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intRoDuction
The success of deep learning (DL) in many applications such 
as speech and text recognition, natural language processing, 
chess and Go game, object detection and classification 
in recent years opens a new era of machine learning and 
computer vision. The DL approach has since raised unprec-
edented enthusiasm in various fields of pattern recognition 
and artificial intelligence (AI) including computer- aided 
diagnosis (CAD) in medicine. CAD makes use of machine 
learning methods and multidisciplinary knowledge and 
techniques to analyze medical imaging data and/or non- 
imaging data and provides the analyzed results to clini-
cians as second opinion or decision support in the various 
stages of the patient care process such as lesion detection, 
characterization, disease risk prediction, cancer staging, 
treatment planning and response assessment, recurrence 
and prognosis prediction. CAD has been a major field of 
research and development in medical imaging. CAD tools 
developed with conventional machine learning methods 
mainly use hand- engineered features based on the domain 
knowledge and expertise of human developers, who trans-
late the perceived image characteristics to descriptors 
that can be implemented with mathematical functions or 

conventional image processing techniques. The manually 
designed descriptors may not be able to capture the intri-
cate differences between the normal and abnormal clin-
ical conditions, and therefore may not generalize well to 
the wide range of variations in the patient population. The 
performance of CAD tools often can reach high sensitivity 
but at the cost of a relatively high false- positive rate. There 
are high expectations that the recent advances in machine 
learning techniques will overcome some of these challenges 
and bring significant improvement in the performance of 
CAD in medical imaging. There are also expectations that 
DL- based CAD or AI may advance to a level that it may 
automate some processes such as triaging cases for clin-
ical care or identify negative cases in screening to help 
improve the efficiency and workflow. A previous article 
has reviewed the early CAD systems for breast cancer 
using DL, explained their superiorities relative to previ-
ously established systems, defined the methodologies 
including algorithmic developments, described remaining 
challenges in breast cancer screening and diagnosis, and 
discussed possible future directions for new CAD models.1 
In this paper, we will review the advances in CAD from 
past experiences to the promises brought about by DL, 
discuss the challenges in CAD development and clinical 
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AbStRAct

Computer- aided diagnosis (CAD) has been a popular area of research and development in the past few decades. 
In CAD, machine learning methods and multidisciplinary knowledge and techniques are used to analyze the patient 
information and the results can be used to assist clinicians in their decision making process. CAD may analyze imaging 
information alone or in combination with other clinical data. It may provide the analyzed information directly to the 
clinician or correlate the analyzed results with the likelihood of certain diseases based on statistical modeling of the 
past cases in the population. CAD systems can be developed to provide decision support for many applications in the 
patient care processes, such as lesion detection, characterization, cancer staging, treatment planning and response 
assessment, recurrence and prognosis prediction. The new state- of- the- art machine learning technique, known as deep 
learning (DL), has revolutionized speech and text recognition as well as computer vision. The potential of major break-
through by DL in medical image analysis and other CAD applications for patient care has brought about unprecedented 
excitement of applying CAD, or artificial intelligence (AI), to medicine in general and to radiology in particular. In this 
paper, we will provide an overview of the recent developments of CAD using DL in breast imaging and discuss some 
challenges and practical issues that may impact the advancement of artificial intelligence and its integration into clinical 
workflow.
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implementation, and consider some practical issues to assure the 
generalizability and reliability of CAD as decision support tools 
for clinicians in breast imaging applications.

CAD in breast imaging—past experience and future 
goals
Studies of automated analysis of radiographic images with 
computers emerged in the 1960’s. Several investigators have 
attempted to automatically detect breast abnormalities.2–5 These 
early attempts demonstrated the feasibility but did not attract 
much attention, probably because the accuracy was limited by 
computational resources and access to high quality digitized 
image data. Systematic development of machine learning tech-
niques for medical imaging began in the 1980’s,6 with a more 
realistic goal to develop CAD systems as a second opinion to 
assist radiologists in image interpretation rather than automa-
tion. The first observer performance study conducted by Chan 
et al7 using a CAD system developed by the same investiga-
tors8 showed that breast radiologists’ detection performance of 
microcalcifications was significantly improved when reading 
with CAD. The study demonstrated the potential of CAD in 
improving the detection of early stage breast cancer. The Food 
and Drug Administration (FDA) approved the first commer-
cial CAD system as a second opinion for screening mammog-
raphy in 1998. The research and development of CAD methods 
for various diseases and imaging modalities have been steadily 
growing over the years. Many retrospective observer studies 

demonstrated that radiologists’ performance improved with 
CAD.6 Figure  1 shows the number of peer- reviewed journal 
publications related to CAD and machine learning for all breast 
imaging modalities obtained by searching the Web of Science 
up to mid-2019, including the work for various CAD applica-
tions such as detection, characterization, risk prediction and 
radiomics. The growing trend in computer- aided image analysis 
related to breast imaging is evident and the growth speeds up in 
the last few years, probably spurred by DL.

