiller increased beyond 0.5 wt% the
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piezo-voltage dropped. The reason behind this drop could be the excess water content in the salt as it
has been shown that excess water can notably affect the ferroelectric β-phase and in turn the electrical
properties of the PVDF-based PEMs [20].

Fortunato et al. [42] incorporated hexahydrate metal salts of zinc (Zn), magnesium (Mg), aluminum
(Al), and Fe into PVDF. They reported that the largest enhancement of piezoelectric charge constant
(d33) and highest fraction of β-phase (82.17%) were achieved in case of magnesium nitrate hexahydrate
Mg(NO3)2.6H2O. The increase in d33 can be attributed to the synergistic effect of the dipole moment
associated with the nucleation of the electroactive phase and with the electrostatic interaction between
the CF2 group of PVDF and the dissolved salt through hydrogen bonding. Magnesium has a
highly negative standard redox potential (Mg2+ + 2e− �Mg,−2.373 eV), which is similar to that of
yttrium (Y3+ + 3e− � Y,−2.372 eV) and very close to that of cerium (Ce3+ + 3e− � Ce,−2.336 eV) [42].
The worst piezoelectric performance was observed in case of iron chloride hexahydrate FeCl3.6H2O [42].
It can be attributed to the relatively high mass and low negative standard redox potential of
iron (Fe3+ + 3e− � Fe,−0.037 eV), which weakens hydrogen bonding between PVDF chains and
hexahydrate salts in polar solvents [42]. Hence, Mg(NO3)2.6H2O can replace cerium nitrate hexahydrate
Ce(NO3)3.6H2O and yttrium nitrate hexahydrate Y(NO3)3.6H2O which are toxic salts.

2.4. Nanoclay

Nanoclays have also been incorporated into PVDF where the most widely studied clay is
halloysite nanotubes (HNT). HNT is identical to kaolinite clay but has tubular morphology. Similar to
montmorillonite, halloysite consists of two layers of aluminosilicate with Al:Si ratio of 1:1. The outer
surface of HNT is made of Si-O units and the inner core comprises of Al-O units. Therefore, HNT has
negative surface potential and partially positive potential from the inner core of HNT leading to the
enhanced polymer solution conductivity [68]. HNT have been proven to act as a nucleating agent for
PVDF, which is due to the dipole-dipole attraction between the oxygen atoms of HNT and C-H groups
of PVDF. Alongside, the hydrogen bonding between hydroxyl groups of HNT and the fluorine atoms
of PVDF enhances the formation of β-phase [69]. Khalifa et al. [70] incorporated HNT into PVDF and
reported that HNT aligned themselves along the fiber axis and the produced nanofibers were fine,
smooth, uniform and the mean fiber diameter decreased drastically with the incorporation of HNT.

3. SBS Process Parameters

3.1. Molecular Weight

Two of the key factors that influence the viscoelastic properties of the polymer solution are
molecular weight and molecular weight distribution (MWD). It has been shows that polymers with
high molecular weights are more suitable for fiber spinning [71] and a higher molecular weight of
precursor PVDF yield nanofibers with bigger diameters [72]. The molecular weight of precursor PVDF
also affects the fraction of β-phase in the produced nanofibers [73]. When polymer has high molecular
weight, the formation of bundles of fibrils is easy in the cross-linked polymer fiber [74,75]. At the
evaporation of solvent, the polymer phase collapses laterally thereby resulting in a strong, dense and
highly oriented fiber surrounded by an annulus of the solvent [74]. Gelation effects may render the
fiber solid-like with indefinite lifetime in agreement with the literature [76,77].

3.2. Solvents

Various organic solvents have been employed to dissolve PVDF and most commonly
used is a mixture of N,N-dimethylformamide (DMF) and acetone [78]. Other solvents include
N-methylpyrrolidone (NMP) [79], dimethyl sulfoxide (DMSO) [80], and tetrahydrofuran (THF) [81].
PVDF cannot be dissolved in THF. THF was used with DMF to dissolve PVDF [82]. As PVDF cannot
be dissolved in THF, the answer of using THF with DMF to dissolve PVDF could not be found in the
reviewed literature and is a potential gap in the available literature. Solvents reported in the literature
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and the resultant fraction of β-phase are shown in Figure 9. A mixture of DMF and acetone with
different volume fractions has been mostly used. The highest fraction of β-phase (98%) was achieved
when the solvent system was DMF:acetone (2:3) [27]. However, this information does not suggest to
use DMF:acetone (2:3) to get maximum fraction of β-phase as there are various other parameters that
influence the fraction of β-phase obtained and should be taken into account.
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30,42,46,49,70,78,79,82–89].

