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Key Points

•Circulating plasmodial
histones are signifi-
cantly elevated in CM
and are associated with
endothelial and clotting
activation.

• Parasite histones may
contribute to the devel-
opment of CM by trig-
gering focal
coagulation activation
and endothelial injury in
the brain.

Microvascular thrombosis andblood–brain barrier (BBB) breakdown are key components of

cerebral malaria (CM) pathogenesis in African children and are implicated in fatal brain

swelling. How Plasmodium falciparum infection causes this endothelial disruption and

why this occurs, particularly in the brain, is not fully understood. In this study, we have

demonstrated that circulating extracellular histones, equally of host and parasite origin,

are significantly elevated in CM patients. Higher histone levels are associated with brain

swelling on magnetic resonance imaging. On postmortem brain sections of CM patients,

we found that histones are colocalized with P falciparum–infected erythrocytes sequestered

inside small blood vessels, suggesting that histones might be expelled locally during parasite

schizont rupture. Histone staining on the luminal vascular surface colocalized with

thrombosis and leakage, indicating a possible link between endothelial surface

accumulation of histones and coagulation activation and BBB breakdown. Supporting this,

patient sera or purified P falciparum histones caused disruption of barrier function and

were toxic to cultured human brain endothelial cells, which were abrogated with

antihistone antibody and nonanticoagulant heparin. Overall, our data support a role for

histones of parasite and host origin in thrombosis, BBB breakdown, and brain swelling in

CM, processes implicated in the causal pathway to death. Neutralizing histones with agents

such as nonanticoagulant heparin warrant exploration to prevent brain swelling in the

development or progression of CM and thereby to improve outcomes.

Introduction

Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection. Despite effective
antimalarial drugs, 10% to 20% of children developing CM die,1 contributing to 400000 malarial deaths
per year, mostly in children in sub-Saharan Africa.2 Recent magnetic resonance imaging (MRI) studies
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demonstrated brain swelling in the causal pathway to death and
implicated blood–brain barrier (BBB) breakdown.3,4 Death typically
occurs in the first 24 hours after admission,5 with children who do not
reach critical levels of brain swelling frequently recovering rapidly.
BBB stabilization, through targeting causal pathways to vascular leak
in the brain, could halt this brain swelling and reduce mortality.

A defining feature of CM is cytoadherence of P falciparum–infected
erythrocytes (IE) to endothelial cells (EC) leading to sequestration in
the microvasculature.1 In vivo retinal imaging,6,7 postmortem
histology,8,9 and in vitro data10 demonstrate spatial-temporal links
between sequestration, microvascular leak, and thrombosis, with
coagulopathy predicting fatal outcome in CM.11,12 Postmortem
studies in African children demonstrate sequestration in multiple
organs, whereas leak and coagulopathy are most prominent in
the brain9,13,14; this implies that sequestration provides a parasite
stimulus for vascular leak and coagulopathy to which the brain is
particularly vulnerable.8,15

Extracellular histones, released by damaged or immune-activated
host cells have emerged as critical mediators of EC damage in
diverse severe illnesses including sepsis,16 influenza,17 inflamma-
tory conditions,18,19 and trauma.20 Hallmark features of histone
toxicity are thrombocytopenia21,22 and microvascular thrombosis
and leak.16,20 In patients with sepsis or trauma, histone levels
correlate with clinical severity scores,20,23 thrombocytopenia,21

and coagulation activation,20,23,24 and they predict outcome.20 In
animal models of sepsis or trauma, released histones are causal in
these processes and in fatal outcome, prevented by antihistone
antibodies20,23,25,26 and heparins27 (which neutralize histones),
and by activated protein C (aPC), which degrades histones.16 In
mice, infusion of exogenous histones of.30 mg/kg is toxic; infusions
of.60 mg/kg are fatal. In histological sections, histones are observed
to accumulate on the endothelial surface and colocalize with
microvascular coagulopathy and vascular leak.20

The clinicopathological features observed at sites of sequestration in
CM,8,9,14 vascular leak, coagulopathy, and thrombocytopenia, strongly
resemble those that are induced by histones in other conditions.16,20

Therefore, we hypothesized that histones might be an important
causal factor in CM pathogenesis. Both P falciparum and
mammalian cells contain histones (H2A, H2B, H3, H4), packaged
in nucleosomes with DNA. Following the sequestration of parasitized
erythrocytes, intraerythrocytic merozoites multiply by up to 30 times to
form a schizont. This increases the nuclear material, including
histones, by an order of magnitude. When schizonts rupture, they
release their contents; in vitro they can be shown to expelP falciparum
histones.28,29 Purified plasmodial histones cause inflammatory
pathway activation, toxicity, and barrier disruption on cultured
endothelial cells, similar to mammalian histones.28 Therefore, histones
may link sequestration and vascular pathology in CM. Histone-packed
schizonts sequestered in red cells in contact with the endothelial
surface may, upon rupture, deliver an intense, concentrated exposure
to released histones, leading to coagulation activation and endothelial
injury and, in turn, BBB breakdown and brain swelling.

