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Introduction
Medical imaging technologies in healthcare have expanded 
remarkably from the discovery of X-Rays 124 years ago to 
the use of CT, MRI, and positron emission tomography 
(PET), among others in modern-day clinical practice1 

(Figure  1). These tools have become an integral part in 
detection and diagnosis for many diseases due to several 
factors, including: the minimally invasive nature of imaging, 
rapid technological developments, lower costs compared 
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Abstract

Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can 
be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational 
hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information 
from imaging and correlating it with outcomes. Radiomics, in its two forms “handcrafted and deep,” is an emerging field 
that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic 
profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process 
in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we 
describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical 
and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection 
and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in 
the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies 
being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applica-
tions of radiomics, as well as covering its limitations and its future direction.
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to alternatives, the high information density of images, and the 
hardware can be used for multiple diseases and sites.2,3

Medical imaging in its infancy generated analogue images, which 
underwent subjective interpretation based on visual inspection 
and verbal communication. By the end of the 20th century, infor-
mation technology has brought radiology to the digital world,4 
although the interpretation of radiographs remained mostly 
qualitative. Humans excel at recognising patterns through visual 
inspection, however, they are often lacking when performing 
complex quantitative assessments.5,6 In the early 1960s, 
researchers started to focus on computerised quantitative anal-
ysis of medical data for aiding clinical diagnosis,7–9 what later 
came to be known as computer-aided diagnosis (CAD) systems. 
However, these systems were using a classical approach using 
statistical analysis and probability theories, and the volume of 
available data was low, so the results were often too inaccurate 
for clinical use. Later in the 1980s, further advances in theoretical 
computer science and digital imaging lead to the development of 
advanced machine learning and pattern recognition algorithms, 
which when integrated with CAD systems were able to generate 
clinically reliable results.10,11

In recent decades, simple quantitative image analysis (QIA) 
has been adopted by clinicians (e.g. RECIST12), and has been 
primarily focused on assisting qualitative observations.13 For 
instance, CAD systems can be found in healthcare worldwide, 
aiding radiologists and clinicians in making diagnostic and 
theragnostic decisions.14 One of the most typical applications 
of CAD systems is in recognising abnormalities during cancer 
screening.15 Notable contributions are in the area of lung and 
breast cancer research. For example, there are many CAD studies 
which focus on detecting and diagnosing lung nodules16,17 (as 
benign or malignant) on CT and chest radiographs. Similarly, 
many such studies have been conducted in breast mammog-
raphy images for highlighting microcalcifications,18 architectural 
distortions, and the prediction of mass type.19,20

It is conceivable that the lack of quantitative information leads 
to increased follow-ups or invasive biopsies that would be 
deemed unnecessary given the unused information in medical 
images.21 Even though there have been various developments 
in QIA, traditionally radiologists are trained to understand the 
behaviour of the underlying disease through visual inspection of 
radiographic images.21 This partially explains why most of the 
developments in imaging technology are in optimising the visual 

representation of the generated images, with vendors competing 
to generate the highest quality images. With the exception of 
CT, with its semi-parametric calibrated Hounsfield Units, and 
some particular MRI sequences, individual voxel values do not 
correlate with the underlying biology without further calibration 
and modelling. Furthermore, qualitative analysis is not so depen-
dent on reproducible voxel values, while machines on the other 
hand only process numerical values and rely on the standard-
isation of image acquisition and reconstruction to yield repro-
ducible results. The lack of standardisation of medical images 
has been a major hurdle in the development of QIA in medical 
imaging.22–25 However, in recent years, quantitative imaging 
is becoming more popular with the advent of, e.g. quantitative 
fludeoxyglucose-PET26,27 or quantitative MRI28,29 for treatment 
response assessment.

