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1 

Abstract: 1 

Social distancing measures have been implemented in the United States (US) since March 2 

2020, to mitigate the spread of SARS-CoV-2, the causative agent of COVID-19. However, by 3 

mid-May most states began relaxing these measures to support the resumption of 4 

economic activity, even as disease incidence continued to increase in many states. To 5 

evaluate the impact of relaxing social distancing restrictions on COVID-19 dynamics and 6 

control in the US, we developed a transmission dynamic model and calibrated it to US state-7 

level COVID-19 cases and deaths from March to June 20th, 2020, using Bayesian methods. 8 

We used this model to evaluate the impact of reopening, social distancing, testing, contact 9 

tracing, and case isolation on the COVID-19 epidemic in each state. We found that using 10 

stay-at-home orders, most states were able to curtail their COVID-19 epidemic curve by 11 

reducing and achieving an effective reproductive number below 1. But by June 20th, 2020, 12 

only 19 states and the District of Columbia were on track to curtail their epidemic curve 13 

with a 75% confidence, at current levels of reopening. Of the remaining 31 states, 24 may 14 

have to double their current testing and/or contact tracing rate to curtail their epidemic 15 

curve, and seven need to further restrict social contact by 25% in addition to doubling their 16 

testing and contact tracing rates.  When social distancing restrictions are being eased, 17 

greater state-level testing and contact tracing capacity remains paramount for mitigating 18 

the risk of large-scale increases in cases and deaths. 19 

20 

21 

22 

23 
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The novel coronavirus pandemic (COVID-19) emerged in Wuhan, China in December 2019 1 

and has now reached pandemic status, with spread to more than 210 countries and 2 

territories, including the United States (US) 1. The US reported its first imported case of 3 

COVID-19 on January 20, 2020, arriving via an international flight from China 2. Since then, 4 

the disease has spread rapidly within the US, with every state reporting confirmed cases 5 

within three weeks of the first reported community transmission. As of June 15th, the US 6 

has exceeded 2.1 million cases and 115,000 deaths, heterogeneously distributed across all 7 

states 1. So far, states such as New York and New Jersey have borne the highest burden with 8 

more than 379,000 cases and 30,000 deaths and 166,000 cases and 12,000 deaths, 9 

respectively, while Montana and Alaska have each reported less than 700 cases and 20 10 

deaths each 1. 11 

COVID-19 is caused by a newly described and highly transmissible SARS-like coronavirus 12 

(SARS-CoV-2). Severe clinical outcomes have been observed with approximately 20% of 13 

symptomatic cases 3,4. There is no vaccine and no cure or approved pharmaceutical 14 

intervention for this disease, making the fight against the pandemic reliant on non-15 

pharmaceutical interventions (NPIs). These NPIs include: case-driven measures such as 16 

testing, contact tracing, and isolation 5; personal preventive measures such as hand 17 

hygiene, cough etiquette, face mask use, eye protection, physical distancing, and surface 18 

cleaning, which aim to reduce the risk of transmission during contact with potentially-19 

infectious individuals 6; and social distancing measures to reduce interpersonal contact in 20 

the population. In the US, social distancing measures have included policies and guidelines 21 

to close schools and workplaces, cancel and restrict mass gatherings and group events, 22 
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restrict travel, maintain physical separation from others (e.g. keeping six feet distance), and 1 

stay-at-home orders 7. 2 

NPIs and other responses to COVID-19, especially stay-at-home orders, have varied widely 3 

across states, leading to spatial and temporal variation in the timing and implementation of 4 

mitigation strategies. This variation in policies and response efforts may have contributed 5 

to the observed heterogeneity in COVID-19 morbidity and mortality across states 8. Recent 6 

studies suggest that statewide social distancing measures have likely contributed to 7 

reducing the spread COVID-19 epidemic in the US 9,10. Understanding the extent to which 8 

NPIs, such as social distance, testing, contact tracing, and self-quarantine, influence COVID-9 

19 transmission in a local context is pivotal for predicting the future course of the epidemic 10 

on a state-by-state basis. This in turn will inform how these NPIs should be optimized to 11 

mitigate the spread and burden of COVID-19 while awaiting development of 12 

pharmaceutical interventions (e.g. therapeutics and vaccines). 13 

After several weeks of statewide stay-at-home orders, most US states have begun to ease 14 

their social distancing requirements 11, while attempting to increase their testing and 15 

contact tracing capacities 12. Mathematical modeling is a unique tool to help answer these 16 

important and timely questions. Models can contribute valuable insight for public health 17 

decision-makers by providing an evaluation of the effectiveness of ongoing control 18 

strategies along with predictions of the potential impact of various policy scenarios 13. 19 

To address these needs, we developed and validated a data-driven transmission dynamic 20 

model to evaluate the impact of social distancing, state-reopening, testing, and contact 21 

tracing on the state-level dynamics of COVID-19 infections and mortality in the US. We 22 
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evaluated the transmissibility of COVID-19 in each state from March, 2020 to early June, 1 

2020, to estimate the state-level impact of shelter-in-place and reopening on COVID-19 2 

transmission.  Finally, we evaluated the degree to which increasing testing efforts (rate of 3 

identification of infected cases) and/or contact tracing could curtail the spread of the 4 

diseases and enable greater relaxation of social distancing restrictions while preventing a 5 

resurgence of infections and deaths. 6 

Results 7 

Model performance and validation 8 

We fit our model to state-level daily cases and deaths data using a Bayesian inference 9 

approach (see Online Methods). Model performance assessment for several representative 10 

states are shown in Figure 1, with full results in Figures S3 and S4. With respect to 11 

validation, the posterior 95% credible interval of our model projections, estimated using 12 

data through April 30th, 2020, covered 78% of the data points from May 1st through June 13 

20th, 2020. Model performance for fitting all data through June 20th is shown in Figures S5-14 