It remains uncertain whether significant levels of parasite histones are
produced in vivo in patients with malaria. There have been no data
assessing the association between histones originating from host or
parasite and clinical or laboratory indicators of endothelial or coagulation
activation or disease severity in CM, nor have there been any data to
assess whether histones accumulate on the vascular endothelium at

sites of sequestration, thrombosis, or BBB breakdown. In this study,
we address these gaps using samples from well-characterized CM
patients, and, in ex vivo and in vitro experiments, demonstrate a causal
role of P falciparum histones in endothelial disruption.

Methods

Children included in the study and patient and

postmortem case definitions

Children aged 6 months to 16 years were recruited at Queen
Elizabeth Central Hospital (Blantyre, Malawi) between January 2010
and August 2011 (Liverpool School of Tropical Medicine Research
ethics protocol 09-74; Malawi College of Medicine Research Ethics
Committee protocol number P.02/10/860). Inclusion criteria are
described previously.8 Supplemental Figures 1 and 2 summarize
which patients were included and excluded from the analysis. Children
who met WHO criteria for CM (standard clinical definition of CM)
underwent funduscopic examination by an ophthalmologist; charac-
teristic retinal changes are associated with sequestration of IE in the
brain.1,30,31 Children in coma but who did not have malaria (non-CM
coma) were used as a comparator group. Children with uncompli-
cated malaria and mild nonmalarial febrile illness (mild febrile illness;
malaria parasites not detected in blood on thick smear) were recruited
from the hospital Accident and Emergency department. They had no
evidence of organ compromise and were assessed to be well enough
to go home. Healthy controls were children attending elective surgery.

Postmortem, cases who met WHO criteria for CM while alive were
assessed by a clinical pathologist and divided into three groups:
definitive CM cases, non-CM parasitemic cases, or nonmalaria
coma cases. Definitive CM cases showed sequestration of IE in the
brain and no other cause of death. Non-CM parasitemic cases showed
no visible sequestration of IE in cerebral vessels and a nonmalarial
cause of death identified. These cases are generally retinopathy
negative ante-mortem. Nonmalaria coma cases, children who were
admitted in coma and who did not have malaria (no parasites on thick
smear), were used as a comparator group (postmortem cases detailed
in supplemental Table 1).

Plasma and serum samples

Venous blood was collected at enrollment, and serum and plasma
was prepared as previously described.32 Circulating histone levels
were quantified in serum by a custom immunoblot assay.20,21,23 In
plasma we quantified Osteoprotegerin (OPG; R&D Systems) and
F112 peptide (Enzygnost; Siemens) by ELISA33,34 and fibrin mono-
mers using an STA compact analyzer (Stago).11

Scoring of brain swelling

MRI images acquired on admission were scored independently by 2
radiologists blinded to patient details as described previously3 (for
details see supplemental Methods). Briefly, patients were divided into
4 groups based on the scores: 1) no brain swelling, 2) mild brain
swelling, 3) moderate brain swelling, and 4) severe brain swelling. A
number of children did not have MRI scans. If a patient recovered from
their coma within 12 hours and, thus, did not have an MRI scan, we
deemed it likely that they did not have significant brain swelling and
included them in the first group, no brain swelling. Other reasons for
not obtaining MRI scans included clinical instability and equipment
malfunction for whom we could not reasonably assign a category.
Missing data were handled by listwise deletion.
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Isolation, purification, and liquid

chromatography–mass spectrometry analysis

of histones

P falciparum histones (H2A/H2B, H3, and H4) were purified from
saponin lysed IT4var16 IE using a Histone Purification Kit (Active
Motif; detailed in supplemental Methods). Human histones
(H1, H2A, H2B, H3, and H4) were purchased from New England
Biolabs. Histones were enriched using gel separation, prior to liquid
chromatography–mass spectrometry analysis. Analysis was performed
using an Ultimate 3000 RSLC nano system (Thermo Scientific; Hemel
Hempstead) coupled to a QExactive-Hf mass spectrometer (Thermo
Scientific).

Immunohistochemistry

Formalin-fixed postmortem brain tissue samples from Malawian
children with fatal encephalopathic illness were collected as
described previously.9 Cortical sections (4 mm thick) were stained
for histones and fibrinogen (supplemental Methods). Two scorers,
blinded to histological classification, scored all of the cases, and
a third scorer scored a subset of cases. The scorers used the same
slide set, but after scanning the whole slide, selected a prespecified
number of vessels at random from representative areas of the slide;
70 to 90 vessels were scored from each case. All scores were used
for the analysis. IE sequestration for each vessel was scored as:
negative (0); positive but,50% of the vessel lumen (1), or positive
with .50% of the vessel lumen (11, high). Histone membrane
staining for each vessel was scored as absent (0), weak (1), or
strong (11). Fibrinogen extravasation as a marker of leak was
scored for each vessel as absent or present.