3.3. Evaporation Rate

Solvent evaporation rate is known to influence final diameter and fraction of β-phase in
PVDF-based materials [90]. As a solvent is only used to dissolve polymer, it is not supposed to
be a part of the final product. Therefore, its evaporation rate should be as high as possible. It can be
explained on the basis of the law of conservation of mass. The mass of an unperturbed element of
unit length in the straight part of the jet soon after it comes out of the nozzle decreases according to
Equation (2) [91].

d( f V)

dx
= −hm

[
Cs,eq(T) −Cs,∞

]
2πa (2)

where f is the area of a jet cross-section which is assumed to be circular of radius a, V is the absolute jet
velocity, x is the axial coordinate reckoned along the straight jet axis, Cs,eq(T) and Cs,∞ are the solvent
vapor volume fractions at the jet surface and far away from it, respectively, T is temperature which is
the same for polymer solution and the surrounding air in case of SBS, hm is the mass transfer coefficient
and is given by Equation (3) [91].

hm =
Da

2a
0.495Re1/3Sc1/2 (3)

where Da is the solvent vapor diffusion coefficient in air, Re is Reynolds number given by [91],

Re =
V2a
νa

(4)

where νa is the kinematic viscosity of air, Sc is is the Schimdt number and is given by [91],

Sc =
νa

Da
(5)

The above equations suggest that the solvent vapor volume fraction at the jet surface should be
high. This is possible when solvent has low boiling point and high evaporation rate. Dhakras et al. [49]
added low boiling point solvent acetone into PVDF-DMF system and found that bead formation was
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significantly suppressed with the addition of acetone. Therefore, a solvent with low boiling point
and high vapor pressure would be suitable for this purpose. Another probable way of increasing the
evaporation rate is heating the polymer solution jet externally.

3.4. Dissolution Method

3.4.1. Manual Stirring

A simple way of dissolving PVDF in the solvent system is manual stirring. However, it is
time-consuming and not suitable to disperse nanofillers as uniform dispersion of nanofillers requires
prolonged and strong agitation.

3.4.2. Magnetic Stirring

In magnetic stirring, an electromagnet is used that continuously reverses its polarity under the
application of AC voltage. Another regular magnet is placed in the beaker containing solvent and
PVDF. The magnet rotates to keep its poles opposite to the electromagnet poles underneath the beaker.
The magnetic stirring becomes slow or difficult when viscosity of the polymer solution increases.
In addition, there is a possibility that solvent system may react and dissolve the polymer coating on
the magnet. Hoque et al. [47] successfully dissolved 250 mg of PVDF and up to 20 wt% of erbium (III)
chloride hexahydrate and iron nitrate (III) nonahydrate in 5 mL of DMSO at 60 ◦C under continuous
magnetic stirring for 14 h. The addition of the salts led to vanishing of all XRD peaks corresponding
to α and γ crystals while peaks at 2θ = 20.5 (110)/(200) became sharp indicating the nucleation and
growth of β-phase [47].

3.4.3. Sonication

One of the applications of PEMs is sonicator. A piezo crystal fluctuates under the application
of AC voltage. The fluctuations generate ultrasonic waves that shake the PVDF-solvent system and
PVDF gets dissolved. It is a very powerful method not only for dissolution but also to uniformly
disperse nanofillers. Up to 20 vol% BaTiO3 nanoparticles were successfully dispersed in DMF by
ultra-sonication to form PVDF/BaTiO3 nanocomposites [46].

3.5. Feed Rate

Mean fiber diameter increased with increasing feed rate of the polymer solution [92]. When feed
rate is very high, solvent does not evaporate completely resulting in the formation of droplets on the
web/collector [93]. To increase the evaporation rate of the solvent, Zhuang et al. [94] used a heating
unit. Limited information about the influence of feed rate on the properties of PVDF-based nanofibers
using SBS is available in the reviewed literature. Variation in fiber diameter of polyurethane with
feed rate is shown in Figure 10 [92]. Polyurethane is used here as an example due to the similarity of
rheological properties with PVDF [95]. At 1 mL/h, a majority of fibers are in the range of 100–250 nm.
The range of fiber diameters lowered to 50–200 nm at 10 mL/h. It remained almost the same when
feed rate increased to 25 mL/h. The fiber diameter slightly shifted to higher values at 50 mL/h.
The maximum fraction of nanofibers with diameters up to 50 nm was achieved with 10 mL/h feed rate.
Therefore, an optimum feed rate is essential to achieve the fibers with minimum diameter.
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3.6. Viscosity

The reviewed literature suggests a direct relationship between viscosity of polymer solution and
mean fiber diameter. Haddadi et al. [96] incorporated hydrophobic and hydrophilic nanosilica into
PVDF and reported that mean fiber diameter increased in both cases. They suggested that the viscosity
of polymer solution increased by the incorporation of nanofillers which in turn led to an increase
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in mean fiber diameter. Yun et al. [32] fabricated Pb(Zr0.53Ti0.47)O3 reinforced PVDF nanofibers and
reported that density and viscosity of the polymer solution increased after the incorporation of PZT.
The mean diameter of nanofibers increased until 10 wt% and then started to decrease when volume
fraction increased up to 30 wt% [32].