S7. 15 
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 1 

Figure 1. SEIR model structure, parameter, data sources, and fitting/validation methods. We 2 
fitted the model to daily reported cases and confirmed deaths from March 19th to April 30th 3 
and validated its projections against data from May 1st to June 20th. On the model projections, 4 
the black solid line is the median, the pink band is the 95% credible interval (CrI) and the 5 
orange is the inter-quartile range (IQR). We show model fitting and validation for four states: 6 
New York (NY), Ohio (OH), Texas (TX), and Washington (WA).  7 

 8 

Estimations of effective reproduction number 9 

Using the posterior distribution of our model parameters we estimated the effective 10 

reproduction number 𝑅𝑒𝑓𝑓 from March 19th to June 20th, 2020 and identified the minimum 11 

level of transmission achieved in each state (Figure 2A). We found that for all, except two 12 

states (Arkansas and Utah), the minimum 𝑅𝑒𝑓𝑓 value was less than 1 and these values were 13 

mainly achieved during the state shelter-in-place (Figure 2A). On June 20th, 2020, 27 states 14 

had at least a 0.5 probability that 𝑅𝑒𝑓𝑓>1. Thus, the model predicts that as states are 15 

reopening, a majority of states are at risk of continued increases in the scale of the 16 

outbreak and require additional mitigation to contain the spread of the disease. 17 
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 1 

Figure 2. Estimated effective reproduction number 𝑅𝑒𝑓𝑓 and the level of reopening/rebound in 2 

transmission as of June 20th, 2020 for all states. (A) shows estimated 𝑅𝑒𝑓𝑓 (median, IQR, and 3 

95% CrI) across States. The figure shows that “now” (value on June 20th, 2020) and the 4 
“minimum” (between March 19th, 2020 and June 20th, 2020) in lighter shades of each color.  It 5 
also includes the date of the minimum 𝑅𝑒𝑓𝑓.  (B) shows the level of reopening/rebound in 6 

disease transmission in each state relative to its minimum value during state shelter-in-place  7 
(median, IQR, and 95% CrI). 8 

 9 

We conducted an analysis of variance to evaluate the contribution of each parameter to the 10 

variation in 𝑅𝑒𝑓𝑓  value (Table S1). Across states, we found that the largest drivers of 11 

variation in 𝑅𝑒𝑓𝑓 are the power parameter for social distancing, 𝜂, the maximum relative 12 

increase in contact after shelter-in-place orders, rmax, and the fraction of contact traced, fC, 13 

which together contribute over 60% of variance (Figure S8). This observation is consistent 14 

with mobility data alone being insufficient to account for the combined effect of multiple 15 

control measures, and suggest that the degree of adoption of non-mobility-related 16 
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measures, such as enhanced hygiene practices and contact tracing, play a large role in the 1 

extent to which a state may reduce disease transmission.  2 

For each state, we also estimated the current level of reopening/rebound 𝛥 in disease 3 

transmission relative to its lowest transmission rate observed during shelter-in-place 4 

(Figure 2B). We found that only nine states had a 50% or more rebound in COVID-19 5 

transmission by June 20th, 2020 while eight states had a 25% or less rebound in 6 

transmission (Figure 2B).  7 

Impact of testing and contact tracing on easing of social distancing 8 

Bringing and keeping the effective reproduction number, 𝑅𝑒𝑓𝑓, below 1 is necessary and 9 

sufficient to curtail the spread of an outbreak. We evaluated the probability of keeping 10 

𝑅𝑒𝑓𝑓<1 for different levels of testing and contact tracing under the June 20th, 2020 level of 11 

state reopening. We found that for 12 states and the District of Columbia have at least 12 

0.975 probability of keeping 𝑅𝑒𝑓𝑓<1, and 22 states have less than 0.025 probability of 13 

bringing and keeping 𝑅𝑒𝑓𝑓<1, under their current level of testing and contact tracing 14 

(Figure S9). We found that for most states bringing and keeping 𝑅𝑒𝑓𝑓<1 may not be 15 

possible without increase contact tracing efforts as increasing testing and isolation alone 16 

would be sufficient or require extremely high coverage to curtail the epidemic curve with a 17 

0.975 probability (Figure S9).  18 

To evaluate the impact of scaling up testing and contact tracing on the epidemic dynamics 19 

in each state, we assumed a linear “ramp-up” of either testing and/or contact tracing from 20 

July 1th – 15th, 2020, after which both parameters remain constant. We then predicted the 21 



 
 

8 
 

daily number of cases and deaths (Figures 3 and S10). We found that under current levels 1 

of reopening and control, at least 26 states would see a continuous increase in cases and 2 

deaths (Figure S10).  Even with increased testing and contact tracing, some of these states 3 

will still experience a short-term increase in cases and deaths (Figures 3 and S10). For 4 

example, Ohio, Texas, and Washington may experience a substantial short-term increase of 5 

cases and deaths even if their current testing and contact tracing rate were doubled within 6 

the next two weeks (Figure 3B-D). Moreover, reported cases may slightly increase during 7 

the “ramp-up” period (Figure 3). We also found that in most states additional relaxation of 8 

restrictions without simultaneously increasing contact tracing may exacerbate disease 9 

dynamics and result in large-scale outbreaks (Figure S10). 10 

 11 

 12 
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 1 

Figure 3. Predicted time-course  (median, IQR, and 95% CrI) of daily reported cases and deaths 2 
under different testing and contact tracing rates (1X and 2X) in New York (A), Ohio (B), Texas (C), 3 
and Washington State (D). 4 

We next evaluated the maximal degree of rebound in transmission (i.e., level of reopening) 5 

permitted while keeping 𝑅𝑒𝑓𝑓<1 under different testing and contact tracing scenarios 6 

(Figure 4). We found that under the current level of testing and contact tracing rate, 36 7 

states cannot keep their 𝑅𝑒𝑓𝑓<1 even with only 25% reopening/rebound in transmission 8 