Endothelial cell culture, endothelial cell damage

assays, and barrier function assays

Primary human brain microvascular EC (HBMEC; Cell Systems)
were cultured in 1% gelatin or fibronectin-coated (5 mg/mL) flasks,
in complete medium (Cell systems) or endothelial growth medium
2 (Promocell, Germany) for transendothelial electrical resistance
(TEER) experiments. For toxicity assays, confluent layers of HBMEC

were treated with either purified histones or serum from healthy
controls or patients (diluted 1:1 with serum-free media). Cell viability
was determined by propidium iodide staining and quantified using
flow cytometry.

Permeability of confluent HBMEC monolayers was analyzed in
a dual-chamber system (0.4 mM pore size; Millipore, Germany),
measuring horseradish peroxidase leak-through over 1 hour using
tetramethylbenzidine substrate (supplemental Methods). TEER
was measured using a real-time impedance system (xCELLigence;
ACEA Biosciences; supplemental Methods).

For antihistone treatments, either purified histones or patient sera
were preincubated for 10-15 minutes with antihistone single-chain
variable fragment (ahscFv; 200 mg/mL20) or with nonanticoagulant
N-acetyl heparin (200 mg/mL; Sigma).

Statistical analysis

Continuous variables were assumed to have normal or log normal
distribution depending on their level of skewness. Differences
between groups were compared using Student t tests for 2 group
comparisons or analysis of variance (ANOVA) for multiple group
comparisons. For ANOVA, to assess for differences between
groups and adjust for multiple comparisons, we used the Tukey
honestly significant difference test (when comparing all groups to
each other) or Dunnett test (when comparing all groups to a single
group). Differences between conditions for in vitro data were
assessed using the Kruskal-Wallis test with a Dunn’s test to
compare different samples to the control or the Friedman test to
compare matched data to the control. The association between
histone levels and other variables was assessed by linear regression
and expressed as correlation coefficients (Pearson’s). For ordered
categorical slide scoring data, the associations between histolog-
ical classification, extent of sequestration, and degree of fibrinogen
extravasation were assessed by use of ordinal logistic regression
models.8 We adjusted for clustering among cases and scorers by
including these as covariates in the regression model. All tests
were 2-tailed with a conventional 5% significance level. Statistical

Table 1. Clinical characteristics of the children

Healthy controls

(n 5 22)

Mild febrile illness

(n 5 34) UM (n 5 50)

Nonmalarial coma

(n 5 10)

Ret2CM

(n 5 48)

Ret1CM

(n 5 170)

Age, median (IQR), mo 79 (43-107) 41 (24-63) 63 (40-92) 46 (32-72) 48 (28-69) 47 (31-66)

Female sex, no. (%) 9 (43) 15 (44) 26 (52) 1 (10) 23 (48) 86 (51)

HIV positive, no. (%) 0 (0) 0 (0) 0 (0) 0 (0) 4 (8.3) 14 (8.2)

Axillary temperature, median (IQR), °C 36.8 (36.1-36.8) 38.2 (37.9-38.6) 38.3 (37.9-39.0) 38.6 (38.4-39.0) 38.7 (37.7-39.6) 38.7 (38.9-39.6)

Pulse rate, median (IQR), beats per minute 116 (102-124) 136 (113-154) 137 (119-147) 140 (119-157) 143 (130-164) 150 (138-167)

Systolic BP, median (IQR), mmHg 111 (103-118) 117 (107-123) 114 (107-122) 100 (94-110) 98 (90-105) 95 (89-104)

Respiratory rate, median (IQR), breaths/min 28 (20-32) 32 (28-36) 27 (24-32) 37 (28-40) 40 (36-52) 44 (38-52)

Blood glucose, median (IQR), mmol/L 5.2 (4.6-5.7) 4.8 (4.4-5.4) 5.8 (4.9-6.4) 7.45 (6.2-8.8) 6.7 (5.5-8.6) 6.4 (5.3-8.0)

Blood lactate, median (IQR), mmol/L 1.8 (1.8-2.00) 1.7 (1.2-2.2) 2.4 (1.9-3.0) 3.1 (2.1-5.2) 4.0 (2.9-7.1) 6.5 (3.6-10.3)

Hb, median (IQR), g/L 103 (98-111) 115 (105-120) 93 (76-107) 91 (82-92) 81 (68-100) 64 (51-77)

Platelets, median (IQR), 3109/L 402 (345-470) 331 (239-388) 132 (82-185) 335 (176-462) 138 (60-221) 52 (28-84)

Peripheral parasite density, median (IQR), 3103/mL 0 0 31 (0.7-32) 0 48 (5-173) 73 (15-273)

Hb, hemoglobin; IQR, interquartile range.

14 JULY 2020 x VOLUME 4, NUMBER 13 HISTONES IN CEREBRAL MALARIA 2853



analyses were performed using Stata (version 11; Statacorp) and
Prism (version 8; GraphPad) software.