3.7. Weight Fraction

The weight fraction of parts should be selected such that there is no leftover of solvent as retained
solvent causes degradation of mechanical properties by acting as stress concentration site [97]. Similarly,
porosity in the PVDF nanofibers caused by fluids is deleterious to the mechanical properties [98].
If volume fraction of solvent is too low, the viscosity of the polymer solution will be high because of
which a reasonable attenuation of polymer solution will be difficult to get thin fibers. On the other
hand, a use of very large volume fraction of solvent will decrease the yield and increase the overall
cost. Therefore, a minimum possible volume fraction of solvent should be used.

3.8. Temperature

The processability of PVDF is easier because of its relatively low melting point (177 ◦C) and a
glass transition temperature (Tg) of −35 ◦C. PVDF solution temperature was reported to influence
the spinnability of PVDF fibers [30]. The viscosity and temperature are inversely related. Therefore,
low attenuation force will suffice to get thin fibers. Attenuation force in SBS is high speed air which
means that thin fibers can be achieved at relatively low air pressure and velocity. On the contrary,
when polymer solution is cold, its viscosity will be high and therefore high air pressure and velocity
will be required to achieve thin fibers.

3.9. Air Pressure and Velocity

The air pressure has a significant impact on the morphology of the final product especially the
fiber diameter [99]. Fiber diameter decreased and became more uniform with increasing air pressure.
However, the fibers became defective when pressure was further increased [100]. When air is passed
through the air inlet and moves toward the nozzle tip, it must be ensured that there is no choking [101].
A nozzle is choked when the maximum mass flow rate has been reached [102]. Any additional
increment in pressure will result in an increase in chamber pressure. Internally the pressure might
increase to a value in excess of the rated mechanical strength of the nozzle material which will result in
catastrophic failure of the device. Externally of the nozzle an increase beyond choked conditions can
lead to shock wave formation in the nozzle wake. The effect of shock structures on the fiber formation
has not been determined; however, it is likely that the rapidly changing conditions before and after the
shock will have a detrimental effect on the fiber morphology. To avoid choking, nozzle diameter, feed
rate and air pressure must be carefully optimized [103].

Computational methods have been employed to numerically investigate the influence of air
characteristics on the fiber morphology in SBS [100,104]. Experimental studies that investigate airflow
parameters for SBS are sparse. Figure 11 displays the velocity contour and vector plot for a typical
subsonic nozzle. The flow presents with a recirculation zone of reversed flow directly behind the
nozzle where the fiber is attenuated. Lou et al. [100] provided velocity plots along the centerline of the
nozzle where flow reversal is observed. The flow velocity rapidly increases aft of the recirculation zone
to a maximum value and then decreases monotonically. Turbulence intensities in the order of 40% are
reported in the recirculation zone. To investigate the turbulent behavior of the flow, the k-ε turbulence
model is one of the most commonly used models in CFD to simulate mean flow characteristics.
This method results in rapid convergence [100] and is effective for solving problems involving reverse
flow [105]. It is a semi-empirical model based on model transport equations for the turbulence kinetic
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energy (k) and its dissipation rate (ε). Neglecting gravitational effects, the transport equations for the
k-ε turbulence model are given below [100];
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(7)

where ρ is density kg/m3, k is turbulent kinetic energy m2/s2, t is time s, ui and u j
are velocity fluctuations in the ith and jth directions, respectively, µ is viscosity kg/(m.s),
µt is turbulent viscosity kg/(m.s), σk and σε are turbulent Prandtl numbers for the kinetic energy and
the dissipation rate, respectively, ε is dissipation rate of turbulent kinetic energy, Mt is turbulent Mach
number, Cε1 and Cε2 are parameters for k-ε turbulence model. There are numerous turbulence models
available that can provide accurate results for this type of flow. This can be the subject of a future study.
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3.10. Nozzle Design and Quantity