CAD was introduced into screening mammography two decades 
ago. A number of prospective studies have been conducted 
to compare radiologists reading with and without CAD, or 
compare single radiologist reading with CAD to double reading 
in screening mammography. The reported effects of CAD in 
screening mammography varied. Taylor et al9 conducted a meta- 
analysis of studies comparing single reading with CAD or double 
reading to single reading (Table 1). They concluded that double 
reading with arbitration increased cancer detection rate per 1000 
females screened (CDR) and CAD did not significantly increase 
the CDR. Double reading with arbitration reduced recall rate 
but double reading with unilateral or a mixed strategy had much 
higher recall rates than single reading with CAD. These results 
indicate that double reading, regardless of with another radiol-
ogist or with a computer aid, will increase FP recalls unless the 
additional detections are properly scrutinized to dismiss poten-
tial lesions of low suspicion.

Figure 1. The number of publications per year obtained from searching the Web of Science, “Science Citation Index Expanded,” 
“Book Citation Index- Science,” and “Emerging Sources Citation Index,” with keywords: (breast imaging) AND (machine learning 
OR deep learning OR convolutional neural network OR deep neural network OR computer aid OR computer assist OR computer- 
aided diagnosis OR automated detection OR computerized detection OR automated classification OR computerized classification 
OR decision support OR radiomic), search period 1900 to 6/2019.

http://birpublications.org/bjr


3 of 18 birpublications.org/bjr Br J Radiol;92:20190580

BJRCAD and AI for Breast Cancer

Although the pooled results by Taylor et al9 did not show signif-
icant improvement in CDR for single reading using CAD, the 
study revealed that the performance of radiologists using CAD 
varied over a wide range. The change in CDR ranged from 0 to 
19% and the increase in recall rate varied from 0 to 37%. These 
variations may be attributed to factors such as differences in study 
design (Table 1), user training, the experience and confidence of 
the radiologists in differentiating true and false CAD marks, and 
whether the radiologists used CAD properly as second reader as 
it was designed and approved to be. In two prospective clinical 
trials10,11 that had better controls for comparing single reading 
with CAD to double reading (Table 2), Gilbert et al found that 
the sensitivities of the two approaches were comparable but 
the recall rate of the former was higher (3.9% vs 3.4%), while 
Gromet found that single reading with CAD was superior with 
higher sensitivity and lower recall rate. Both studies concluded 
that single reading with CAD may be an alternative to double 
reading.

Although CAD was approved by FDA as a second opinion, there 
is no monitoring of how radiologists use CAD in the clinic. 
Fenton et al analyzed the data from 43 mammography sites in 
three states before and after CAD implementation in 200712 
and a follow- up study in 2011.13 They found that the increase 
in recall rate decreased from 30 to 6%, while the increase in 
CDR decreased from 4.5 to 1.8% between the two studies. They 
observed that “radiologists with variable experience and exper-
tise may use CAD in a nonstandardized idiosyncratic fashion,” 
and “Some community radiologists, e.g. may decide not to recall 
females because of the absence of CAD marks on otherwise 
suspicious lesions.” Lehman et al14 compared 271 radiologists 

in 66 facilities before and after implementation of CAD. They 
found that the average sensitivity decreased by 2.3% and the 
recall rate increased by 4.5% with the use of CAD. They noted 
that “cancers are overlooked more often if CAD fails to mark 
a visible lesion” and that “CAD might improve mammography 
performance when appropriate training is provided on how to 
use it to enhance performance.” These comments indicated that 
some radiologists may have used CAD prematurely as a concur-
rent reader to speed up reading while CAD was approved only 
as a second opinion. On the other hand, some studies showed 
that radiologists may overlook true positive CAD marks amid 
the large number of false positives they have to dismiss per 
1000 cases to detect an additional cancer as the breast cancer 
prevalence is generally less than 1%.15–17 These clinical experi-
ences of CAD reveal that, useful CAD tools in the clinic should 
be either those significantly increasing workflow efficiency 
without reducing sensitivity or specificity, or those significantly 
improving clinical efficacy without impeding workflow, although 
ideally delivering both. A mismatch of the performance levels of 
CAD with the expectations and the need of the clinicians will 
increase the risk of misuse and negative outcomes. The recent 
success of DL over conventional machine learning approaches 
in many AI applications may offer new opportunities to improve 
the performance of CAD tools and meet the high expectations of 
achieving these goals.