The ubiquitous computer, vast amounts of data, and advanced 
algorithms have opened a new era in medical imaging. The 
high information density of images allows for many quanti-
tative metrics since intricate pixel and voxel relationships can 
be captured by complex operations. Radiomics involves the 
process of extraction of quantifiable features from vast amounts 
of data that might correlate with the underlying biology or 
clinical outcomes using advanced machine learning analysis 
techniques.30,31 Radiomics has two main arms, based on how 
imaging information is transformed into mineable data: hand-
crafted radiomics and deep learning. Handcrafted features are 
formulas mostly based on intensity histograms, shape attri-
butes, and texture, that can be used to fingerprint phenotyp-
ical characteristics of the radiograph32 while in deep learning a 
complex network “creates” its own features. Various statistical 
and machine learning models have been widely researched, and 
are envisioned to be complementary to best medical practice by 
aiding in making informed clinical decisions in both oncological 
and non-oncological diseases.33–36

Since the 1990s predictions were being made that genomics, 
spearheaded by the Human Genome Project, would completely 
transform therapeutic medicine, heralding precision medicine.37 
Precision medicine, also termed personalised medicine, origi-
nally referred to the view that incorporating genomic informa-
tion in the clinical workflow will lead to marked improvements in 
the prediction, diagnosis, and treatment of diseases. Recently, the 
scope of precision medicine has expanded to incorporate inputs 
beyond the genome.38 Radiomics and other “-omic” develop-
ments, such as metabolomics and proteomics, are contributing 

Figure 1. Timeline highlighting key developments in medical imaging. CAD, computer-aided diagnosis; GLCM, grey level co-
occurring matrix; PET, positron emission tomography.
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to this a paradigm shift in medicine, where the focus has changed 
from standard clinical protocols based on trial populations to a 
personalised treatment tailored not only to the disease and site 
but also the patient, further enabling precision medicine.

In this review, we provide a broad overview and update on the 
fast-growing field of quantitative imaging research, focussing 
on the two arms “handcrafted radiomics and deep learning” 
describing some of its caveats and giving examples of the budding 
clinical implementation, the stepping stones towards precision 
medicine.

Radiomics: from feature extraction to 
correlation with outcomes
Performing feature extraction of textures in medical imaging is 
nothing new and in fact serious research had begun in the early 
1980s at Kurt Rossmann Laboratories for Radiologic Image 
Research in the Department of Radiology at the University of 
Chicago to develop CAD systems for the detection of lung 
nodules as well as detection of clustered microcalcifications in 
mammograms.39,40 The first CAD patent was filed all the way 
back in 1987 using a method of pixel thresholding and contig-
uous pixel area thresholding.40

The radiomic workflow begins with the medical image, which 
can be represented in two, three, or four dimensions.32,41 Images 
contain quantitative data in the form of signals that are captured 
at different scales and variation across medical machines.42,43 
Normalisation techniques are used to distribute pixel intensi-
ties evenly across a data set evenly and within a standardised 
range.42,43 44. Next, a region of interest (ROI) is defined so that 
only information related to the lesion can be extracted, and the 
useful information that can be extracted are called features. 
There are competing methods to extract features both in two-
dimensional and three-dimensional. One such method is the 
manual segmentation of the lesion or the creation of a bounding 
box, as seen in Figure 2.45,46 This can also be performed using 
automated segmentation algorithms. Methods for automated 

segmentation include deep learning architectures such as U-Net, 
or semi-automatic methods like click-and-grow algorithms.45,46

Once the ROI is defined, the choice of features to be extracted 
depend on the information being sought. Shape features such 
as volume relate only to the definition of the ROI, and if this 
is manually created, suffer from inter- and intraobserver vari-
ability.47 First-order features give insight into the distribution 
of pixel intensities, e.g. histograms of pixel intensities are quan-
tified by a large number of statistical methods, including vari-
ance, skewness, and kurtosis. These features, however, are unable 
to quantify how pixels are positioned in relation to each other. 
Second and higher-order features may capture this relationship, 
with second-order features obtained based on the average rela-
tionship between two pixels/voxels, and higher-order features 
for more than two pixels/voxels. An example of a second-order 
feature extraction method is the grey level co-occurring matrix 
(GLCM). GLCMs are co-occurring pixels in each defined direc-
tion (Figure 3) and are counted and recorded (Figure 4) into a 
matrix. Statistical analysis such as contrast, correlation, and 
homogeneity, as well as tailored formulae can then be applied on 
the GLCM to extract independent features.48 Features extracted 
in this manner are considered “handcrafted” features as they are 
features that are pre-defined by specially designed formulae.