The flow of polymer solution is different from those of Newtonian fluids [106]. The stability of fiber
spinning of polymer solutions at high tensile rates has been theoretically and experimentally studied for
diluted polymer solutions while concentrated polymer solutions still need to be addressed [107–110].
The nozzle design is very critical in SBS as it significantly affects the airflow field distribution,
air velocity and morphology of the final product [104]. Large diameter of the nozzle produced higher
velocity which enhanced fiber attenuation and overall reduction in fiber diameter [104]. If the internal
diameter of nozzle is too big, large droplets will be produced resulting in nanofibers with bigger
diameters. Similarly, a very small orifice will reduce the throughput however it may produce fibers
with small diameters. Once the process has been optimized to achieve maximum possible throughput,
yield can be further increased by using an assembly of multiple nozzles and solution being injected
through each nozzle simultaneously. A disk with 20 outlets for solution with two holes on the
sides for compressed air was used to increase throughput [111]. They used the system to produce
PVDF nanofibers with diameters in the range of 60–280 nm. The cumulative solution flow rate was
320 mL/h [111]. Other research groups have also tried to increase the throughput by using multiple
nozzles [112] and grids [113].
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3.11. Syringe Protrusion Length and Diameter

The influence of the protrusion length of the needle on fiber dimensions was found to be
insignificant [104]. Lou et al. [100] also reported that the effect of protrusion length has insignificant
effect on the fiber morphology. They used four different protrusion lengths: 4 mm, 2 mm, 0 mm,
and−2 mm (minus sign means that the polymer syringe was retracted from the nozzle end by a distance
of 2 mm). It was reported that the air velocity reaches a maximum in the vicinity of 10–20 mm below
the nozzle face. The maximum air velocities were in the range of 170–180 m/s. However, based on lab
experiments, the retracted nozzles resulted in intermittent process with polymer solution blocking the
nozzle end. The protruded syringe was capable of producing fibers without such deficiencies. The best
morphology of nanofibers was produced when polymer syringe was protruded out by 4 mm [100].
The diameter of the syringe will define the diameter of the droplet of the polymer solution. If the
droplet diameter is large it can be potentially difficult to elongate it to get thinner fibers. It has been
shown that a needle with a smaller diameter promotes fiber attenuation thereby resulting in thinner
fibers [104].

3.12. Collectors

Some commonly used collectors include copper wire drum [114], magnetic field [115],
and two-metal bars to achieve statically aligned nanofibers [116]. Shehata et al. [116] demonstrated
that two-metal bars as collector can significantly enhance the alignment of nanofibers compared
with conventional dynamic technique in which a high speed rotating drum is used as collector.
A comparison of the two types of collectors drawn by COMSOL Multiphysics package is shown in
Figure 12 [116]. In the conventional collector, charge distribution is uneven that resulted in poor
alignment of nanofibers. In contrast, an even charge distribution on two-metal bars resulted in efficient
alignment of nanofibers.
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4. Morphology of PVDF-Based Nanofibers

The morphological defects, such as beads, have deleterious effect on the piezoelectric properties [98].
Abbasipour et al. [98] reported that the output voltage in case of 0.8 wt% HNT/PVDF samples was
higher than that of 0.8 wt% GO/PVDF samples even though the fraction of β-phase was higher in the
latter samples. Hence, it is not just the fraction of β-phase but also morphology of nanofibers that
influence the overall piezoelectric properties.

4.1. Bead Formation

The phenomenon of beads-on-string breakup of thin jets of dilute polymer solutions was discovered
by Goldin et al. [117]. Its essence is that at later stages of capillary breakup “necks” between forming
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drops cease to thin and transform into thin liquid filaments gradually thinning without apparent
change of shape of drops [118–120]. The presence of beads (Figure 13) may stem from a local higher
concentration of polymer and charge accumulation [121]. The morphological defects in PVDF-based
nanofibers can be suppressed by the incorporation of nanofillers, such as hydrated metal salts [49].
Dhakras et al. [49] produced PVDF nanofibers and reported that beads were observed on the produced
fibers. When they incorporated nickel chloride hexahydrate (NiCl2.6H2O), the population of beads
was found to decrease significantly. They further reported that the piezo-voltage increased up to 44%
in neat PVDF when they were able to achieve beads free nanofibers [49]. Xin et al. [26] produced
nanoclay/PVDF nanofibers and reported that the bead formation was suppressed by the incorporation
of nanoclay.
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Figure 13. (A) Plot indicating morphology of poly(methyl methacrylate) (PMMA) sprayed using a
solution blow spinning (SBS) apparatus at various concentrations and molecular weights. The estimated
overlap concentration (c *) is indicated by the dashed line. Scanning electron microscopy (SEM)
image of PMMA fibers formed at high molecular weight but below overlap concentration. Scale bar
represents 50µm. (B) SEM images of 50/50 wt. % PMMA/1H,1H,2H,2H-heptadecafluorodecyl polyhedral
oligomeric silsesquioxane (PMMA: Mw = 593 kDa, PDI = 2.69) blends sprayed using an SBS apparatus at
increasing concentrations of PMMA in solution. Scale bars represent 50, 100, and 50µm, respectively [29].