(Figure 4A). By doubling the current testing rate, four states (Connecticut, North Dakota, 9 

Nebraska, Rhode Island) could keep their 𝑅𝑒𝑓𝑓<1 even with a 75% level of reopening 10 

(Figure 4B). By doubling contact tracing, five states (Connecticut, Delaware, Maryland, 11 

Pennsylvania, Rhode Island) could remove all mobility restrictions while keeping 𝑅𝑒𝑓𝑓<1 12 

(Figure 4C). By doubling both testing rate and contact tracing, 12 states could remove all 13 

mobility restrictions while keeping 𝑅𝑒𝑓𝑓<1 (Figure 4D).  14 
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 1 

Figure 4. Reopening/rebound in transmission permitted (0 = minimum shelter-in-place value, 2 
1 = return to no restrictions) to keep 𝑅𝑒𝑓𝑓 < 1  if (A) testing and contact rates are unchanged, 3 

(B) testing rate is doubled, (C) contact tracing is doubled, or (D) both testing and contact 4 
tracing are doubled. 𝛥(𝑡)  the level of reopening/rebound in transmission on June 20th, 2020 is 5 
shown by the circle. All boxplots show median, IQR, and 95% CrI. 6 

 7 

We categorized states by the additional amount of mitigation efforts needed to keep 𝑅𝑒𝑓𝑓 <8 

1 with at least 75% confidence (Figures 5 and S10). We found that under current control 9 

efforts, three states (Connecticut, North Dakota, Rhode Island) could continue to curtail 10 

their epidemic curve even with an additional 25% reopening (“None” category), and that 11 

an additional 16 states and the District of Columbia could curtail their epidemic curve 12 

without additional reopening (“Low” category). 13 states could curtail their epidemic curve 13 

by doubling their current testing or contact tracing rate (“Moderate” category), while for 11 14 

states by doubling both testing and contact tracing are need (“High” category). The 15 
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remaining seven states (Alaska, Hawaii, Georgia, Florida, Oklahoma, Oregon, Montana) 1 

require not only doubling both testing and contact tracing, but also additional social 2 

distancing restrictions, in order to curtail their epidemic curve (“Very High” Category).   3 

 4 

Figure 5. State-specific level of mitigation needed as a June 20, 2020 to curtail the spread of 5 
COVID-19 (keeping 𝑅𝑒𝑓𝑓 < 1 with at least 75% confidence, equivalent to the upper bound of 6 

the Interquartile range (IQR)).  7 

 8 

Discussion 9 

There is a delicate and continuous balance to strike between the use of social distancing 10 

measures to mitigate the spread of an emerging and deadly disease such as COVID-19 and 11 

the need for re/opening various sectors of activities for the social, economic, mental, and 12 

physical well-being of a community. To address this issue, it is imperative to design 13 

measurable, data-driven, and flexible milestones for identifying when to make specific 14 

transitions with regard to easing or retightening specific social distancing measures. We 15 

developed a data-driven SARS-CoV-2 transmission dynamic model not only to make short-16 

term predictions on COVID-19 incidence and mortality in the US, but more importantly to 17 
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evaluate the impact that relaxing social distancing measures and increasing testing and 1 

contact tracing would have on the epidemic in each state.   2 

We showed that in most states, control strategies implemented during their “shelter-in-3 

place” period were sufficient to contain the outbreak, defined as reducing and ultimately 4 

maintaining the effective reproductive number below 1 (𝑅𝑒𝑓𝑓<1). However, for the 5 

majority of states, our modelling suggests that “reopening” has proceeded too rapidly 6 

and/or without adequate testing and contact tracing to prevent a resurgence of the 7 

epidemic.  Even in states with currently decreasing incidence and mortality, such as New 8 

York and New Jersey, additional relaxation of restrictions is likely to “bend the epidemic 9 

curve upwards.” However, our model predicts that a combination of increased testing, 10 

increased contact tracing, and/or scaling back reopening will be sufficient for curtailing the 11 

spread of COVID-19. Specifically, doubling of current testing and contact tracing rates 12 

would enable the vast majority of states to either maintain or increase the easing of social 13 

distancing restrictions in a “safe” manner. Increasing testing and contact tracing rates 14 

entails both increasing the number of tests performed per day as well as requiring early 15 

identification and isolation of COVID-19. This can be accomplished through active case 16 

detection via efficient contact tracing strategies. However, it should also be noted that 17 

increased testing and contact tracing will lead to a short-term increase in reported cases 18 

because a larger fraction of the infected population is being observed, and that several 19 

weeks may pass before these rates begin to show a decline.  It is therefore imperative that 20 

policymakers and the public recognize that such a surge is actually a sign that testing and 21 

tracing efforts are succeeding, and to have the patience to wait several weeks before these 22 

successes are reflected as declining rates of reported cases. 23 
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Like all modeling studies, our study has several limitations due to modelling assumptions 1 

and the quality of available data. The initiation of social distancing measures, such as stay-2 

at-home orders in the US, for mitigating the spread of COVID-19 has occurred concurrently 3 

with increased promotion and application of other NPIs such as hygiene practices 4 

(e.g. hand hygiene, surface cleaning, cough etiquette, and wearing of face mask). These 5 

hygiene practices coupled with the avoidance of physical contact whenever possible 6 