Deep learning driven CAD development in breast 
imaging
DL is a type of representation learning method that can discover 
representations of data automatically by transforming the input 

Table 1. Meta- analysis of pooled odds ratios of increase in cancer detection rate per 1000 females screened and the increase in 
recall rate obtained by comparing single reading with CAD or double reading to single reading

Single reading with CAD Double reading

Matched
N = 5

Unmatched
N = 5

Unilateral
N = 6

Mixed
N = 3

Arbitration
N = 8

Odds ratio of increase in cancer detection rate 1.09 1.02 1.13 1.07 1.08

Odds ratio of increase in recall rate 1.12 1.10 1.31 1.21 0.94

CAD, computer- aided diagnosis.
Matched studies: the assessment before and after using CAD was on the same mammogram.
Unmatched studies: the performance of mammography facilities was compared before and after the introduction of CAD. Different mammograms 
are interpreted in the two conditions.
N is the number of studies included in each group.9

Table 2. Two prospective clinical trials that compared double reading to single reading with CAD

Single reading
(first read of double reading) Double reading Single reading with CAD

Sens Recall rate PPV3 CDR Sens Recall rate PPV3 CDR Sens Recall rate PPV3 CDR

Gromet11 2008 81.4% 10.2% 30.6% 4.12 88.0% 11.9% 29.8 % 4.46 90.4% 10.6% 27.8% 4.20

Gilbert et. al10 2008 87.7% 3.4% 21.1% 7.06 87.2% 3.9% 18.0% 7.02

CAD, computer- aided diagnosis; CDR = cancer detection rate per 1000 females screened.
Gromet et al.11: single center, nine radiologists, Nsingle, double = 112,413, Nsingle+CAD =118,808. CAD system alone: 81.7% sensitivity at 2.8 FPs/case
Gilbert et al.10: CADET II study, three centers, two arms reading matched cases Ndouble = Nsingle+CAD = 28,204. CAD system alone: sensitivity 
(mass) 88% at 1.5 FPs/case, sensitivity (calcification) = 95% at 1 FPs/case
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information into multiple layers of abstractions in a deep neural 
network architecture.18 By training with a large data set and 
an appropriate cost function, the multiple layers of weights in 
the deep neural network are iteratively updated, resulting in a 
complex mathematical model that can extract relevant features 
from the input data with high selectivity and invariance. DL has 
led to significant advancements in many automated or computer- 
assisted tasks such as target detection and characterization, 
speech and text recognition, face recognition, autonomous vehi-
cles, smart devices, and robotics.

Deep learning convolutional neural networks (DCNN) are the 
most popular method for pattern recognition and computer 
vision applications in image analysis at present. Convolu-
tional neural networks (CNN) originated from neocognitron 
proposed in the early 1980’s.19 CNN was introduced into 
medical image analysis in 199320,21 and applied to microcalci-
fication detection on mammograms in the same year,22,23 and 
subsequently to mass detection.24–27 A similar shift- invariant 
neural network was applied to the detection of clustered micro-
calcifications in 1994.28 These early CNNs were relatively 
shallow but they demonstrated the feasibility of using CNN in 
medical images. In 2012, Krizhevsky et al29 designed a DCNN 
with five convolutional layers (called “AlexNet”). Using the 
“ImageNet” data set containing over 1.2 million photographic 
images for training, the AlexNet achieved top performance 
and outperformed all previous methods at the ImageNet Large 
Scale Visual Recognition Challenge for classification of over 
1000 classes of everyday objects (cars, animals, planes, etc). 
The performance of DCNN was shown to increase with depth 
for some tasks30 and deeper and deeper DCNNs have been 
proposed since then.

DCNN has been applied to CAD for breast imaging in recent 
years; the main areas to date include detection and classifica-
tion of microcalcifications or masses, characterization of cancer 
subtypes, breast density estimation and classification. The 
majority of the studies were conducted with mammographic 
images, a substantial number of studies used ultrasound images, 
but only a few studies used magnetic resonance (MR) images, 
likely because of the differences in the availability of imaging 
data. We summarize the studies reported in peer- reviewed jour-
nals for the three modalities in (Tables  3–5) except for some 
papers that appeared too preliminary with very few training 
samples. In the tables, we include the number of training and 
validation samples, and whether there was independent test 
set for performance evaluation. The training sample size is an 
important factor that impacts the robustness of the trained 
model, while testing with a true independent set is an important 
step to evaluate the generalizability of the trained model to 
unseen cases. Many of the studies have multiple comparisons 
with traditional methods or different DCNN approaches. To 
keep this paper concise, we tabulated the main proposed method 
and key results in the tables and do not discuss the approach of 
individual papers. Interested readers may refer to the original 
paper for the detailed description of each study. We will briefly 
summarize some observations for DL studies in each modality 
in the following.