4.2. Porosity

Porosity within PVDF fibers degrades the mechanical properties however it also increases
the total charge collecting area and results in enhanced piezoelectric properties of PVDF-based
PEMs [122]. Various techniques have been employed to increase through thickness macro-porosity
in membranes, such as cryogenic spinning of fibers [123], laser drilling [124], sacrificial fibers [125],
and in situ porosifiers to achieve interconnected macropores throughout the scaffold to improve cellular
infiltration and enhance vascularization [126]. The densely packed membranes are also useful for
many applications such as cell guidance substrates and in forming barriers in applications such as
wound dressing and preventing infection (e.g., dental applications) [127]. The incorporation of LiCl
results in increased porosity in PVDF nanofibers where long finger-like porosity was observed [128].
It was also observed that the average pore size decreased with increasing LiCl fraction [129].



Polymers 2020, 12, 1304 16 of 28

4.3. Fiber Diameter

The mean fiber diameter and size distribution affect the properties and applications. For example,
fibrous membranes are capable of generating different cellular response depending on fiber diameter [30].
Difference in fiber diameter influences the roughness and inter-fiber pore size of membranes and
scaffolds used in tissue engineering applications and can have a direct influence on cellular adhesion,
proliferation and differentiation [130]. Controlling fiber size is a strategy that can be used to tune pore
size and mimic aspects of the extracellular matrix to alter cell infiltration [131]. This approach has
been shown to enable the migration of human osteosarcoma cells (SaOs-2 cell line) from one side of a
fiber membrane to the other, to support their proliferation [131]. The differentiation and spreading of
osteoblastic cell line, MC3T3-E1 cell has also been reported to be affected by fiber diameter [132].

The mean fiber diameter changes with the incorporation of nanofillers but contradictory results
have been reported in the reviewed literature. Dhakras et al. [49] produced NiCl2.6H2O/PVDF nanofibers
where the mean fiber diameter decreased with the incorporation of nanofiller. Khalifa et al. [133]
incorporated nano alumina trihydrate (ATH) into PVDF and reported that mean fiber diameter
decreased after the incorporation of ATH. On the contrary, Abbasipour et al. [98] reported that the mean
diameter increased with different nanofillers as shown in Figure 14. The maximum increase in diameter
in case of GO was due to interactions caused by hydroxyl and carboxyl groups of GO nanosheets [134].
Similarly, Fashandi et al. [135] produced cellulose nanocrystals/PVDF nanofibers and reported that the
fiber diameter initially increased from 439 nm to 718 nm with the incorporation of 1 wt% cellulose
nanocrystals. Upon further loading, fiber diameter decreased (552 nm at 3 wt% and 559 nm at 5 wt%
cellulose nanocrystals) [135]. It should be noted that in all samples containing cellulose nanocrystals,
fiber diameter is greater than neat PVDF fibers [135]. Tandon et al. [30] produced HA/PVDF nanofibers
where mean fiber diameter increased after the incorporation of HA (~550 nm for neat PVDF and
~700 nm for HA/PVDF samples). The increase in fiber diameter with the incorporation of nanofillers
can be attributed to increased viscosity and decreased solvent evaporation rate [136].
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[30]. Superior piezoelectric properties can be achieved by aligning the nanofibers in a particular 
direction [137]. A great deal of effort has been made to get the nanofibers aligned to enhance the piezo 
response [138]. Zaccaria et al. [137] produced random and aligned nanofibers of PVDF-TrFE. The 
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aligned nanofibers compared with both random nanofibers and commercially available films. They 
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Figure 14. Morphology of PVDF-based nanofibers: (a) pristine PVDF, (b) 0.2wt%GO/PVDF, (c) 0.2 wt%
graphene/PVDF, (d) 0.2 wt% HNT/PVDF, (e) 0.8 wt% GO/PVDF, (f) 0.8 wt% Gr/PVDF, (g) 0.8 wt%
HNT/PVDF, and (h) variation in mean diameter with filler content [98].