(keeping six feet apart) could impact the spread of COVID-19 by reducing both the risk of 7 

exposure and the risk of transmission of SARS-CoV-2 from infected patients 14,15. Though 8 

our model explicitly accounts for the differential contribution of social distancing (mobility 9 

reduction) versus hygiene practices and physical distancing to reducing COVID-19 10 

transmission, we assume that the impact of hygiene practices and physical distancing was a 11 

function of social distancing (mobility reduction). While cell phone mobility data may 12 

continue to accurately reflect the contact rates, the impact of enhanced hygiene practices is 13 

more difficult to measure independently. As several states are easing their social distancing 14 

requirements, especially their stay-at-home orders, compliance with hygiene practices 15 

would become even more important for reducing individuals’ risk of getting or 16 

transmitting the pathogen. However, keeping a high population-level adherence to these 17 

measures is required to mitigate the spread of the COVID-19 epidemic in a city, state, or 18 

nation 16. As states are reopening various aspects of their economy, data on compliance 19 

with enhance hygiene practices and physical distancing are needed to improve the 20 

estimation of these measures’ population-level impact on reducing disease transmission. 21 

Additionally, consistent with previous COVID-19 modeling studies 17–19, our model uses a 22 

simple functional form to model increases in testing rate from early March to June,  2020. 23 
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This testing rate was estimated through model fitting to daily reported case and mortality 1 

data. Particularly in states that have seen a substantial increase in testing capability and 2 

efforts during the month of May, our simple time varying assumption may underestimate 3 

the current level of testing and contact tracing. However, it should be noted that increased 4 

testing capacity does not necessarily lead to increased rate of testing if individuals are 5 

unaware, unwilling, or unable to be tested 20. Having contact tracing and date of symptoms 6 

onset data would enable us to compute a better estimate the current testing and contact 7 

tracing rate in each state. Our also model assumes that all individuals who test positive to 8 

COVID-19 are effectively isolated for the rest for their infectious period and no longer 9 

contribute to disease transmission. Though voluntary compliance to COVID-19 self-10 

quarantine recommendations may be high across the US, it is likely not 100%. Therefore, 11 

the assumption of effective isolation of all identified cases may cause our model to slightly 12 

overestimate the impact of increase testing rate on disease dynamics. However, we 13 

anticipate that this assumption would only have a marginal impact on the qualitative 14 

nature of our results.  Finally, our model does not explicitly account for age-stratified risk 15 

of disease transmission and mortality. This age-stratification is important for designing and 16 

evaluating social distancing and testing strategies that are targeted towards the elderly 17 

population which are at higher risk of COVID-19-induced hospitalization and death 21. As 18 

reopening the economy becomes an imperative for states across the US, age- or risk-19 

targeted interventions may be a valuable tool to mitigate the burden of the pandemic. 20 

Future modeling studies could investigate the effectiveness of age- or risk-targeted non-21 

pharmaceutical and potential pharmaceutical (vaccine or therapeutic) interventions for 22 

controlling the spread and burden of COVID-19.  23 
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In sum, we use a data-driven mathematical modeling approach to study the impacts of 1 

social distancing, testing, and contact tracing on the transmission dynamics of SARS-CoV-2.  2 

Our findings emphasize the importance for public health authorities not only to monitor 3 

the case and mortality dynamics of SARS-CoV-2 in their state, but also to understand the 4 

impact of their existing social distancing measures on SARS-CoV-2 transmission and 5 

evaluate the effectiveness of their testing and contact tracing programs for promptly 6 

identifying and isolating new cases of COVID-19.  As reported case rates are increasing 7 

widely across US states because social distancing restrictions have been eased to allow 8 

more economic activity to resume, we find that most states need to either significantly 9 

scale back reopening or enhance their capacity and scale of testing, case isolation, and 10 

contact tracing programs in order to prevent large-scale increases in COVID-19 cases and 11 

deaths. 12 

Online Methods 13 

Our overall approach is as follows: 1) develop a mathematical model (an SEIR-type 14 

compartmental model) that incorporates social distancing data, case identification via 15 

testing, isolation of detected cases, and contact tracing; 2) assess the model’s predictive 16 

performance by training (calibrating) it to reported cases and mortality data from March 17 

19th to April 30th, 2020 and validating its predictions against data from May 1st to June 20th, 18 

2020; and 3) use the model, trained on data through June 20th, 2020, to predict future 19 

incidence and mortality. The final stage of our approach predicts future events under a set 20 

of scenarios that include increased case detection though expanded testing rate, contact 21 

tracing, and relaxation or increase of measures to promote social distancing. All model 22 
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fitting is performed in a Bayesian framework in order to incorporate available prior 1 

information and address multivariate uncertainty in model parameters. 2 

Model formulation 3 

Our model is illustrated in Figure 1, with parameters and prior distributions listed in Table 4 

1. We modified the standard SEIR model to address testing and contact tracing. In our 5 

model formulation I class also includes infectious pre-symptomatic individuals. With 6 

respect to testing, separate compartments were added for untested, “freely roaming” 7 

infected individuals (𝐼𝑈), tested/isolated cases 𝐼𝑇 , fatalities 𝐹𝑇 . In balancing considerations 8 

of model fidelity and parameter identifiability, we made the reasonably conservative 9 

assumptions that all tested cases are effectively isolated (through self-quarantine or 10 

hospitalization) and thus unavailable for transmission, and that all COVID-related deaths 11 

are identified/tested. 12 

With respect to contact tracing, the additional compartment 𝑆𝐶  represents unexposed 13 

contacts, who undergo a period of isolation during which they are not susceptible before 14 

returning to 𝑆; while 𝐸𝐶  and 𝐼𝐶  represent contacts who were exposed. Again, the reasonably 15 

conservative assumption was made that all exposed contacts undergo testing, with an 16 

accelerated testing rate compared to the general population. We assume a closed 17 

population of constant size 𝑁 for each state. 18 

The ordinary differential equations governing our model are as follows: 19 

𝑑𝑆

𝑑𝑡
= −𝑆 ⋅ 𝑐 ⋅ [𝛽 + (1 − 𝛽) ⋅ 𝑓𝐶] ⋅ 𝐼𝑈/𝑁 + 𝑆𝐶 ⋅ 𝛼 20 

𝑑𝑆𝐶

𝑑𝑡
= −𝑆𝐶 ⋅ 𝛼 + 𝑆 ⋅ 𝑐 ⋅ (1 − 𝛽) ⋅ 𝑓𝐶 ⋅ 𝐼𝑈/𝑁 21 
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𝑑𝐸