Figure 2. The difference between using (A) a contoured binary mask, and (B) using a bounding box.

Figure 3. Possible angles for the calculation of co-occurrence 
matrices in two and three dimensions. (A) Shows the 4 possi-
ble directions in 2 dimensions while (B) shows the 13 possible 
directions in 3 dimensions.
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After features have been extracted from all the images in a data-
base, a subset of features needs to be selected that go into the final 
model. To make a model generalisable, it is important to avoid 
finding spurious correlations in the data that do not generalise to 
other similar data sets, an occurrence termed overfitting.49–51 If a 
model has learned to recognise noise, outliers, or other kinds of 
variance, it is unlikely to perform well when presented with new 
data. The larger the number of predictors, the larger the chance 
to find spurious correlations, a major problem in the realm of 
machine learning.52 To detect overfitting, ideally, a model’s 
performance is validated in external data sets with similar popu-
lation and outcome distributions, but from different centres—if 
the model performs significantly better on the training set than 
on the validation set, overfitting is likely.53,54 In the absence of 
an external validation data set, data can be split into different 
subsets, and the model trained in one group and validated on 
the other(s) in a process called cross-validation (Figure  5).55 
During this process, the model hyperparameters (settings within 
the model itself, e.g. degree of polynomial fitting) can be further 
tuned to increase performance in the training and validation 
sets.56

A method to overcome overfitting is to reduce the number of 
predictors, in this case, imaging features. Feature selection is the 
process of reducing the number of predictors while retaining 
the core important information that correlates with outcomes 
or the underlying biology.32 Many feature reduction methods 
exist, but none are known to work well on all kinds of data sets, 
and they can be combined in many ways.32 This remains an 
active field of research.57 Similar features can also be grouped 
to achieve dimensionality reduction, and methods such as prin-
cipal component analysis and independent component analysis 
are employed to this end.58

Once features are selected, the task is to correlate these 
features—individually or in groups—to diagnostic and prog-
nostic outcomes or to the underlying biology. There are 
numerous methods to find and test such models, from simple 
linear regression and curve-fitting to advanced machine 
learning methods such as decision trees, support vector 
machines, random forests, boosted trees, or neural networks.59 
Ensembling is the combination of models that get trained on 
random samples of data from the training set called bags and 
then combined as a whole using a voting system. This is the 
basis for algorithms such as Random Forests, AdaBoost, and 
Gradient Boosting.60 An intuitive explanation is that even 
though the individual models can show a large amount of vari-
ance due to being trained on small subsets of the data, their 
averaging or voting smooths out the variance while improving 
the ability to better generalise.60

Once a generalisable model has been trained and externally 
validated, it might be desirable to expand the interoperability 
of the model to all hardware, acquisition, and reconstruction 
parameters found in general clinical practice. Instead of relying 
on the standardisation of images, the features themselves can be 
harmonised to a common frame-of-reference using combined 
batch methods such as ComBat,44,60,61 originally developed for 
similar problems encountered in gene sequencing assays.62

Figure 4. Calculating a GLCM for horizontal co-occurring 
pixel intensities. In total, 3 co-occurring pixel intensities of 3 
and 2 that are next to each other on a horizontal plane can be 
totalled and tracked in the corresponding matrix. GLCM, grey 
level co-occurring matrix.