4.4. Alignment

The piezoelectric performance is affected by the preferential orientation of CF2 groups of
PVDF [30]. Superior piezoelectric properties can be achieved by aligning the nanofibers in a particular
direction [137]. A great deal of effort has been made to get the nanofibers aligned to enhance the
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piezo response [138]. Zaccaria et al. [137] produced random and aligned nanofibers of PVDF-TrFE.
The electric response to mechanical stimuli, in the frequency range of 30–200 Hz is 2–4 times higher
for aligned nanofibers compared with both random nanofibers and commercially available films.
They further reported that an increase in piezoelectric response was due to the high fraction of β-phase
in the aligned nanofibers. It was reported that the alignment also resulted in a reduction of mean fiber
diameter [137]. Additionally, there was no delay between the electric response and the mechanical
stress in case of aligned nanofibers while a remarkable phase shift was observed in case of random
nanofibers. Abbasipour et al. [98] incorporated graphene, GO, and HNT into PVDF and reported that
more oriented and finer nanofibers were achieved with HNT because of the tube-like morphology
of HNT. To get aligned nanofibers, Xin et al. [26] reduced the nozzle-collector distance from normal
value of 10–25 cm to only 3–5 cm and called it “near distance wheeling (NWS)”. They reported
that this reduction in nozzle-collector distance helped in achieving aligned nanofibers as the average
preferential fiber orientation got aligned with the collector rotation axis as shown in Figure 15 [26].

Polymers 2020, 12, 1304 18 of 29 

 

the aligned nanofibers. It was reported that the alignment also resulted in a reduction of mean fiber 
diameter [137]. Additionally, there was no delay between the electric response and the mechanical 
stress in case of aligned nanofibers while a remarkable phase shift was observed in case of random 
nanofibers. Abbasipour et al. [98] incorporated graphene, GO, and HNT into PVDF and reported that 
more oriented and finer nanofibers were achieved with HNT because of the tube-like morphology of 
HNT. To get aligned nanofibers, Xin et al. [26] reduced the nozzle-collector distance from normal 
value of 10–25 cm to only 3–5 cm and called it “near distance wheeling (NWS)”. They reported that 
this reduction in nozzle-collector distance helped in achieving aligned nanofibers as the average 
preferential fiber orientation got aligned with the collector rotation axis as shown in Figure 15 [26]. 

 

Figure 15. (a) Schematic illustration of the piezoelectric response experimental setup and the inset is 
photograph of the assembled full-fibre sensor; SEM images of (b) PVDF nanofibers, (c) 
PVDF/nanoclay nanofibers, and (d) PVDF/nanoclay nanofibers by NWS method [26]. 

5. Mechanical Properties 

As PEMs undergo cyclic loading, it is critical that they have superior mechanical properties. The 
fraction of β-phase, crystallinity, and morphology of nanofibers influence the mechanical properties. 
Tandon et al. [30] produced PVDF nanofibers using SBS and electrospinning, and reported that 
membranes obtained by SBS had higher tensile strength and lower Young’s modulus than those 
produced by electrospinning. β-phase does not only have superior piezoelectric properties but also 
has high elastic strength [139]. The incorporation of nanofillers can help improve mechanical 
properties of PVDF-based PEMs [46]. When BaTiO3 was incorporated into PVDF, not only fraction of 
β-phase but also mechanical properties improved as shown in Figure 16 [46]. At 10 vol% BaTiO3, 
ultimate tensile strength (UTS) increased in both single-layer (SL) and double-layer (DL) samples. 
The stress-strain curves suggest that PVDF initially shows ductile behavior with distinct elastic and 
plastic regions. At the onset of fracture strength, there is sudden drop in stress that suggests a very 
brittle fracture mode. However, mechanical properties degraded when concentration of nanofiller 
increased beyond 15 vol%. It is because when concentration is increased beyond a certain value, 
agglomeration takes place and agglomerates act as stress concentration sites [140]. Due to stress 
concentration, cracks initiate and propagate under the influence of cyclic loading and result in failure 

Figure 15. (a) Schematic illustration of the piezoelectric response experimental setup and the inset is
photograph of the assembled full-fibre sensor; SEM images of (b) PVDF nanofibers, (c) PVDF/nanoclay
nanofibers, and (d) PVDF/nanoclay nanofibers by NWS method [26].