𝑑𝑡
= −𝐸 ⋅ 𝜅 + 𝑆 ⋅ 𝑐 ⋅ 𝛽 ⋅ (1 − 𝑓𝐶) ⋅ 𝐼𝑈/𝑁 1 

𝑑𝐸𝐶

𝑑𝑡
= −𝐸𝐶 ⋅ 𝜅 + 𝑆 ⋅ 𝑐 ⋅ 𝛽 ⋅ 𝑓𝐶 ⋅ 𝐼𝑈/𝑁 2 

𝑑𝐼𝑈

𝑑𝑡
= −𝐼𝑈 ⋅ (𝜆 + 𝜌) + 𝐸 ⋅ 𝜅 3 

𝑑𝐼𝐶

𝑑𝑡
= −𝐼𝐶 ⋅ (𝜆𝐶 + 𝜌𝐶) + 𝐸𝐶 ⋅ 𝜅 4 

𝑑𝑅𝑈

𝑑𝑡
= 𝐼𝑈 ⋅ 𝜌 + 𝐼𝐶 ⋅ 𝜌𝐶  5 

𝑑𝐼𝑇

𝑑𝑡
= −𝐼𝑇 ⋅ (𝜌 + 𝛿) + 𝐼𝑈 ⋅ 𝜆 + 𝐼𝐶 ⋅ 𝜆𝐶 6 

𝑑𝑅𝑇

𝑑𝑡
= 𝐼𝑇 ⋅ 𝜌 7 

𝑑𝐹𝑇

𝑑𝑡
= 𝐼𝑇 ⋅ 𝛿 8 

The testing rates 𝜆 and 𝜆𝐶 , the fatality rate 𝛿, and the recovery rate of traced contacts 𝜌𝐶  are 9 

each composites of several underlying parameters. The testing rate defined as 10 

𝜆(𝑡) = 𝐹𝑡𝑒𝑠𝑡,0 ⋅ [1 −
1

1 + 𝑒(𝑡−𝑇𝑇)/𝜏𝑇
] ⋅ 𝑆𝑒𝑛𝑠𝑡𝑒𝑠𝑡 ⋅ 𝑘𝑡𝑒𝑠𝑡, 11 

where 𝐹𝑡𝑒𝑠𝑡,0  is the current testing coverage (fraction of infected individuals tested), 12 

𝑆𝑒𝑛𝑠𝑡𝑒𝑠𝑡 is the test sensitivity (true positive rate), and 𝑘𝑡𝑒𝑠𝑡 is rate of testing for those 13 

tested, with a typical time-to-test equal to 1/𝑘𝑡𝑒𝑠𝑡 . The time-dependence term models the 14 

“ramp-up” of testing using a logistic function with a growth rate of 1/𝜏𝑇 days−1, where 𝑇𝑇 is 15 

the time where 50% of the current testing rate is achieved. Similarly, for testing of traced 16 

contacts, the same definition is used with the assumption that all identified contacts are 17 

tested, 𝐹𝑡𝑒𝑠𝑡,0 = 1 and at a faster assumed testing rate 𝑘𝐶,𝑡𝑒𝑠𝑡: 18 

𝜆𝐶(𝑡) = [1 −
1

1 + 𝑒(𝑡−𝑇𝑇)/𝜏𝑇
] ⋅ 𝑆𝑒𝑛𝑠𝑡𝑒𝑠𝑡 ⋅ 𝑘𝐶,𝑡𝑒𝑠𝑡, 19 
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Because all contacts are assumed to be tested, the rate 𝜌𝐶  at which they enter the 1 

“recovered” compartment 𝑅𝑈 is simply the rate of false negative test results: 2 

𝜌𝐶(𝑡) = [1 −
1

1 + 𝑒(𝑡−𝑇𝑇)/𝜏𝑇
] ⋅ (1 − 𝑆𝑒𝑛𝑠𝑡𝑒𝑠𝑡) ⋅ 𝑘𝑡𝑒𝑠𝑡 3 

The fatality rate is adjusted to maintain consistency with the assumption that all COVID-19 4 

deaths are identified, assuming a constant infected fatality rate (𝐼𝐹𝑅). Specifically, we first 5 

calculated the fraction of infected that are tested and positive 6 

𝑓𝑝𝑜𝑠(𝑡) = 𝑓𝐶

𝜆𝐶(𝑡)

𝜆𝐶(𝑡) + 𝜌𝐶(𝑡)
+ (1 − 𝑓𝐶)

𝜆(𝑡)

𝜆(𝑡) + 𝜌
. 7 

Where 𝑓𝐶  is the fraction of contact identified through contact tracing.  8 

Then the case fatality rate 𝐶𝐹𝑅(𝑡) = 𝐼𝐹𝑅/𝑓𝑝𝑜𝑠(𝑡). Because the 𝐶𝐹𝑅 = 𝛿/(𝛿 + 𝜌), this 9 

implies 10 

𝛿(𝑡) = 𝜌
𝐶𝐹𝑅(𝑡)

1 − 𝐶𝐹𝑅(𝑡)
= 𝜌

𝐼𝐹𝑅

𝑓𝑝𝑜𝑠(𝑡) − 𝐼𝐹𝑅
. 11 

The model is “seeded” 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 cases on February 29, 2020. Because in the early stages of 12 

the outbreak, there may be multiple “imported” cases, we only fit to data from March 19, 13 

2020 onwards, one week after the U.S. travel ban was put in place 22. 14 

Our model is fit to daily case 𝑦𝑐 and death 𝑦𝑑  data (cumulative data are not used for fitting 15 

because of autocorrelation). To adequately fit the case and mortality data, we accounted for 16 

two lag times. First, a lag is assumed between leaving the 𝐼𝑈 compartment and public 17 

reporting of a positive test result, accounting for the time it takes to seek a test, obtaining 18 

testing, and have the result reported. No lag is assumed for tests from contact tracing. 19 