Results

Extracellular histones are elevated in CM

Clinical characteristics of the patients are detailed in Table 1.
Circulating histone levels in patients with a clinical diagnosis of CM
according to WHO criteria35 (geometric mean, 19.3 mg/mL; 95%
confidence interval [CI], 15.4 to 24.3 mg/mL) were significantly
higher than in healthy controls (geometric mean, 0.6 mg/mL; 95%

CI, 0.2 to 1.7 mg/mL) and patients with mild febrile illness
(geometric mean, 0.54 mg/mL; 95% CI, 0.3 to 1.4 mg/mL),
uncomplicated malaria (geometric mean, 3.0 mg/mL; 95% CI,
2.0 to 4.5 mg/mL), and non-CM coma (geometric mean, 2.7 mg/mL;
95% CI, 0.6 to 12.0 mg/mL) (Figure 1A). We used retinal
examination to refine CM diagnosis; characteristic retinal changes
indicate sequestration of IE in the brain30 and distinguish
retinopathy-positive CM (Ret1CM) cases from cases that are
retinopathy-negative CM (Ret2CM) who are a more heterogeneous
group and more likely to have an alternative diagnosis.1 Histone levels in
Ret1CM (geometric mean, 24.7 mg/mL; 95% CI, 19.5 to 30.9 mg/mL)
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Figure 1. Circulating extracellular histones are

elevated in CM. (A) Circulating histone levels measured

in the serum of healthy controls (HC; n 5 22), and

patients with mild febrile illness (MF; n 5 34), uncompli-

cated malaria (UM; n 5 50), aparasitemic non-CM coma

(Non-CM; n 5 10) and admission serum from children

who met the standard WHO case definition of CM at pre-

sentation (n 5 218). Thick black lines and error bars are

the geometric mean and 95% CI. (B) Refining the di-

agnosis of CM by retinal examination, comparison is made

between circulating histone levels in children with Ret2

CM (n 5 48) and Ret1CM (n 5 170). (C-F) Scatter plots

to examine the correlation between histone levels and

plasma factors in children with Ret1CM are shown.

(C) Plasma fibrin monomer levels; (D) prothrombin frag-

ment F112; (E) OPG; and (F) whole blood peripheral

parasite density. (C-E) Data shown were measured by

ELISA, and parasite density was calculated from white

blood cell–normalized slide counts using thick smears.

Comparison was made using ANOVA and Dunnett’s mul-

tiple comparison test (A), Student t test (B), and Pear-

son’s correlation coefficient (C-F). Non-CM are

aparasitemic children with encephalopathy in a coma due

to a cause other than malaria.
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were markedly higher than those in Ret2CM cases (geometric mean,
8.3 mg/mL; 95% CI, 4.6 to 15.0 mg/mL; Figure 1B).

To explore histones as a possible trigger for coagulation activation
in CM, we assessed the association between circulating histones
and markers of in vivo fibrin formation and coagulation activation.11

In Ret1CM cases, circulating histones correlated with plasma fibrin
monomer concentrations (r5 0.56, P# .001; Figure 1C) and weakly
with prothrombin fragment F112 (a marker of thrombin generation;
r 5 0.34, P 5 .001; Figure 1D).

Endothelial activation with Weibel Palade body (WPB) exocytosis is
considered a key component of malaria pathogenesis and promotes
thrombosis.36,37 SolubleOPG is released fromWPB into the blood and
is a sensitive marker of WPB exocytosis correlating with development
and severity of malaria.33,38 Here, circulating histone concentration
correlated with plasma OPG concentration (r 5 0.54, P , .001;
Figure 1E).

The density of parasitemia alone does not account for these
associations as there was minimal correlation between extracel-
lular histone levels and peripheral parasite density (r5 0.20,P5 .0044;
Figure 1F) and there was no correlation between circulating histone
levels and histidine-rich protein 2 levels (PfHRP2, a released parasite
protein used as a marker of biomass [r5 0.09, P5 .25]; data not

shown). Further, fibrin monomer and OPG concentrations correlated
less strongly with peripheral parasite density (r5 0.34, P# .001 and
r5 0.46, P# .001) than with circulating histones. There was minimal
correlation between fibrin monomers or OPG and PfHRP2 (r5 0.24,
P5 .013; r5 0.10, P5 .34). Taken together, these data indicate an
association between circulating histone levels and markers of
endothelial activation, clot formation, and clot localization that is not
explained by an association with parasite density.

Association between histone levels and

brain swelling

Given the association between histones and endothelial processes
implicated in vascular dysfunction in CM, we assessed the correlation
between histone levels and fatal outcome and brain swelling. In Ret1CM
cases, the geometric mean serum histone concentration on
admission was not significantly different between those patients who
later died (n5 24; geometric mean, 39.1mg/mL; 95%CI, 19.2 to 79.6
mg/mL; Figure 2A) and patients who survived (n 5 146; geometric
mean, 22.8 mg/mL; 95% CI, 17.9 to 29.0 mg/mL; P 5 .11).