Figure 5. An example of fivefold cross-validation which can be used to evaluate machine learning models. Cross-validation gives 
the ability to test the result across the entirety of a data set, giving a better estimation of a model’s overall performance.
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Deep learning for fully automated 
workflows
Artificial neural networks (ANNs) are a class of machine learning 
architecture that are loosely based on how biological brains work.63 
With the exception of unsupervised learning (such as autoen-
coders), deep learning architectures usually rely on information 
regarding the outcome in order to craft their features, and unlike 
in handcrafted radiomics, feature extraction and correlation are 
intertwined.64 Also, unlike radiomics, there is generally no need for 
image segmentation, as the whole image can be presented to a deep 
learning model, both during training and in clinical routine.

An ANN is able to use a collection of neurons and weights, one 
for each of the inputs preceding the neuron.65 These weights get 
continuously updated, or corrected, in steps called epochs that work 
together to create a very complex function able to make predic-
tions. The weights are inputs for each neuron and are multiplied 

and averaged, resulting in a transfer function, which is converted to 
an output via a function called an activation function.66 These acti-
vation functions are often a sigmoidal function such as a hyperbolic 
tangent or sigmoid, or a function called a rectified linear unit that 
can be represented as the maximum of the product of the coefficient 
and zero or one. A representation of a single neuron, including the 
activation function, can be seen in Figure  6.67 Multiple neurons 
can then be stacked to create a single layer referred to as a “hidden 
layer” and hidden layers (were inputs and outputs all connect) 
can be stacked to create larger networks, see Figure 7. 65 The term 
deep learning is used to describe a neural network that has many 
layers, which is considered deep. For a binary classifier or regres-
sion, the final layer should contain only a single neuron and use 
a sigmoid activation function to make a prediction with a binary 
outcome (zero or one). If the problem is categorical, the network’s 
final layer should contain the same number of neurons as there are 
categories to be classified and the final activation will be a “softmax” 

Figure 6. The architecture of a single neuron with a transfer function and a sigmoid activation function visualised.

Figure 7. A three layer neural network that is a binary classifier with three inputs. Nodes with Xn refer to inputs while other nodes 
refer to activation functions. The connecting lines between the nodes represent weights.
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function, which is the average of the exponentials of the inputs,68 
yielding the probabilities of each category. Deep learning for image 
vision employs convolutional neural networks (CNNs) which are 
a type of ANN that have an automated feature extractor designed 
specifically for images.69 CNNs employ a filtering technique, which 
convolves the image with a kernel (sliding window), creating a 
new pixel/voxel value (and hence new image) by sliding a matrix 
of numbers over the image, see Figure 8. It is possible to make a 
variety of different filters using these types of convolutions, such 
as blurring, sharpening, edge detection, and gradient detection69,70, 
and CNNs are able to learn filters that are best suited to extracting 
features needed for making predictions.

ANNs do have some drawbacks compared to using handcrafted 
features alongside other machine learning techniques. The main 
drawback is the intrinsic need for much larger datasets to train 
the models, since feature creation is contingent on the training 
data, as opposed to handcrafted radiomics. Another drawback to 
using ANNs is interpretability. ANNs build ultracomplex func-
tions that can be extremely difficult for practitioners to make sense 
of. Although CNNs have performed very well in image recog-
nition, they have been less successful learning texture features, 
since texture information inherently has a higher dimensionality 
compared to other types of data sets, making them more difficult 
for neural networks to master.69,71 According to Basu et al,71 a rede-
sign of neural network architectures is required to extract features 
in a similar manner as GLCM and other features based on spatial 
correlation.