Deep learning in mammography
There have been a number of studies applying DCNN to 
mammography for detection31–33 or classification34–36 of micro-
calcifications (Table  3(A)), and detection37–39 and classifica-
tion40–63 of masses (Table  3(B)). Another common application 
of DCNN is the segmentation of breast density and classifica-
tion of the breast in terms of BI- RADS density categories or 
dense- vs- non- dense64–72 (Table  3(C)). Although most of the 
DCNNs used in these studies adapted the structural frame-
work from the AlexNet,29 the VGG nets by the Visual Geom-
etry Group,93 different versions of Inception by Google,94,95 and 
different versions of ResNet by Microsoft,30 there were varia-
tions in how the hyperparameters or the kernels and layers in 
the original structure were modified, especially the number of 
fully connected layers near the output for a specific classification 
task. Some studies proposed more complex structures by adding 
parallel channels or branches of networks to perform auxiliary 
functions. Many of the modifications were designed based on the 
image characteristics of the specific task of interest (“target task”). 
In some studies, a DCNN pre- trained in other image domain, 
with or without being fine- tuned with the target domain images, 
was used as feature extractor and the extracted deep features 
were trained with an external classifier such as support vector 
machine (SVM) or random forest for the target task. The studies 
show that different DCNN approaches can be trained to accom-
plish the same task, and generally obtain good performance for 
the specific data sets used.

Digital breast tomosynthesis (DBT) is increasingly being used 
for breast cancer screening, either standalone or in combination 
with two- dimensional mammography. A few studies have been 
conducted with DBT to detect microcalcifications or masses, and 
classification of masses as malignant or benign using DCNN. 
Because of the similarity between DBT and mammography and 
that mammographic images are more readily available, Samala 
et al37,56 showed that an intermediate stage of fine- tuning with 
mammographic images was useful for transfer learning in DBT 
tasks. Contrast- enhanced spectral mammography or dual- 
energy contrast- enhanced digital mammography is a relatively 
new modality for diagnostic work- up, especially for dense 
breasts, but it has not been commonly implemented in the clinics 
so that data are scarce. Only two studies have been reported, 
both had a data set of only about 50 cases,53,55 to demonstrate the 
feasibility of using contrast- enhanced spectral mammography or 
contrast- enhanced digital mammography in DCNN training for 
mass classification.

Deep learning in breast ultrasound
Ultrasound is an important breast imaging modality for diag-
nostic work- up to distinguish solid masses from cysts, and for 
screening in dense breasts. Machine learning methods have been 
applied to breast ultrasound in various applications.96–100 An 
increasing number of DL applications in breast ultrasound has 
been reported in the past 2 years. We summarize these studies in 
Table 4. The majority of the studies were related to breast mass 
characterization,44,76–82 followed by mass segmentation,83–85 and 
detection.86,87 The most commonly used DL models for ultra-
sound were again AlexNet, VGG-19, ResNet, GoogLeNet, and 
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U- Net.101 Due to the relatively small available breast ultrasound 
image sets, transfer learning was used to train the DCNNs and 
the DCNNs were most commonly pre- trained with the ImageNet 
data. The DCNN models were often used directly as classifiers 
but were also used as feature extractors, where the extracted deep 

features were merged by machine learning classifiers such as 
SVM, logistic regression or linear discriminant classifiers. Most 
of the studies used only training and validation sets without an 
independent test set. The reported performances were therefore 
preliminary and further development is needed.

Table 4. Studies using deep learning approach for mass segmentation, detection and classification on breast ultrasound (US) 
images

Journal 
article Year Training set Validation set

Independent 
test set

Convolutional 
neural network 
(CNN) structure

Performance 
(validation or 
independent test)

Mass classification

Antropova et 
al.44

2017 1125 cases (158M, 967B), 2393 ROIs 
(415M, 1098B cystic, 880B solid), 5- fold 
CV

  ImageNet- pretrained 
VGG19 as feature 
extractor, SVM classifier

AUC(maxpool 
features)=0.872;
AUC(fused 
with radiomics 
features)=0.902

Han et al.76 2017 6579 masses:
(2814M, 3765B)

6579 masses:
10- fold CV

829 masses:
(340M, 489B)

ImageNet- pretrained 
GoogLeNet

AUC = 0.958

Xiao et al.77 2018 2058 images
(688M, 1370B):
80% training

10 % 10% ImageNet- pretrained 
ResNet50, Xception, and 
InceptionV3

AUC(ResNet50)=0.91, 
AUC(InceptionV3)=0.91,
AUC(combined)=0.93

Zhou et al.78 2018 Shear- wave 
elastography 400 
images

45 images 95 images 16- layer DCNN Accuracy: 95.8%

Lee et al.79 2018 Images:
Study 1: 143
Study 2: 210

Images: Study 1: 27
Study 2: 40

  Stacked Denoising 
Autoencoder (SDAE) 
network

Accuracy:
Study 1: 82%
Study 2: 83%

Huang et al.80 2019 Images of BI- RADS categories: (3) 531, 
(4A) 443, (4B) 376, (4C) 565, (5) 323

  ImageNet- pretrained 
modified VGG-16

Accuracy: 0.734 to 0.998 
for the five classes

Byra et al.81 2019 582 masses (23% 
M)