Second, a lag time is assumed between entering the fatally ill compartment 𝐹𝑇 and 20 
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publically reported deaths. Additionally, we use a negative binomial likelihood in order to 1 

account for the substantial day-to-day variation in reporting results. The corresponding 2 

equations are as follows: 3 

𝑦𝑜𝑏𝑠,[𝑐,𝑑](𝑡) ∼ 𝑁𝑒𝑔𝐵𝑖𝑛[𝛼[𝑐,𝑑], 𝑝[𝑐,𝑑](𝑡)] 4 

𝑝[𝑐,𝑑](𝑡) =
𝑦𝑝𝑟𝑒𝑑,[𝑐,𝑑](𝑡)

𝛼[𝑐,𝑑] + 𝑦𝑝𝑟𝑒𝑑,[𝑐,𝑑](𝑡)
 5 

𝑦𝑝𝑟𝑒𝑑,𝑐(𝑡) = 𝐼𝑈(𝑡 − 𝜏𝑐𝑎𝑠𝑒) ⋅ 𝜆(𝑡) + 𝐼𝐶(𝑡) ⋅ 𝜆𝐶(𝑡) 6 

𝑦𝑝𝑟𝑒𝑑,𝑑(𝑡) = 𝐼𝑇(𝑡 − 𝜏𝑑𝑒𝑎𝑡ℎ) ⋅ 𝛿(𝑡) 7 

In this parameterization, as the shape parameter 𝛼 → ∞, the likelihood becomes a Poisson 8 

distribution with expected value 𝑦𝑝𝑟𝑒𝑑,[𝑐,𝑑], whereas for small values of 𝛼 there is substatial 9 

inter-individual variability. Case and death data were sourced from The COVID Tracking 10 

Project 23. 11 

Finally, we derived time-dependent the time-dependent and effective reproduction 12 

numbers in this model, given by 13 

𝑅(𝑡) =
𝑐 ⋅ 𝛽 ⋅ (1 − 𝑓𝐶)

𝜆 + 𝜌
 14 

and 15 

𝑅𝑒𝑓𝑓(𝑡) = 𝑅(𝑡) ∙
𝑆(𝑡)

𝑁
. 16 

 17 

Incorporating social distancing, enhanced hygiene practices, and reopening  18 

The impact of social distancing, hygiene practices, and reopening were modeled through a 19 

time-dependence in the contact rate 𝑐 and the transmission probability per infected contact 20 

𝛽: 21 
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𝑐(𝑡) = 𝑐0 ⋅ [𝜃(𝑡) + (1 − 𝜃𝑚𝑖𝑛) ⋅ 𝑟(𝑡)] 1 

𝛽(𝑡) = 𝛽0 ⋅ 𝜃(𝑡)𝜂 2 

The 𝜃(𝑡) function parameterizes social distancing during the progression to shelter-in-3 

place, and is modeled as a Weibull function 4 

𝜃(𝑡) = 𝜃𝑚𝑖𝑛 + (1 − 𝜃𝑚𝑖𝑛)𝑒−(𝑡/𝜏𝜃)𝑛𝜃 , 5 

which starts a unity and decreases to 𝜃𝑚𝑖𝑛, with 𝑇𝜃 being Weibull scale parameter and 𝑛𝜃 6 

the Weibull shape parameter (Figure S1). 7 

The 𝑟(𝑡) function parameterizes relative increase in contacts after shelter-in-place, with 8 

𝑟 = 1 corresponding to a return to baseline 𝑐 = 𝑐0. 9 

𝑟(𝑡) = 𝑟𝑚𝑎𝑥

𝑡 − 𝜏𝜃 − 𝜏𝑠

𝜏𝑟

[𝑢(𝑡 − 𝑡𝑟) − 𝑢(𝑡 − 𝑡𝑟𝑚𝑎𝑥)] + 𝑢(𝑡 − 𝑡𝑟𝑚𝑎𝑥) 10 

𝑢(𝑡) = Heaviside(𝑡) ≈ 1 −
1

1 + 𝑒4𝑡
 11 

𝑡𝑟 = 𝜏𝜃 + 𝜏𝑠 12 

𝑡𝑟𝑚𝑎𝑥 = 𝜏𝜃 + 𝜏𝑠 + 𝜏𝑟 13 

The term 𝑟(𝑡) is 0 before 𝑡𝑟 , linear between 𝑡𝑟 and 𝑡𝑟𝑚𝑎𝑥, and constant at a value of 𝑟𝑚𝑎𝑥 14 

after that, and made continuous by approximating the Heaviside function by a logistic 15 

function. The reopening time is defined as 𝜏𝑠 days after 𝜏𝜃, and the maximum relative 16 

increase in contacts 𝑟𝑚𝑎𝑥 happens 𝜏𝑟 days after that. 17 

We selected the functional form above for 𝑐(𝑡) because it was found to be able to represent 18 

a wide variety of social distancing data, including cell phone mobility data from Unacast 24 19 

and Google 25, as well as restaurant booking data from OpenTable 26 . We used these 20 

different mobility sources to derive state-specific prior distributions because different 21 

social distancing datasets had different values for 𝜃𝑚𝑖𝑛, 𝜏𝜃, 𝑛𝜃, 𝜏𝑆, 𝑟𝑚𝑎𝑥, and 𝜏𝑅 (Figure S2). 22 
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With respect to the reduction in transmission probability 𝛽, we assumed that during the 1 

“shelter-in-place” phase, hygiene-based mitigation paralleled this decline with an 2 

effectiveness power 𝜂, and that this mitigation continued through re-opening. 3 

Finally, we define an overall “reopening” parameter 𝛥 that measures the “rebound” in 4 

disease transmission 𝑐 ⋅ 𝛽 relative to its minimum, defined to be 0 during shelter-in-place 5 