However, histone levels were nearly 3 times higher in children who had
moderate brain swelling (geometricmean, 27.0mg/mL; 95%CI, 16.9 to
43.2, P5 .047) or severe brain swelling (geometric mean, 28.3 mg/mL;
95% CI, 16.5 to 48.5, P 5 .033; typical example Figure 2B,
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Figure 2. Extracellular histones are associated with

the degree of brain swelling demonstrated on MRI

scan. (A) Serum histone levels at admission in children

who went on to die (Fatal; n 5 24) and in those who

survived (Nonfatal; n 5 146). Differences between these

groups were compared using a Student t test on log-

transformed data. (B) Typical example of an MRI from

a Malawian child with Ret1CM with a severely swollen

brain (top) compared with an MRI from a Malawian child

with Ret1CM with no swelling (bottom). (C) Circulating

histones in children presenting with Ret1CM at different

levels of brain swelling: those with no evidence of brain

swelling or who woke up on the day of admission before

they had a scan (n 5 22) compared with mild (n 5 22),

moderate (n 5 37), or severe brain swelling (n 5 40).

Black lines and error bars indicate geometric mean and

95% CI. Differences between the groups were compared

by an ANOVA on log-transformed data with the Dunnett’s

test to compare individual differences between no swell-

ing and other swelling groups.
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upper image) than in children who had no evidence of brain
swelling on MRI (geometric mean, 9.8 mg/mL; 95% CI, 4.1 to 23.2;
Figure 2B,C). Further, peripheral parasite density, PfHRP2, lactate,
platelet count, and OPG levels were not significantly associated
with brain swelling, at least among those patients for whom we had
these data (supplemental Figure 4).

Approximately 50% of circulating histones

are plasmodial

Owing to the highly conserved nature of histones, with .90%
sequence homology between Plasmodium and human histones,

available antibodies react with both human and Plasmodium
histones.28 We developed a semiquantitative mass spectrometry
method to determine the proportion of parasitic and human
histones within patient samples (Figure 3A). Using P falciparum
histones purified from culture and pure human histones, we
identified specific peptides for both H4 (Figure 3B,C) and H2A
that distinguished between P falciparum and human histones
(Figure 3D,E). We then applied this method to serum samples from
10 children with Ret1CM to determine the ratio of P falciparum and
human histones. P falciparum histones constituted a median of
50% of the total histones (interquartile range, 24.6% to 78.3%;
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estimate the variable proportions of circulating human and P falciparum in the patient serum, demonstrating a significant contribution of P falciparum histones to the total pool.
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Figure 3F,G). These are the first data demonstrating plasmodial
histones in blood in patients.

Colocalization of parasite sequestration and luminal

histone staining in cerebral microvessels in tissue

from fatal CM cases

In mouse models of histone-induced vascular damage, histones bind to
the luminal surface of the endothelium.20 To assess for the presence
of extracellular histones at sites of sequestration and whether
histones accumulate on the endothelial surface in CM, we performed
immunohistochemical staining for histones in postmortem
brain samples from Malawian children (details of individual cases in
supplemental Table 1). Luminal histone staining was more frequent
and strong in definitive CM cases (n 5 17; Figure 4A, magnified in
Figure 4B; supplemental Figure 7) than parasitemic non-CM cases
who met the standard CM case definition while alive, but, at autopsy,
had no sequestration in the brain and were found to have an alternative
cause of coma and death (n5 6; Figure 4C; supplemental Figure 8) or
nonmalarial comatose illness cases (n 5 5; supplemental Figure 8).

Quantifying this by scoring (scorer comparison shown in supple-
mental Figure 9), histone staining was stronger in definitive CM
cases compared with the non-CM parasitemic cases (parasitemic,

described as CM3 in previous studies1; Figure 4D; odds ratio
[OR], 2.6; 95% CI, 1.7 to 3.9; P , .001) or nonmalarial cases
(nonmalaria; OR, 7.2; 95% CI, 5.0 to 10.6; P , .001). Among
definitive CM cases, there was a strong association between
histone luminal staining and the presence of parasite sequestra-
tion (Figure 4E). When sequestration was present but in less than
50% of the vessel (1) the OR of histone membrane staining
being present was 5.2 (95% CI, 2.8 to 9.7; P , .001); when
greater than 50% of the vessel contained sequestered parasites
(11) the OR for the presence of histone staining was 16.9 (95%
CI, 9.2 to 31.3; P, .001; Figure 4E). The accumulation of luminal
histones in association with parasite sequestration supports
a parasite origin for bound histones, although this could also
indicate that sequestration induces local production host histones
(eg, through neutrophil extracellular trap [NET] formation39,40 or
cellular damage).