  150 masses (23% 
M)

150 
massdetection 
& classif: 
INbreastes (23% 
M)

ImageNet- pretrained 
VGG19 with fine- tuning 
(FT) and matching layer 
(ML) at input

AUC(VGG19 +FT 
+ ML)=0.936, AUC(four 
radiologists)=0.806 to 
0.882

Fujioka et al.82 2019 240 masses
(144M, 96B)
947 images
(467M, 480B)

120 masses
(72M, 48B), 120 
images
(72M, 48B)

  ImageNet- pretrained 
Inception v2

AUC(DCNN)=0.913,
AUC(three 
radiologists)=0.728 to 
0.845

Mass segmentation

Lei et al.83 2018 Automated whole breast US, 16 cases: 
3134 images; Leave- one- case- out CV

  ConvEDNet with deep 
boundary supervision

Jaccard index: 72.2 to 
86.8%

Hu et al.84 2019 570 images (400 training, 170 validation) 
from 89 patients.

  ImageNet pre- trained 
VGG16, U- Net, DFCN, 
DFCN +active contour 
model

DSC(DFCN + active 
contour)=88.97 %

Yap et al.85 2019 Total: 469 masses (113 M, 356 B); 70% 
training, 10% validation; 5- fold CV

  20% ImageNet- pretrained 
FCN- AlexNet, FCN-32, 
FCN-16, and FCN-8

B mass: 
DSC(FCN-16)=0.7626;
M mass: 
DSC(FCN-8)=0.5484

Mass detection

Yap et al.86 2018 Study 1: 306 images
(60M, 246B), 10- fold CV
Study 2: 163 images
(53M, 110B), 10- fold CV

  GoogLeNet, U- Net, 
ImageNet- pretrained 
FCN- AlexNet,

FROC: Sens 77 to 98% at 
0.28 to 0.10 FPI,
FCN- AlexNet: best 
performance

Shin et al.87 2019 800 strongly 
& 4224 weakly 
annotated images

600 strongly 
annotated images

  ImageNet- pretrained 
VGG16, ResNet

FROC: 84.5% at 1 FPI

FCN, fully convolutional network.
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Deep learning in breast MRI
Dynamic contrast- enhanced magnetic resonance imaging 
(DCE- MRI) measures the properties of tissue microvascula-
ture by imaging the small excess in the Boltzmann distribution 
of the spins within the magnetic field.102,103 DCE- MRI provides 
functional and structural characteristics of the disease104 and is 
routinely used to assess the tumor extent and detect multifocal 
and multicentric breast cancer. The apparent diffusion coefficient 
from diffusion- weighted MRI (DW- MRI) can be correlated with 
the macromolecular and microstructural changes at the cellular 
level, providing a useful biomarker during cancer treatment.105 
Breast MRI is used for screening females at high risk of breast 
cancer, treatment response monitoring of neoadjuvant chemo-
therapy, detection of residual disease and as supplement to other 
imaging modalities.106–108 Machine learning methods have been 
applied to breast MRI for segmentation of fibroglandular tissue 
for breast density assessment, detection and diagnosis of breast 
cancer or cancer subtypes, identifying radiomics features as 
biomarkers and identifying the mapping between radiomics and 
genomics using radiogenomics analysis.109–111

DCNNs have the potential to replace or improve over the 
conventional machine learning methods in analysis of MRI. 
Unlike mammography, only a few studies have been conducted 
to develop DL methods for breast MRI to date, and transfer 
learning is generally used in these studies. The limited breast 
MR data available is the major factor limiting its development. 
The few studies that applied DCNNs to breast MRI are shown in 
Table 5, which include the use of U- Net for breast tumor segmen-
tation,90 VGG for feature extraction,44,89 classification of malig-
nant and benign breast lesions,88,91 and U- Nets for segmentation 
of the breast and the fibroglandular tissue for breast density 
assessment.92

MRI has been shown to have a wide range of clinical applications 
as mentioned above. Some of these tasks involve multimodality, 
multiparametric imaging and diagnostic tests, where data fusion 
and quantitative biomarkers may provide important informa-
tion to support precision medicine. This information is currently 
underutilized because manual processing is too complex or too 
time- consuming and thus difficult to conduct large clinical vali-
dation studies. Computer- assisted image analysis with machine 
learning techniques will be most helpful for these tasks. However, 
the development of DL tools in breast MRI is hindered not only 
by the difficulty to collect big data for training, but also by the 
large variations in image characteristics due to differences in 
acquisition protocols and scanner types among clinical sites.112 
Collecting big data from multi- institutional studies for quanti-
tative DCE- MRI analysis or DL training requires standardized 
calibration of the scanners and/or robust image homogenization 
methods. The Quantitative Imaging Biomarkers Alliance has 
proposed performance standards and tools for MRI.113 Before 
widespread implementation of the standardization for MRI in 
clinical practice, current DL application of MRI data will rely 
on post- processing techniques to reduce the variations. Devel-
opment of AI in breast MRI is at an early stage and much more 
collaborative effort should be devoted to compile big data so that 
investigators can explore the potentials of the DL approach and 

the fusion of multidomain deep features with radiomics features 
and/or other patient data for the various stages of the diagnosis 
and management of breast cancer.