(i.e., 𝑅(𝑡) is at a minimum), and 1 when all restrictions are removed (when 𝑅(𝑡) = 𝑅0), 6 

which can be derived as: 7 

𝛥(𝑡) =
𝑐 ⋅ 𝛽/(𝑐0 ⋅ 𝛽0) − 𝜃𝑚𝑖𝑛

1+𝜂

1 − 𝜃𝑚𝑖𝑛
1+𝜂 . 8 

Scenario evaluation 9 

We used the model to make several inferences about the current and future course of the 10 

pandemic in each state. First, we consider the effective reproduction number. Two time 11 

points of particular interest are the time of minimum 𝑅𝑒𝑓𝑓, reflecting the degree to which 12 

shelter-in-place and other interventions were effective in reducing transmission, and the 13 

final time of the simulation, June 20, 2020, reflecting the extent to which reopening has 14 

increased 𝑅𝑒𝑓𝑓. Additional parameters of interest are the current levels of reopening 𝛥(𝑡), 15 

testing 𝜆, and contact tracing 𝑓𝐶 . 16 

We then conducted scenario-based prospective predictions using our model’s parameters 17 

as estimated through June 20, 2020. We asked the following questions: 18 

(a) Assuming current levels of reopening, what increases in general testing 𝜆 and/or 19 

contact tracing 𝑓𝐶  would be necessary to bring 𝑅𝑒𝑓𝑓 < 1? 20 
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(b) What amount reopening 𝛥 can maintain 𝑅𝑒𝑓𝑓 < 1 under four different scenarios: 1 

current values of testing and contact tracing, doubling testing, double tracing, and 2 

doubling both testing and tracing? 3 

(c) What will the rates of new cases and deaths be under different scenarios? Specifically, 4 

we evaluate the impact of increases in testing and contact tracing under current levels 5 

of reopening, as well as increases or decreases of 25%. 6 

For (a), we evaluated the posterior probability that 𝑅𝑒𝑓𝑓 < 1 under scaling transformations 7 

𝜆 → 𝜆 ⋅ 𝜇𝜆 and 𝑓𝐶 → 𝑓𝐶 ⋅ 𝜇𝐶  with scaling factors 𝜇𝜆 and 𝜇𝐶: 8 

𝑅𝑒𝑓𝑓(𝑡) =
𝑆(𝑡) ⋅ 𝑐 ⋅ 𝛽 ⋅ (1 − 𝜇𝐶 ⋅ 𝑓𝐶)

𝜇𝜆 ⋅ 𝜆 + 𝜌
=

𝑆(𝑡) ⋅ 𝑐0 ⋅ 𝛽0 ⋅ (1 − 𝜇𝐶 ⋅ 𝑓𝐶)

𝜇𝜆 ⋅ 𝜆 + 𝜌
[𝛥 ⋅ (1 − 𝜃𝑚𝑖𝑛

1+𝜂
) + 𝜃𝑚𝑖𝑛

1+𝜂
] 9 

For (b), we fixed the scaling factors at 1 or 2, and solved the above equation for 𝛥𝑐𝑟𝑖𝑡 such 10 

that 𝑅𝑒𝑓𝑓 < 1: 11 

𝛥𝑐𝑟𝑖𝑡(𝜇𝜆, 𝜇𝐶) = [
𝜇𝜆 ⋅ 𝜆 + 𝜌

𝑆(𝑡) ⋅ 𝑐0 ⋅ 𝛽0 ⋅ (1 − 𝜇𝐶 ⋅ 𝑓𝐶)
− 𝜃𝑚𝑖𝑛

1+𝜂
]

1

1 − 𝜃𝑚𝑖𝑛
1+𝜂 12 

Values of 𝛥𝑐𝑟𝑖𝑡 ≥ 𝛥(𝑡) indicate the additional degree of reopening possible while 13 

maintaining 𝑅𝑒𝑓𝑓 < 1, while values of 𝛥𝑐𝑟𝑖𝑡 < 𝛥(𝑡) indicate a reduction of reopening is 14 

needed. 15 

Finally, for (c), we additionally evaluated changes in reopening 𝛥 → 𝛥 + 𝛥𝛥 for 𝛥𝛥 values of 16 

+25% or -25%, for a total of 12 scenarios (4 different levels of testing and tracing, and 3 17 

different levels of reopening). We then ran the SEIR model forward in time until August 31, 18 

2020. For all three intervention parameters 𝜇𝐶 , 𝜇𝛬, and 𝛥𝛥, we assumed a “ramp-up” period 19 

of 2 weeks from July 1-July 14, 2020. To summarize the relative urgency of mitigation in 20 
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each state, we categorized states based on which scenarios resulted in the IQR of 𝑅𝑒𝑓𝑓(𝑡) 1 

being < 1 on July 15, 2020. 2 

Software and code: 3 

Posterior distributions were sampled using Markov chain Monte Carlo simulation 4 

performed using MCSim version 6.1.0 using Metropolis within Gibbs sampling 27. For each 5 

US state, four chains of 200,000 iterations each were run, with the first 20% of runs 6 

discarded, and 500 posterior samples saved for analysis.  For each parameter, comparison 7 

of interchain and intrachain variability was assessed to determine convergence, with the 8 

potential scale reduction factor R ≤ 1.2 considered converged 28. Additional analysis of 9 

model outputs was performed in RStudio version 1.2.1335 29 with R version 3.6.130. The 10 

codes used to generate our results will be available on Github prior to publication at 11 

https://github.com/wachiuphd/COVID-19-Bayesian-SEIR-US. 12 

Data availability statement: 13 

The following publicly available datasets are used: 14 

• Mobility data from Unacast were sourced from https://covid19-scoreboard-15 

api.unacastapis.com/api/search/covidstateaggregates_v3.   16 

• Mobility data from Google were sourced from 17 

https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv. 18 

• Restaurant booking data were sourced from OpenTable 19 

https://www.opentable.com/state-of-industry.  20 

https://github.com/wachiuphd/COVID-19-Bayesian-SEIR-US
https://covid19-scoreboard-api.unacastapis.com/api/search/covidstateaggregates_v3
https://covid19-scoreboard-api.unacastapis.com/api/search/covidstateaggregates_v3
https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv
https://www.opentable.com/state-of-industry
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• Case and death data were sourced from The COVID Tracking Project 1 