High histone levels are associated with BBB

breakdown and thrombosis in tissue from

fatal CM cases

Histone staining was also associated with areas of BBB breakdown,
demonstrated by staining for fibrinogen extravasation (Figure 5A).
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Figure 4. Histones accumulate at the endothelial surface in the

cerebral microvasculature and are associated with sequestra-

tion. (A,B) Fatal definitive CM cases showing histone staining in close

proximity with endothelial cell luminal surface and marks host cell nuclei

(red arrow) as well parasite nuclei in IE (white arrow). (B) Enlarged

image of panel A to show luminal histone staining (black arrows) as well

as IE with histone staining. (C) Fatal parasitemic non-CM comatose

case (Parasitemic) with no histone endothelial membrane binding; his-

tone staining can be seen in mammalian cell nuclei (red arrows). (D)

Luminal histone staining is markedly increased in definitive CM (n 5 17)

compared with parasitemic non-CM cases (Parasitemic, n 5 6) or fatal

nonmalarial comatose illness CM cases (nonmalaria; n 5 5). (E) In

definitive CM cases (n 5 17); there is a strong association between

the degree of sequestration and the presence and strength of histone

membrane staining (determined by ordinal logistic regression). Red

staining is to antihistone H3 using Vector Red. Images were acquired

at 3600 using an oil immersion lens.
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Weak histone staining was associated with an OR of 2.8 for the
presence of fibrinogen extravasation (95% CI, 1.6 to 5.0; P # .001)
and strong histone staining with an OR of 4.5 for fibrinogen
extravasation (95%CI, 1.8 to 11.4; P5 .001), as shown in Figure 5B
as the percentage of vessels with a leak. This was not simply
explained by histone staining being associated with sequestration, as
the correlation between histone staining and leak remained signifi-
cant when the degree of sequestration was included as a covariate in
the regression model (revised OR, 2.6; 95% CI, 1.4 to 4.8; P5 .002
for weak histone staining andOR, 5.1; 95%CI, 1.9 to 13.5; P5 .001
for strong staining). Histone staining was also observed to colocalize
with thrombi (Figure 5C) and with ring hemorrhages (Figure 5D).
These data implicate histones as potential mediators of endothelial
disruption at sites of sequestration in the brain, leading to BBB
breakdown and thrombosis.

Histones purified from P falciparum and sera from

Ret1CM patients cause barrier disruption and are

toxic to cultured brain EC

Mammalian histones cause barrier disruption and are toxic to
human umbilical vein EC.16,20 P falciparum histones induce barrier
disruption and are toxic to dermal and lung EC.28 We studied the
effects of exposing primary HBMEC to purified plasmodial histones,
resulting in rapid barrier disruption that was reversed by antihistone
single-chain fragment variable (ahscFv; Figure 6A).20,26 Serum from
patients with Ret1CM induced significant (more than threefold)
increase in barrier disruption, whereas serum from Ret2CM, UM,
and non-CM coma patients did not (Figure 6B). This barrier
disruption was abrogated by specific blocking of histone activity in
serum with ahscFv (Figure 6C). In a real-time impedance system,
TEER was reduced by application of purified plasmodial histones
(Figure 6D,E; supplemental Figure 10A). This reduction was

abrogated by nonanticoagulant heparin (a potential treatment with
minimal toxicity that prevents toxicity of mammalian histones27;
Figure 6F; supplemental Figure 10A) or by specific removal of
histones using ahscFv-coated beads (supplemental Figure 10B,C).
Purified histones induced toxicity on HBMEC in a dose-dependent
manner (supplemental Figure 11A) abrogated by ahscFv (supple-
mental Figure 11B) and heparin (supplemental Figure 11C). Serum
from Ret1CM cases (n 5 13) were more toxic than histones from
patients with Ret2CM (n5 5), non-CM coma (n5 3), uncomplicated
malaria (n 5 5), or nonmalarial febrile illness (n 5 5; Figure 6G).
Considering that this toxicity might be histone related, when we
segregated Ret1CM cases by histone levels, those with elevated
histones (.100 mg/mL, n 5 8) induced significantly more cellular
toxicity than Ret1CM cases with lower histone levels (,25 g/mL,
n5 5; Figure 6H). This toxicity was reversed by ahscFv (Figure 6I)
and by nonanticoagulant heparin (Figure 6J). Taken together,
these data indicate that histones cause barrier disruption and
toxicity to brain EC, and histones present in Ret1CM serum are
active and necessary for causing serum-induced barrier disruption
and toxicity to brain EC ex vivo. Considering this as a possible
therapeutic target, this toxicity can be prevented by nonanticoa-
gulant heparin.

Discussion

Histones are nuclear proteins that can be released from damaged
host cells and have been shown to be released during the rupture of
schizonts.28 Here we demonstrate that circulating histones are
elevated in patients with CM. Specifically, P falciparum histones are
present in the blood of children with Ret1CM, with circulating
histone levels associated with endothelial and coagulation activa-
tion and with brain swelling. Luminal histone staining in postmortem
brain tissue colocalizing with sequestration and their independent
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Figure 5. Luminal bound histones colocalize with

areas of BBB breakdown and coagulopathy. (A)

Histone endothelial membrane staining (black arrows) coloc-

alizing with fibrinogen extravasation (blue arrow), which is

indicative of BBB breakdown. (B) Strong association

between the extent of histone endothelial membrane staining

and the presence of fibrinogen extravasation, determined by

ordinal logistic regression. (C) Histone membrane staining

(black arrows) colocalizing with thrombosis (blue arrow).

(D) Histone membrane staining (black arrow) colocalizing

with a ring hemorrhage (edge demarcated by dotted line).

