© 2019 The Authors. Published by the British Institute of Radiology

https://doi.org/10.1259/bjr.20190580

Received: Revised: Accepted:
02 July 2019 13 November 2019 17 November 2019

Cite this article as:
Chan H-P, Samala RK, Hadjiiski LM. CAD and Al for breast cancer—recent development and challenges. Br J Radio/ 2019; 92: 20190580.

REVIEW ARTICLE

CAD and Al for breast cancer—recent development
and challenges

HEANG-PING CHAN, PhD, RAVI K. SAMALA, phD and LUBOMIR M. HADJIISKI, PhD

Department of Radiology, University of Michigan, Ann Arbor, Ml, United States

Address correspondence to: Dr Heang-Ping Chan
E-mail: chanhp@umich.edu

ABSTRACT

Computer-aided diagnosis (CAD) has been a popular area of research and development in the past few decades.
In CAD, machine learning methods and multidisciplinary knowledge and techniques are used to analyze the patient
information and the results can be used to assist clinicians in their decision making process. CAD may analyze imaging
information alone or in combination with other clinical data. It may provide the analyzed information directly to the
clinician or correlate the analyzed results with the likelihood of certain diseases based on statistical modeling of the
past cases in the population. CAD systems can be developed to provide decision support for many applications in the
patient care processes, such as lesion detection, characterization, cancer staging, treatment planning and response
assessment, recurrence and prognosis prediction. The new state-of-the-art machine learning technique, known as deep
learning (DL), has revolutionized speech and text recognition as well as computer vision. The potential of major break-
through by DL in medical image analysis and other CAD applications for patient care has brought about unprecedented
excitement of applying CAD, or artificial intelligence (Al), to medicine in general and to radiology in particular. In this
paper, we will provide an overview of the recent developments of CAD using DL in breast imaging and discuss some
challenges and practical issues that may impact the advancement of artificial intelligence and its integration into clinical
workflow.

INTRODUCTION conventional image processing techniques. The manually
The success ()fdeep learning (DL) in many applications such designed descriptors may not be able to capture the intri-
as speech and text recognition, natural language processing, cate differences between the normal and abnormal clin-
chess and Go game, object detection and classification ical conditions, and therefore may not generalize well to
in recent years opens a new era of machine learning and the wide range of variations in the patient population. The

performance of CAD tools often can reach high sensitivity
but at the cost of a relatively high false-positive rate. There
are high expectations that the recent advances in machine
learning techniques will overcome some of these challenges
and bring significant improvement in the performance of
CAD in medical imaging. There are also expectations that
DL-based CAD or AI may advance to a level that it may
automate some processes such as triaging cases for clin-
ical care or identify negative cases in screening to help
improve the efficiency and workflow. A previous article
has reviewed the early CAD systems for breast cancer
using DL, explained their superiorities relative to previ-
ously established systems, defined the methodologies

computer vision. The DL approach has since raised unprec-
edented enthusiasm in various fields of pattern recognition
and artificial intelligence (AI) including computer-aided
diagnosis (CAD) in medicine. CAD makes use of machine
learning methods and multidisciplinary knowledge and
techniques to analyze medical imaging data and/or non-
imaging data and provides the analyzed results to clini-
cians as second opinion or decision support in the various
stages of the patient care process such as lesion detection,
characterization, disease risk prediction, cancer staging,
treatment planning and response assessment, recurrence
and prognosis prediction. CAD has been a major field of

research and development in medical imaging. CAD tools including algorithmic developments, described remaining
developed with conventional machine learning methods challenges in breast cancer screening and diagnosis, and
mainly use hand-engineered features based on the domain discussed possible future directions for new CAD models.!
knowledge and expertise of human developers, who trans- In this paper, we will review the advances in CAD from
late the perceived image characteristics to descriptors past experiences to the promises brought about by DL,

that can be implemented with mathematical functions or discuss the challenges in CAD development and clinical
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Figure 1. The number of publications per year obtained from searching the Web of Science, “Science Citation Index Expanded,”
“Book Citation Index-Science,” and “Emerging Sources Citation Index,” with keywords: (breast imaging) AND (machine learning
OR deep learning OR convolutional neural network OR deep neural network OR computer aid OR computer assist OR computer-
aided diagnosis OR automated detection OR computerized detection OR automated classification OR computerized classification

OR decision support OR radiomic), search period 1900 to 6/2019.
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implementation, and consider some practical issues to assure the
generalizability and reliability of CAD as decision support tools
for clinicians in breast imaging applications.