Currently, the main application of deep learning in the radiomics 
workflow still lies in the automated detection and localisation of 
organs and lesions, removing the major burden in data set cura-
tion. While there is no algorithm that can solve every problem, 
deep learning still has its place and is able to work as additional 
methods for delineation and feature extraction that compliments 
handcrafted radiomics. There is active research in combining 
both deep learning features and radiomics features that shows 
improved results.72–74

Potential clinical applications
Radiomics in oncology
Radiomics has been widely studied for application in diagnosis 
and treatment prognosis/selection in oncology, primarily due 
to the existence of large imaging data sets used for staging, often 
containing delineations of tumours and organs at risk necessary for 
radiation treatment planning. These data sets can be used to train 
diagnostic and prognostic models for a variety of cancer types and 
sites. Using clinical reports, pathology/histology, and genetic infor-
mation along with radiomics analysis can give a global outlook on 
the biology of the disease.48 In this section, an overview of notable 
studies published in this area will be discussed.

Lung
Lung cancer is by far the leading cause of cancer-related deaths 
among both males and females worldwide.75 Recent studies have 
shown that radiomics can determine the risk of lung cancer from 
screening scans.76–78 Radiomic features found to have a strong 
association to decode tumour heterogeneity for risk stratifica-
tion,79,80 concluding that patients with heterogeneous tumours 
tend to have a worse prognosis. In addition to that, Yoon et al 
were able to show the association of radiomic analysis with gene 
expression.81 Radiomic features were also found to correlate with 
TNM staging for lung and head-and-neck cancer.31,82 Later studies 
further validated the strong predictive power of radiomics for 
distant metastasis.83–85

Radiomics may also play a role in lung cancer treatment planning 
by evaluating tumour response to a specific treatment. Several 
studies focused on analysing the tumour response to radiation 
therapy.86,87 For instance, Mattonen et al developed a radiomics 
signature for treatment response to stereotactic ablative radia-
tion therapy that was able to predict lung cancer recurrence post-
therapy,86 while Fave et al used multiple time point information 
referred to as delta-radiomic analysis to evaluate the change of 
radiomic features as a predictor for tumour response to radia-
tion therapy.87 The results suggest that δ radiomic features are in 
fact a good indicator of treatment response. Another interesting 
study by Mattonen et al found that radiomic analysis can iden-
tify features associated with local recurrence of lung cancer after 

Figure 8. A filter that is able to filter out vertical lines. The yellow lines represent the kernel or sliding window, while the image on 
the right is the result of performing convolutions across the entirety of the original image.
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radiation therapy,88 while physicians usually have great difficulty 
to distinguish local recurrence from radiation-induced sequelae.

Besides the traditional handcrafted feature extraction approach 
followed in the radiomics pipeline, deep learning radiomics is also 
gaining popularity among researchers. A deep learning-based 
approach followed by Shen et al yielded more accurate malig-
nancy prediction of nodules compared to previous methods.89 
Pham et al used a two-step deep learning approach for evaluating 
lymph node metastases with accurate cancer detection.90 Instead 
of using data from a single time point, deep recurrent convolu-
tional network architectures can be used to analyse data from 
multiple time points to monitor treatment response.91

Brain
Brain tumours are usually graded based on clinical or pathological 
analysis to define their malignancy. Radiomics may be able to non-
invasively perform grade assessment, as reported by Coroller et al 
in meningioma patients, suggesting a strong correlation between 
certain imaging features and histopathological grade.92 Zhang et 
al were able to classify between low-grade gliomas and high-grade 
gliomas with high accuracy.93 Chen et al investigated the predic-
tion of brain metastases in T1 lung adenocarcinoma patients and 
found that the predictive performance for the radiomics model was 
significantly better compared to clinical models and could poten-
tially be used for brain metastases screening.94 Fetit et al performed 
radiomic analysis for the classification of brain tumours in child-
hood suggesting that radiomics can aid in the classification of 
tumour subtype.95 However, the scalability of the techniques used 
in these studies needs to be assessed further by extensions to multi-
centric cohorts using different acquisition protocols and vendors.