Promises of deep learning in medical imaging 
applications
As the development of DL and AI methods for various CAD 
applications is still ongoing, no large- scale clinical studies have 
been conducted to evaluate the impact of the new generation of 
AI- based CAD on clinicians. One application of strong interest 
in breast imaging is to use AI to reduce radiologists’ workload 
in screening mammography, which is the highest volume exam 
in breast imaging but with a low cancer prevalence of less than 
1%. A few retrospective studies have investigated the feasibility 
of using AI- based CAD to triage screening mammograms as 
having low risk or high risk of breast cancer so that radiologists 
can prioritize their reading and improve workflow.

Rodriguez- Ruiz et al114 evaluated the standalone performance of 
an AI- based CAD system for breast cancer detection in 9 data 
sets used in observer studies from 7 countries which totaled to 
be 2652 mammography examinations with 653 cancers. Their 
system achieved an area under the receiver operating character-
istic curve (AUC) of 0.840 which was statistically non- inferior to 
the average AUC of 0.814 by 101 radiologists from the observer 
studies, and was higher than 61.4% of the radiologists. In another 
study by the same group using the same data set,115 the AI- based 
CAD system was used to assess the risk of malignancy of an 
exam by a score (1–10 scale). By selecting a risk score >2 and >5 
as decision threshold for high risk cases, they could exclude 17 
and 47% of the cases from radiologists’ reading but missed 1 and 
7% of the cancers, respectively.

Kyono et al116 developed a machine learning method to identify 
normal cases in screening mammography. A DCNN in conjunc-
tion with multitask learning was trained to extract imaging 
features to predict diagnosis, another deep network was trained to 
merge the multiview predictions with the patient’s non- imaging 
data into an assessment of whether the case is normal. With 2000 
cases and 10- fold cross- validation, their DCNN model achieved 
a negative predictive value of 0.99 to identify 34 and 91% of the 
normal mammograms for test sets with a cancer prevalence of 
15 and 1%, respectively. They concluded that machine learning 
could be used for patient triage to reduce the normal mammo-
grams the radiologists need to read without degrading diag-
nostic accuracy. These results were superior to those reported by 
Rodriguez- Ruiz et al but the generalizability has yet to be vali-
dated with independent testing.

Conant et al117 conducted a retrospective, fully crossed, multi-
reader, multicase observer performance study on using an 
AI- based CAD system as a concurrent reader on radiologists’ 
accuracy and reading time for cancer detection in DBT. 24 
radiologists including 13 breast subspecialists and 11 general 
radiologists participated to read 260 DBT cases (65 cancer, 65 
benign, 130 normal) with and without AI- CAD in different 
reading sessions. They found that the mean AUC, the sensitivity, 
and the specificity increased, while the reading time per case and 
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the recall rate decreased. All improvements by concurrent use of 
AI- CAD were statistically significant (p < 0.01). They also showed 
that the improvements persisted in the analysis of the subgroups 
of breast and general radiologists. In another study, Benedikt et 
al118 found that using concurrent CAD which showed the AI- de-
tected lesion blended onto the synthetic mammograms of DBT 
could reduce radiologists’ reading time significantly (p < 0.01) 
without significantly affecting the other performance measures.

Yala et al119 trained a DL model with mammograms of over 56,831 
females to triage screening mammograms to predict whether or 
not that breast would develop breast cancer within 1 year, and 
selected a threshold to triage mammograms as cancer- free and 
not needing radiologists’ reading. On an independent test set of 
7176 females, they showed that although the DL model obtained 
an AUC of only 0.82, it could triage 19% of the cases as cancer- 
free with only one false negative. The radiologists had a speci-
ficity of 93.6% and a sensitivity of 90.6% in the original test set, 
and would have obtained an improved specificity of 94.3% and a 
non- inferior sensitivity of 90.1% in a retrospective simulation of 
reading the remaining mammograms.