Red staining is to anti-H3 antibody using Vector Red

and brown staining is to antifibrinogen antibody using

3,39-diaminobenzidine. Images were acquired at 3600

using an oil immersion lens.
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Figure 6. P falciparum histones are toxic factors in CM patient sera which are necessary to induce brain endothelial disruption ex vivo. (A) Time course of

barrier disruption of primary HBMEC by P falciparum histones in a Transwell dual chamber system treated with 100 mg/ml of purified plasmodial histones compared with cells

with media alone or cells treated with histones plus 200 mg/ml of antihistone single chain variable Fragment (ahscFv). Barrier disruption was assessed by measuring the optical

density (OD) of the liquid in the lower part of the Transwell system (measures horseradish peroxidase pass through, detected by reaction with tetramethylbenzidine substrate, 3

biological replicates per condition). By 2-way ANOVA there was significant barrier disruption in the histone group when compared with the media group (P 5 .0045). This was

abrogated by treatment with ahscFv, which was not significantly different from the media-only group (P 5 .093). (B) Serum-induced barrier disruption by patient samples.
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association with leak indicate a potential role for histones in
sequestration-driven BBB breakdown. We highlight potential trans-
lational relevance; the toxicity of serum from Ret1CM cases can be
inhibited by antihistone reagents including nonanticoagulant heparin.

A number of factors released from IE have been shown to cause
endothelial damage or leak in vitro,41 including glycosylphosphatidy-
linositol,42 extracellular vesicles,43 heme,40,44 and PfHRP2.45 IE–EC
receptor–ligand interactions also cause endothelial perturbation.46-48

Although it seems likely that CM pathogenesis consists of
a combination of interacting factors rather than a single toxin or
ligand,49,50 we sought a factor that is necessary for CM vascular
pathology and has therapeutic potential. Hallmark features of
extracellular histones in other critical illnesses are microvascular
leak and thrombosis at sites of histone release, which are both
considered key components of CM pathogenesis and are notably
concentrated at sites of IE sequestration. This is in keeping with the
anticipated concentration of histone release at sites of sequestra-
tion in the brain from histone-packed schizonts. Histones are
a plausible target for an adjunctive therapy, because antihistone
reagents are protective in animal models of sepsis,16 acute lung
injury,20 and pancreatitis.51

Consistent with the release of P falciparum histones in patients with
malaria, nucleosomes have been detected in the plasma of South-
East–Asian adults with malaria, and were higher in severe cases.28

However the association between nucleosomes (which have
minimal toxicity24) and free histones is variable, and it was not
identified whether these nucleosomes were of host or parasite
origin or whether they were active. In this study, we have
demonstrated that high levels of circulating histones released from
both parasites and host cells in CM correlate with the level of brain
swelling on MRI, suggesting that both parasite and host histones in
the circulation may play a role in BBB breakdown and leakage.
Treating human brain EC with serum from CM patients or isolated
parasite histones further supported their roles in brain endothelial
damage and barrier disruption.

The colocalization of parasite sequestration and of luminal histone
staining with thrombosis and fibrinogen extravasation in post-
mortem brain tissue support that parasite histones may trigger
these processes. The rupture of sequestered schizonts would be
predicted to result in elevated levels of extracellular histones locally.

Histones promote coagulation activation,52 thrombosis,36 and
endothelial disruption16,20 which could, in turn, culminate in BBB
breakdown (hypothesized mechanism summarized in supplemental
Figure 12).

The typical observed clinical pattern of disease in CM in African
children is of multifocal microvascular leakage and thrombosis in the
neurovasculature with resultant brain swelling, associated clini-
cally with deep coma but without multiorgan failure14 or overt
disseminated intravascular coagulation.11 A key consideration is
how extracellular histones, which in some cases reach levels in the
circulation that are capable of inducing cell toxicity and barrier
disruption, induce leak preferentially in the brain. It is notable that
the geometric mean concentration of histones in the serum in Ret1

CM cases was 25 mg/mL, but significant reductions of HBMEC
viability in our assay were only seen at histone concentrations
greater than 50 mg/mL (similar to the toxicity threshold for
mammalian histones16,20,28). The implication is that, in most patients
with CM, histone levels in the circulation do not reach levels
sufficient to cause systemic toxicity. In contrast, intense sequestra-
tion and an increase in nuclear material in sequestered schizonts by
up to 30-fold would be predicted to massively concentrate release
of P falciparum histones at the endothelial surface. Thus, at sites of
intense sequestration (Figure 4A,B), histone exposure may over-
whelm homeostatic mechanisms and cross this toxic threshold,
leading to focal endothelial break down and localized intravascular
coagulation (supplemental Figure 12). The balance between
homeostasis and decompensation is likely to vary between
individuals and between different vascular beds depending on the
degree of histone production and on local capacity to break
them down.