Radiation therapy can lead to necrosis, which is difficult to 
distinguish from tumour recurrence on imaging. Larroza et 
al were able to develop a high classification accuracy model to 
distinguish between brain metastasis and radiation necrosis 
using radiomic analysis.96 Some radiomic studies successfully 
investigated the treatment response in recurrent glioblastoma 
patients with a radiomics approach.97–99 An iterative study by 
radiomic researchers found strong evidence of radiomic features 
in predicting survival and treatment response of patients with 
glioblastoma using pre-treatment imaging data.100–102

Deep learning has also made some other interesting contribu-
tions in this area. Chang et al used residual deep convolutional 
network for predicting the genotype in Grade II-IV glioma with 
high accuracy.103 Deep learning can also be used complemen-
tary to traditional handcrafted radiomics studies. For example, 
studies72,73 focused on using deep networks for segmentation, 
followed by radiomics analysis for survival prediction.

Breast
Among females, breast cancer is the second leading cause of 
death for cancer worldwide.75 However, earlier diagnosis can lead 
to a better prognosis. Radiomics in the field of breast cancer has 
been applied to several imaging modalities including (PET)-MRI, 
(contrast-enhanced) mammography, ultrasound, and digital 
breast tomosynthesis focusing on tumour classification, molecular 
subtypes, tumour response prediction to neoadjuvant systemic 

therapy (NST), lymph node metastasis, overall survival, and recur-
rence risks. For example, a large number of radiomics studies have 
been used for the prediction of malignant breast cancers.104–107 
Besides the prediction of tumour malignancy, several radio-
mics studies examined the prediction of breast cancer molec-
ular subtypes with the aim of leaving out liquid biopsies in the 
future.108–111 Lymph node metastasis identification is an important 
prognostic factor and often determines treatment. In all clinically 
node negative patients, a sentinel lymph node procedure is the 
basis of the axillary treatment.112 Dong et al was able to provide an 
alternative to this invasive approach by successfully applying radio-
mics for the prediction of lymph node metastasis in the sentinel 
lymph node using imaging data.113

In addition to the prediction of breast tumour malignancy, tumour 
molecular subtypes and sentinel lymph node metastasis identifi-
cation, radiomics studies have also made some significant contri-
butions to treatment planning. Chan et al investigated the power 
of radiomics to discriminate between patients with low and high 
treatment failure risk on pre-treatment imaging data.114 There 
are multiple studies that predict tumour response to NST using 
radiomic analysis. For instance, Braman et al found a combination 
of intratumoral and peritumoral radiomics features as a robust and 
strong indicator for pathologic complete tumour response using 
pre-treatment imaging data.115 Two other studies116,117 found 
similar evidence on serial imaging data containing follow-up scans. 
The use of multiparametric MRI for the prediction of tumour 
response to NST showed promising results.118,119

Deep learning approaches have also been adopted in breast 
cancer research. The study of Huynh et al investigated tumour 
classification capacity of deep features extracted from convo-
lutional networks trained on a different data set to analytically 
extracted features.120 The results suggested a higher performance 
of deep features. Similarly, another study,121 used deep learning 
for risk assessment and found higher performance compared to 
conventional texture analysis.

Other sites and diseases
While cancers of the lung, brain, and breast have received wide 
attention from the radiomics research community, any site is open 
to QIA research. Diagnostic and prognostic radiomics research is 
ongoing for cancers of the head-and-neck,122 ovaries,38 prostate,123 
kidney,124 liver,125 colon and rectum,126 and many other sites. 
The main requirements for a radiomics study are the presence of 
a radiologic phenotype which allows for the clustering of patients 
based on differences within that phenotype or some correlation to 
the underlying biology, and the availability of imaging and clinical 
data. While not nearly as prevalent,127 this has meant that non-
oncological diseases which require medical imaging as part of 
the standard of care have also been the subject of radiomics anal-
ysis, such as in the fields of neurology,35 ophthalmology,128 and 
dentistry.129