These studies show that AI- based CAD has the potential to reach 
sufficiently high sensitivity and specificity such that it may be 
used as a concurrent reader to reduce reading time in DBT or 
as a pre- screener to exclude some low risk mammograms from 
radiologists’ reading in screening mammography. In general, for 
AI tools to play these roles beyond providing second opinion 
or decision support in patient care, they should be subjected to 
rigorous validation in clinical environment and demonstrate 
robustness before integration into the routine workflow. It is also 
important to ensure the stability of their performance over time. 
Although clinicians and developers are enthusiastic about the 
potential benefits amid the hype of AI, there are many challenges 
to achieve these goals, as discussed next.

cHAllengeS fRom tHe lAboRAtoRy to tHe 
clinic
Big data for CAD development
The major challenge of developing a robust DCNN for a specific 
task is to collect a large well- curated data set for training and 
validation of the model. In addition, a representative indepen-
dent test set sequestered from the training process should be 
used to evaluate the generalizability of the trained model in 
unseen cases.120 Each class in the data sets has to be represen-
tative of the population to which the DCNN is intended to be 
applied. In particular, the abnormal class in the training set has 
to be sufficiently large and cover the range of subtleties for the 
target lesions or diseases that may be encountered in clinical 
practice to enable adequate learning of the variations in lesion 
characteristics and thus ensure robustness during real- world 
deployment, which make data collection even more challenging 
for tasks such as screening in which the abnormal class is only 
a small fraction of the population. Collecting data in medical 
imaging with clinicians’ annotation or biopsy truth is costly and 
such resources may not be available to DCNN developers. Data 
mining and natural language processing of the electronic health 
record may be useful for extracting clinical data and diagnosis 

from the physicians’ and pathology reports121 to correlate with 
images collected from the picture archiving and communication 
system. However, the accuracy of the retrieved labels depends on 
the methods used,122 and the automatically mined disease labels 
can contain substantial noise123 and most do not contain image- 
level or lesion- level annotations.124 In the Digital Mammography 
DREAM Challenge (2016–2017),124 the participants could access 
a training set of over 640,000 mammograms from 86,000 females 
but the cases only had breast- level labeling without lesion anno-
tation. The winning teams all used DL approach but the highest 
performance only reached an AUC of 0.8744 and a sensitivity of 
80% at a specificity of 80.8%.

It may be noted that many of the studies to date as cited in 
Tables 1–3 had very small training set. For mammography, the 
publicly accessible Digital Database for Screening Mammog-
raphy73 that contains only digitized screen- film mammograms, 
was used as the only or the main data set in many studies. The 
other two accessible digital mammography sets, Breast Cancer 
Digital Repository74 and INbreast data set,75 are relatively small. 
Most of the studies only included training and validation sets or 
by cross- validation without an independent test set. The reported 
results are likely optimistically biased because the validation set 
is usually used to guide the selection of hyperparameters during 
DCNN training. Without the evaluation using a large, represen-
tative independent test set, the generalizability of the reported 
trained DCNN models is uncertain. Furthermore, it has been 
shown that DCNN training can be biased to the specific char-
acteristics of the training images acquired with certain imaging 
protocols or vendors’ machines and thus independent testing 
with external data is necessary in addition to that with internal 
data to identify these potential biases.123,125

To alleviate the problems of limited data available for DCNN 
training, the commonly used approach at present is to use transfer 
learning with fine- tuning and data augmentation. Although 
these techniques can greatly improve DCNN training, they 
cannot compensate for the lack of adequate representations of 
disease patterns from the patient population in a sparse training 
set. Transfer learning takes advantage of the property of DCNN 
that learns from the input images multiple levels of feature repre-
sentations from generic to specific and embedded the infor-
mation in its layers of convolutional kernels and weights. Since 
many image features are composed of common basic elements, a 
DCNN initialized with weights well- trained in a different source 
domain can outperform a DCNN trained from randomly initial-
ized weights,126 especially when the data set from the target 
domain is small. Samala et al56 showed that the performance of 
the pre- trained DCNN increased with fine- tuning in the target 
domain and it steadily increased with increasing training sample 
size. Transfer learning can therefore complement but not replace 
the need for a large data set to achieve high performance in the 
target task. Data augmentation generates a number of slightly 
different versions of a given training image using techniques 
such as scaling, flipping, rotation, translation, cropping, intensity 
or shape transformation and combinations of these techniques. 
Data augmentation can easily increase the apparent number of 
training samples by thousands of times. However, the augmented 
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images are highly correlated with the original image so that 
they carry little new information or features for the DCNN to 
learn. Data augmentation can reduce the risk of overfitting to 
the training data29,127,128 by introducing some variations to the 
images but cannot fill in the missing information if the original 
small training set does not contain samples that cover the wide 
range of disease characteristics in the real- world population. 
Other methods are also being considered for data augmenta-
tion, such as generative adversarial networks that can create 
new images from the learned features after training with an 
available set of images129 and digitally inserting artificial lesions 
into normal images.130 Whether these methods can mimic the 
pathological characteristics of real lesions other than structural 
similarity, especially the texture features inside and surrounding 
the lesion, and produce useful samples for training DL models to 
classify real patient cases remain to be studied.