The brain may be particularly vulnerable to these mechanisms. First,
there are high levels of sequestration in the brain in CM.14,53,54

Second, the human brain may have reduced capacity to breakdown
histones because it has reduced innate capacity to produce aPC,55

owing to low constitutive thrombomodulin and endothelial protein
C receptor (EPCR) expression,56,57 the receptors involved in
aPC production. Moreover, IE sequestration itself causes EPCR
shedding, and parasite variants associated with the development
of CM use EPCR as a binding receptor,58,59 interfering with its
function and the production of aPC.59,60 Thus, histones released by

Figure 6. (continued) Transwell permeability changes of HBMEC monolayer are expressed as fold changes in horseradish peroxidase pass-through over 1 hour. Data are

expressed as violin plots and analyzed with the Kruskal-Wallis test with Dunn’s test to adjust for multiple comparisons. Compared with healthy control serum there was

a significant increase in permeability induced by the patient serum from Ret1CM cases (P 5 .0123), but not with any of the other patient groups (n 5 3 biological replicates

for all conditions): mild febrile illness (MF; P 5 .423), uncomplicated malaria (UM; P 5 .580), non-CM comatose illness (non-CM; P . .99), and Ret2CM (P . .99). (C)

Histone-induced disruption is abrogated by ahscFv (200 mg/ml, P 5 .44 when compared with media-only condition). (D) HBEC were grown on gold-electrode–coated plates

in an impedance system (xCELLigence) that enables real-time noninvasive measurement of TEER. Confluent cells were treated with purified P falciparum histones with or

without heparin (200 mg/ml) or histones preincubated with magnetic beads coated with ahscFv (200 mg/ml), with beads removed by magnet prior to incubation. (E) The effect

of histone concentration on barrier disruption was measured as downward slope, reflecting changes in cell impedance. Compared with the media-only control there was no

significant difference at 25 mg/ml histone (P 5 .35); however, significant disruption was observed at histone concentrations of 50 mg/ml (P 5 .011) and 100 mg/ml

(P 5 .0009) (Kruskal-Wallis test with Dunn’s test). (F) These differences were abrogated by prior treatment with heparin (P 5 .23). (G) HBMECs were treated for 1 hour with

serum from patients with or without ahscFv or nonanticoagulant heparin (200 mg/ml). Cell toxicity was determined by propidium iodide staining using flow cytometry. Data are

expressed as medians and IQR relative to cells treated with media alone (set to 0%) and compared using the Kruskal-Wallis with Dunn’s test to adjust for multiple comparisons.

Compared with serum from the healthy control (HC; n 5 8), serum from Ret1CM cases (n 5 13) induced significant toxicity (P 5 .0012), whereas serum from other patient

groups did not: UM (n 5 5; P 5 .50), MF (n 5 5; P 5 .23), non-CM (n 5 5; P 5 .99), Ret2CM; (n 5 6; P 5 .69). (H) Among Ret1CM cases, serum from cases with histones

.100 mg/ml (n 5 8) caused higher toxicity than those with histone ,25 mg/ml (n 5 5, P 5 .0016,); Mann-Whitney U test. (D) This was abrogated by treatment with ahscFv

(n 5 3, P 5 .205) or heparin (n 5 5, P 5 .115).
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IE would be predicted to concentrate and be particularly detrimental
in the brain.

Our study has several limitations. First, it is in human patients.
Although generally a strength, this leads to marked heterogeneity,
including in variables that might affect histone levels, such as length
of illness and timing of antimalarial drug administration. Further, we
collected blood samples from each patient at only 1 time point,
representing a snapshot in a dynamic disease process. This precluded
examination of the temporal association between histone levels and
other variables. Second, although the association between histone
binding and sequestration and the finding that ;50% of histones in
serum were of parasite origin are both suggestive of a parasite origin
for luminal histones, we did not prove this. Nonetheless, concentration
of host histones at sites of IE sequestration (eg, through NETs39,40)
would also be predicted to have similar effects and to respond to
similar treatments.

Further work is warranted to explore the biology and timing of
plasmodial histone release and to explore the therapeutic poten-
tial of antihistone reagents. Modified nonanticoagulant heparins
are a rational first choice given their use in critically ill patients with a
variety of inflammatory diseases61 and sickle cell crisis.62 Heparins
were historically used for treatment of severe and CM63 with some
evidence of efficacy,64 but their use was discontinued because of
concerns of inducing bleeding.65 There has been renewed interest
in the use of heparin following development of analogs with reduced
anticoagulant activity.61,66 These modified heparins can disrupt
IE sequestration67,68 and rosetting67,69-71 and block merozoite
invasion.66,72,73 A modified nonanticoagulant heparin (Sevuparin)
was shown to safely reduce parasite invasion and release mature
stage parasites.74 Larger studies are planned to assess efficacy at
reducing parasite biomass and sequestration. Further investigation
is required to determine whether a different dosing regimen is
needed to reverse the effects of histones rather than to decrease
merozoite invasion and sequestration. However, the possibility that
modified heparins could be synergistic in malaria both by reduc-
ing the density of circulating and sequestered parasites and by
neutralizing the effect of histones, make the potential benefits more
compelling.
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