5. Mechanical Properties

As PEMs undergo cyclic loading, it is critical that they have superior mechanical properties.
The fraction ofβ-phase, crystallinity, and morphology of nanofibers influence the mechanical properties.
Tandon et al. [30] produced PVDF nanofibers using SBS and electrospinning, and reported that
membranes obtained by SBS had higher tensile strength and lower Young’s modulus than those
produced by electrospinning. β-phase does not only have superior piezoelectric properties but also has
high elastic strength [139]. The incorporation of nanofillers can help improve mechanical properties of
PVDF-based PEMs [46]. When BaTiO3 was incorporated into PVDF, not only fraction of β-phase but
also mechanical properties improved as shown in Figure 16 [46]. At 10 vol% BaTiO3, ultimate tensile
strength (UTS) increased in both single-layer (SL) and double-layer (DL) samples. The stress-strain
curves suggest that PVDF initially shows ductile behavior with distinct elastic and plastic regions.
At the onset of fracture strength, there is sudden drop in stress that suggests a very brittle fracture mode.
However, mechanical properties degraded when concentration of nanofiller increased beyond 15 vol%.
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It is because when concentration is increased beyond a certain value, agglomeration takes place and
agglomerates act as stress concentration sites [140]. Due to stress concentration, cracks initiate and
propagate under the influence of cyclic loading and result in failure [141]. Therefore, agglomeration
should be avoided to prevent degradation of mechanical properties. The enhancement of Young’s
modulus degrades piezoelectric coefficient (d33) [142]. The d33 is defined as the change in polarization
with applied uniaxial stress. At zero applied potential, d33 = - Pr/Y where Pr is remnant polarization
and Y is Young’s modulus [142]. Hence, a PEM should have a lower Young’s modulus if a higher d33

(with minus sign) is required.
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6. Applications

PVDF-based PEMs have found various applications including but not limited to energy
conversion [143], power generation [144], sensing [145], and actuation [146]. Difference in fiber
diameter influences the roughness and inter-fiber pore size of membranes and scaffolds used in
tissue engineering applications and can have a direct influence on cellular adhesion, proliferation and
differentiation [130,132,147]. Controlling fiber size is a strategy that can be used to tune pore size and
mimic aspects of the extracellular matrix to alter cell infiltration [131]. This approach has been shown to
enable the migration of human osteosarcoma cells (SaOs-2 cell line) from one side of a fiber membrane
to the other, and support their proliferation [131]. The differentiation and spreading of osteoblastic cell
line, MC3T3-E1 cell has also been reported to be affected by fiber diameter [132]. PVDF-based PEMs
can be used in photocatalysis [148]. The spatial electric field of PVDF plays a generic enhancement role
in the photocatalysis of both UV-light-responsive and visible-light-responsive photocatalysis [148].
In the presence of organic piezoelectric PVDF, the photocatalytic efficiency of a PVDF-TiO2 sample was
improved by 55% and the corresponding first-order reaction rate constant increased by 5.42 times [148].

PVDF-based PEMs can also be employed where restricted wettability and hydrophobicity are
desired such as to make water repellent coatings. PVDF is known to be a chemically resistant and
hydrophobic polymer [30]. The fabrication process also affects the wettability [30]. Tandon et al.
produced PVDF nanofibers via SBS and electrospinning, and reported that membranes produced by
SBS had average contact angle of ~113◦ which was higher than those produced by electrospinning [30].
It suggests that PVDF nanofibers produced via SBS have lower wettability and a higher hydrophobic
character than those produced by electrospinning. Hydrophobic character of PVDF fibers is explained
in ref. [149–151]. PVDF-based PEMs are much promising in fabricating piezoelectric nanogenerators
(PENGs) as the potential energy source for portable devices [152]. PVDF-based PEMs can also
be employed to harvest energy from respiration and wind energy [50]. Alam et al. produced
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ZnO-containing paper ash ZPA/PVDF nanofibers-based PENG. They simply exhaled near a PENG and
this mouth blowing led to generation of 0.2 V [50]. The further observed that the output voltage linearly
increased from 0.2 to 1 V with an increase in mouth blowing wind flow from 1 ms−1 (corresponding to
an exerted pressure of ~0.65 Pa) to 5 ms−1 (~16 Pa) [50]. The respiration process increases 4–8 folds
during workout and therefore higher energy can be harvested during exercise [153]. This capability is
ideal for harvesting energy from environmental wind flow or respiration making the PENG suitable
for various applications, including charging mobile phones during conversations.