Clinical implementation—acceptance testing and 
quality assurance
If properly trained with a large data set, AI- based CAD is expected 
to be more robust and more accurate than conventional CAD 
tools. However, studies showed that the large learning capacity of 
DL allows it to even learn non- medical features such as imaging 
protocols or the presence of accessories related to a patient’s 
comorbidity to estimate the risk of certain disease.125 As a result, 
an AI- based CAD tool well trained and independently tested 
using data collected from some clinical sites may not translate 
to other sites. Similar to installation of new clinical equipment, 
acceptance testing should be performed to verify that its perfor-
mance can pass a certain reference level using a data set repre-
sentative of the local patient population. In addition, given the 
current high expectation that DL technologies are “intelligent,” 
it will be even more important for clinicians to understand the 
capabilities and limitations of a CAD tool and what it is designed 
for before clinical use. After the installation, the clinic and the 
users should allow for a test period in which the users refrain 
from being influenced by the CAD output. Rather, the users 
should review the correct and incorrect recommendations by 
CAD and assess its performance on a large number of consecu-
tive clinical cases. By learning the characteristics of the cases and 
understanding the strengths and weaknesses of the CAD tool, the 
users may be able to establish proper expectation and confidence 
level and reduce the risk of improper use and adverse outcomes. 
The test period therefore serves both as a real- world evaluation 
of the CAD tool on the local population and user training.

The performance of a CAD tool may be affected by the proper-
ties of the input image, which depend on many factors such as 
the imaging protocol or equipment and the image processing or 
reconstruction software that may change or upgrade from time 
to time. As AI- based CAD tools are expected to have widespread 
use in health care in the future, either as second opinion or auto-
mated decision maker in some applications such as pre- screening 
or triaging, CAD tool can directly impact clinical decision and 
thus patient management. It is important to establish quality 
assurance (QA) program and appropriate metrics to monitor the 
standalone CAD performance as well as the effectiveness and effi-
ciency of CAD use in the clinic over time. The need for QA and 

user training on CAD devices has been discussed in an opinion 
paper by the American Association of Physicists in Medicine 
CAD Subcommittee.131 Professional organizations should take 
the lead to establish performance standards, QA and monitoring 
procedures, and compliance guidance, to ensure the safety and 
effectiveness for implementation and operation of CAD/AI tools 
in clinical practice.

inteRPRetAbility
A DCNN extracts layers of feature representations from the 
input data, merges them with a highly complex model and 
predicts the probability that the input belongs to a certain class. 
It is difficult to decipher the process of how the DCNN derives 
its prediction. Researchers have developed visualization tools to 
display the deep feature layers in the DCNN132,133 and to visu-
alize the relative importance of regions on the input image that 
contribute to the DL output by a heat map, such as the class 
activation map.134 These visualization tools are the first steps 
to gain some understanding of the deep features in relation to 
the input data but still far from explaining why and how specific 
features are connected and weighted to make a clinical decision. 
For clinicians to be convinced of the recommendation by the AI 
model, especially for clinical tasks more complicated than lesion 
detection, the DL model has to provide reasonable interpreta-
tions of how its extracted features and output are correlated with 
the patient’s medical conditions or other clinical data. Ideally, 
an AI tool should be able to convey the interpretation to clini-
cians in direct medical languages and can even provide deeper 
level of explanation if the recommendation is questioned. The 
level of interpretation and the method of presenting the inter-
pretation will depend on the specific purpose of each type of AI 
tools. Much more research and development efforts are needed 
to determine clinicians’ preferences on each type of applications 
and to advance the DL models to be truly intelligent decision 
support tools.

SummARy
DL technology has the potential of bringing the performance of 
CAD tools to a level far beyond those developed with conven-
tional machine learning methods. However, the development of 
DL- based CAD tools including those for breast imaging are still 
at an early stage due to the lack of large data sets for training 
the DCNNs to date. Collaborative efforts from multiple institu-
tions to compile big patient data for various diseases is the most 
urgent step to allow effective utilization of DL technology for 
the development of practical CAD or AI tools. With sufficiently 
large well- curated data for a given task, DL technology can build 
a robust predictive model based on the cumulative experiences 
from a large number of previous cases collected from the patient 
population, much greater than those human clinicians can ever 
learn from or memorize. It is likely that AI tools, if properly 
developed and integrated into the clinical workflow, can deliver 
performance comparable to or even exceeding clinicians’ in some 
routine tasks. However, medical decision making is a highly 
complex process, which often cannot rely solely on statistical 
prediction but may vary based on individual patient’s conditions 
and medical history, as well as some unpredictable physiolog-
ical processes or reactions of the human body. A well- developed 
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CAD or AI tool can merge patient data from multiple resources 
efficiently and provide a reliable and hopefully interpretable 
assessment to clinicians, who should then play the key role as 
the final decision maker on the best course of management for 
a specific patient based on the CAD information, together with 
his/her experience and judgment. It can be expected that the 
efficient data analytics from CAD or AI tools can complement 

the human intelligence of clinicians to improve the accuracy and 
workflow in the clinic and thus patient care in this new era of 
machine learning.
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