(https://covidtracking.com/). 2 

Mobility data are shown in Supplemental Figure S2.  Case and death data are shown in 3 

Figures 1 and 3, and Supplemental Figures S3-S6, S10.  All data used are also available in 4 

the software and code repository. 5 

 6 

Funding: National Science Foundation (NSF RAPID DEB 2028632) and National Institutes 7 

of Health, National Institute of Environmental Health Sciences (P30 ES029067). 8 

Acknowledgements: We thank F.Y. Bois, J.K. Cetina, M. Giannoni, I. Rusyn, and W. Więcek 9 

for useful input and advice on scenario development, model formulation, and MCMC 10 

simulation.  We also thank Unacast for making their mobility data available for researchers, 11 

and The COVID Tracking Project for compiling case and mortality data and providing it to 12 

the public.  Portions of this research were conducted with the advanced computing 13 

resources provided by Texas A&M High Performance Research Computing.     14 

 15 

  16 

https://covidtracking.com/


 
 

25 
 

Table 1. Model inputs, parameters and prior distributions for Bayesian analysis. 1 

Symbol Definition (units) Sampled parameter(s) Prior [Truncation] Notes 
Pop Population size Input (not sampled) Constant 31 
Ninit Initial IU on 2020-02-29 Ninit LogN(1000, 10) [1, 10000] ¶ 
1/ Self-isolation time after 

contact tracing 
Tisolation = 1/ LogN(14, 2) [7, 21] ϯ  

1/ Latent period (d) Tlatent = 1/ N(4,1) [2,7] 32,33 

c0 Baseline contact rate 
(contacts d-1) 

c0 N(13, 5) [7, 20] 34 

 Recovery rate (d-1) Trecover= 1/ LogN(10, 1.5) [5, 30] 33,35 

0 Transmission rate (d-1) R0 = c00/ N(2.9, 0.78) [1.46, 4.5] 36–38 

fC Fraction of contacts 
traced (unitless) 

fC LogN(0.25, 2) [0.15, 1] 39 

TT Date of startup of testing 
(d) 

TT  N(70, 10) [60, 90] ¶ 

 General positive 
diagnosis rate (d-1) 

 = Ftest Senstest ktest  Derived 36,40,41  

Ftest General test coverage 
(unitless) 

Ftest N(0.5, 0.2) [0.2, 0.8] 36,40,41 

Senstest Test sensitivity (unitless) Senstest N(0.7, 0.1) [0.6, 0.95] 42 
ktest General testing rate (d-1) test = 1/ktest N(7, 3) [2, 12] 43,44 

C Contacts positive 
diagnosis rate (d-1) 

C = Senstest ktest,C  Derived  

kC,test Contacts testing rate (d-

1) 
C,test = 1/kC,test N(2, 1) [1, 3] ¶  

C Rate of infected contacts 
testing negative (d-1) 

C = (1 – Senstest) ktest,C Derived  

 Fatal illness rate (d-1) IFR (infected fatality 
rate)* 

LogN(0.01, 2) [0.001, 0.1] 35,45 

min Minimum of (t)  min Validation: Beta(2,2) 
Calibration: State-specific 

¶ 
ƣ 

 Weibull scale parameter  Validation: N(21, 7) [7, 35] 
Calibration: State-specific 

¶ 
ƣ 

n Weibull shape parameter  n Validation: LogN(6, 2) [1,11] 
Calibration: State-specific 

¶  
ƣ 

 Hygiene effectiveness 
relative to social 
distancing (unitless) 

 Beta(2,2) ¶  

s Duration of shelter in 
place (d) 

s Validation: N(30, 30) [0, 90] 
Calibration: State-specific 

46  

r Duration of linear 
increase after shelter-in-
place (d) 

r Validation: N(45, 30) [0, 105] 
Calibration: State-specific 

¶  
ƣ 

rmax Maximum relative 
increase in contacts from 
shelter-in-place 
(unitless) 

rmax Validation: Beta(2,2)  
Calibration: State-specific 

¶  
ƣ 
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case Lag time for observing 
confirmed case 

case LogN(7, 2) [1, 14] ¶  

death Lag time for observing 
confirmed death 

death LogN(7, 2) [1, 14] ¶  

pos Negative Binomial shape 
parameter for cases 
likelihood function 

pos LogU(4, 40) ¶  

death Negative Binomial shape 
parameter for deaths 
likelihood function 

death LogU(8, 40) ¶  

LogN(GM, GSD) = lognormal distribution with geometric mean GM and geometric standard 1 
deviation GSD 2 
N(M,SD) = normal distribution with mean M and standard deviation SD 3 
U(MIN,MAX) = uniform distribution with minimum MIN and maximum MAX 4 
LogU(MIN, MAX) = log-uniform distribution with minimum MIN and maximum MAX 5 
Time (t) is measured from t=1 corresponds to 2020-01-01. 6 
¶ Assumed, non-informative prior. 7 
ϯ Standard contact tracing guidance is to self-isolate for 2 weeks. 8 
Ƣ For calibration to 6/20/20, state-specific priors were derived by fitting to different social 9 
distancing data sets, with each parameter’s mean, standard deviation, and range used to define a 10 
normal distribution prior. 11 
* See Methods for relationship between IFR and . 12 
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