Limitations of radiomics and future directions 
towards precision medicine
While radiomics facilitates new possibilities in the field of 
personalised medicine, some challenges remain. One of the 
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primary obstacles is the lack of big and standardised clinical 
data. Although large amounts of medical imaging data are 
stored, these data are dispersed across different centres and 
acquired using different protocols. Access for research purposes 
is highly restricted by law and ethics. An exhaustive data cura-
tion and harmonisation process is still necessary to make it 
usable for research. Radiomics will potentially enable imaging-
based clinical decision support systems, however, the current 
black box approach, particularly in deep learning, makes it less 
acceptable for clinical application. In certain cases, handcrafted 
radiomic features have already been correlated with biological 
processes,130–132 but it is essential to work further in the direction 
of interpretable artificial intelligence (AI) to make it more acces-
sible for clinical implementation.33

In recent years, various countries have already adopted many 
measures to control variability in clinical trial protocols, data 
acquisition, and analysis.133,134 For example, across Europe consis-
tent protocol guidance was adopted with the help of European 
Association of Nuclear Medicine.135 The Quantitative Imaging 
Biomarker Alliance initiative also aims to achieve the same task 
in a much broader level.136,137 On the other hand, algorithmically, 
developments in deep learning allow for automated quality check, 
clustering of data, and automated detection and contouring of 
organs and lesions, vastly improving data curation times. Gener-
ative adversarial networks open up the possibility of generating 
synthetic data138 or domain adaptive algorithms139,140 might be 
able to deal with the shortage of standardised data. Techniques like 
distributed learning provide the ability to train machine learning 
models using distributed data without the data ever leaving their 
original locations. Distributed learning has already been applied 
across several medical institutions to build predictive and segmen-
tation models.141–144 Furthermore, this approach can be coupled 
with other technologies such as blockchain to trace back data prov-
enance and monitor the use of the final models.145 Various tech-
niques to visualise deep features have already been put forward by 
researchers to generate an intuitive understanding. A completely 
new research area of AI called explainable AI aims to track the 
decisions made by the intelligent algorithms so that it can be better 
understood by humans. Companies like Google, IBM, Microsoft 
and Facebook are at the forefront in this research. This will not only 
help to build trust of AI systems among medical professionals but 
also unlocks new possibilities in understanding a disease.146,147

The implementation of precision medicine itself has its own limita-
tions and has drawn criticism due to the lack of a “transforma-
tion in therapeutic medicine” in the last two decades.148 So far, 
life expectancies or other public health measures have not shown 
any dramatic improvements, regardless of the vast amounts of 
precision medicine research being conducted. Contentious points 
remain such as excessive costs (e.g. gene therapy), although new 
developments such as radiomics promise to reduce costs in the 
long run. Furthermore, the diagnostic and prognostic power 
of complex “omics-driven” models is still to be determined in 
specific populations, and evidence needs to be produced that such 
methods improve health outcomes.149 Precision medicine is likely 
to mature and translate to clinical workflows over the next decade 
and will change the way health services are delivered and evaluated. 

Healthcare systems will need to adjust their methods and processes 
to accommodate for these changes.

Conclusion
Radiomics, whether handcrafted or deep, is an emerging field 
that translates medical images into quantitative data to give 
biological information and enable phenotypic profiling for 
diagnosis, theragnosis, decision support, and monitoring. 
Radiomics, in essence, allows personalised care by identifying 
features or signatures correlated with a disease or a treat-
ment response with high precision and in a non-invasive way. 
Recent developments in genomics and deep learning have 
pushed radiomics researchers to focus more on extracting 
deep features and explore new possibilities in AI modelling. 
In the future, radiomics will be a valued addition to precision 
medicine workflows by facilitating earlier and more accurate 
diagnosis, providing prognostic information, aiding in treat-
ment choice, monitoring disease and treatment non-invasively, 
and enabling routine dynamic treatment based on individual 
responses. But the road to this vision is long, and many tech-
nical, regulatory, and ethical problems still need to be solved.
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