Deng et al. successfully demonstrated that cowpea-structured PVDF/ZnO nanofibers
(CPZNs)-based flexible self-powered sensors can be used to remote control of gestures in interactive
human-machine interface (iHMI) [154]. The mechanism of the process is summarized in Figure 17 [154].
A robotic hand mimics a human hand based on the relationship between electrical output and the
bending angle of the piezoelectric sensor (PES) (Figure 17a–g). The PES is attached to the inner knuckles
of human fingers. The PES is comprising of PVDF/ZnO nanofibers mat and flexible MXene (Ti3C2)
electrode. Due to the flexibility of PVDF-based nanofibers and electrode, the PES demonstrated good
mechanical flexibility (Figure 17e). Upon the application of bending force, stress is concentrated in the
middle region where tension/compression are maximum. The mechanical strain elicits piezoelectric
response and voltage is generated at the far ends of the sensor (Figure 17h). When human hand gives
a gesture of “Two” robotic hand replicates the gesture proving that bending sensing can be realized
based on the piezoelectric effect. The sensitivity of PES could be regulated through the volume fraction
of ZnO. The optimum bending sensitivity of 4.4 mV/deg with a fast response time of 76 ms could be
achieved ranging from 44◦ to 122◦. It has been shown that the output of PVDF-based motion sensors is
gait sensitive [155]. This feature can help podiatrist to correct walking and running styles of patients
and in forensic sciences for trace inspection.
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Figure 17. The structure design of the CPZNs-based self-powered PES. (a) The schematic of the
developed smart sensor applied in the field of iHMI. The sketch of the device. (b) Nanofibers film.
(c) The photograph of the fabricated sensor under bending mode. (d) Anatomy of sensor. (e) Photo of
bent sensor. (f) The SEM image of the nanofibers. (g) The TEM image of a single nanofiber. (h) The result
of the FEM simulation. (i) The application of robot hand remote control based on the PES [154].
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7. Conclusions and Future Insights

PVDF is a multifunctional polymer, exhibiting piezoelectric, pyroelectric, ferroelectric and
superior dielectric properties. To modify the piezoelectric properties of PVDF, its copolymers are made,
and additives are incorporated. One of the most commonly used copolymers of PVDF is poly
(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) because of high piezo response, lightweight and
ease of processing, making it a potential candidate for flexible and wearable applications. In PVDF,
there are five common phases; α, β, γ, δ, and ε. The phases are different based on chain conformations;
all-trans (TTTT) for β-phase, TGTG (trans-gauche-trans-gauche) for α and δ, and T3GT3G for γ and ε.
The phase obtained depends on the processing parameters. Among all, β-phase has the highest piezo
response with highest dipolar moment and spontaneous polarization per unit cell. It is easier to achieve
electrical polarization in semi-crystalline structure than in amorphous structure. Hence, higher the
β-phase, greater the piezo response.

There are two potential methods to produce PVDF-based nanofibers namely electrospinning and
solution blow spinning (SBS). The suitable fabrication method is the one which produces a higher
fraction of phase with highest piezo response. To achieve a high piezo response, electrospinning
requires the application of very high electric field (>100 MV/m) sometimes making the process a safety
hazard. The advantage of electrospinning is that it combines mechanical stretching and electric poling
into one process. SBS has many advantages over electrospinning. SBS is portable and nanofibers
produced can be deposited on any substrate. One of the main advantages is throughput. SBS can
give yield up to 30 times greater than that by electrospinning making SBS suitable for scale-up.
Once nozzle design, feed rate, air pressure, solvent and polymer concentration are optimized, yield can
be further increased by using an assembly of multiple nozzles and solution being injected through
each nozzle simultaneously.

One of the challenges in SBS is reproducibility. Tandon et al. produced PVDF nanofibers
via SBS and reported that SBS resulted in higher fiber variability between fabricated batches [30].
Mean fiber diameters of 400 ± 130 nm and 300 ± 130 nm were obtained for SBS and electrospinning,
respectively [30]. The numbers suggest that SBS parameters need further optimization to achieve
thinner fibers. Another aspect where SBS needs improvements is in the alignment of nanofibers.
Tandon et al. produced PVDF nanofibers via SBS and electrospinning and reported that relatively poor
alignment of nanofibers was achieved with SBS compared with electrospinning [30]. This could be
due to increased turbulence around the collector because of high rotational speed and compressed air
deflecting from the surface of the cylindrical collector [44].

Air pressure and velocity can significantly influence the fiber morphology. Although a higher
centerline velocity helps reduce the fiber diameter, it is critical that the velocity does not reach supersonic
to an extent where shocks may be generated as shocks can potentially break the fibers. During the
literature review, no study was found that has predicted about whether shocks will actually break
the fibers or will only result in sharp localized reduction in fiber diameter. Hence, a study is essential
to investigate a threshold of a maximum air velocity and effects of shocks on the fiber morphology.
Therefore, extensive research is still required to modify and optimize the SBS technique to produce
PVDF-based nanofibers with superior piezoelectric properties. This modification and optimization
require a confluence of both modeling/simulation and experimental research.
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