CAD in breast imaging—past experience and future
goals

Studies of automated analysis of radiographic images with
computers emerged in the 1960%. Several investigators have
attempted to automatically detect breast abnormalities.>” These
early attempts demonstrated the feasibility but did not attract
much attention, probably because the accuracy was limited by
computational resources and access to high quality digitized
image data. Systematic development of machine learning tech-
niques for medical imaging began in the 19805,° with a more
realistic goal to develop CAD systems as a second opinion to
assist radiologists in image interpretation rather than automa-
tion. The first observer performance study conducted by Chan
et al” using a CAD system developed by the same investiga-
tors® showed that breast radiologists’ detection performance of
microcalcifications was significantly improved when reading
with CAD. The study demonstrated the potential of CAD in
improving the detection of early stage breast cancer. The Food
and Drug Administration (FDA) approved the first commer-
cial CAD system as a second opinion for screening mammog-
raphy in 1998. The research and development of CAD methods
for various diseases and imaging modalities have been steadily
growing over the years. Many retrospective observer studies
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demonstrated that radiologists’ performance improved with
CAD.® Figure 1 shows the number of peer-reviewed journal
publications related to CAD and machine learning for all breast
imaging modalities obtained by searching the Web of Science
up to mid-2019, including the work for various CAD applica-
tions such as detection, characterization, risk prediction and
radiomics. The growing trend in computer-aided image analysis
related to breast imaging is evident and the growth speeds up in
the last few years, probably spurred by DL.

CAD was introduced into screening mammography two decades
ago. A number of prospective studies have been conducted
to compare radiologists reading with and without CAD, or
compare single radiologist reading with CAD to double reading
in screening mammography. The reported effects of CAD in
screening mammography varied. Taylor et al® conducted a meta-
analysis of studies comparing single reading with CAD or double
reading to single reading (Table 1). They concluded that double
reading with arbitration increased cancer detection rate per 1000
females screened (CDR) and CAD did not significantly increase
the CDR. Double reading with arbitration reduced recall rate
but double reading with unilateral or a mixed strategy had much
higher recall rates than single reading with CAD. These results
indicate that double reading, regardless of with another radiol-
ogist or with a computer aid, will increase FP recalls unless the
additional detections are properly scrutinized to dismiss poten-
tial lesions of low suspicion.
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Table 1. Meta-analysis of pooled odds ratios of increase in cancer detection rate per 1000 females screened and the increase in
recall rate obtained by comparing single reading with CAD or double reading to single reading

Single reading with CAD Double reading
Matched Unmatched Unilateral Mixed Arbitration
N=5 N=5 N=6 N=3 N=8
Odds ratio of increase in cancer detection rate 1.09 1.02 1.13 1.07 1.08
Odds ratio of increase in recall rate 1.12 1.10 1.31 1.21 0.94

CAD, computer-aided diagnosis.

Matched studies: the assessment before and after using CAD was on the same mammogram.
Unmatched studies: the performance of mammography facilities was compared before and after the introduction of CAD. Different mammograms

are interpreted in the two conditions.
N is the number of studies included in each group.®

Although the pooled results by Taylor et al’ did not show signif-
icant improvement in CDR for single reading using CAD, the
study revealed that the performance of radiologists using CAD
varied over a wide range. The change in CDR ranged from 0 to
19% and the increase in recall rate varied from 0 to 37%. These
variations may be attributed to factors such as differences in study
design (Table 1), user training, the experience and confidence of
the radiologists in differentiating true and false CAD marks, and
whether the radiologists used CAD properly as second reader as
it was designed and approved to be. In two prospective clinical
trials'®! that had better controls for comparing single reading
with CAD to double reading (Table 2), Gilbert et al found that
the sensitivities of the two approaches were comparable but
the recall rate of the former was higher (3.9% vs 3.4%), while
Gromet found that single reading with CAD was superior with
higher sensitivity and lower recall rate. Both studies concluded
that single reading with CAD may be an alternative to double
reading.

Although CAD was approved by FDA as a second opinion, there
is no monitoring of how radiologists use CAD in the clinic.
Fenton et al analyzed the data from 43 mammography sites in
three states before and after CAD implementation in 2007'2
and a follow-up study in 2011."* They found that the increase
in recall rate decreased from 30 to 6%, while the increase in
CDR decreased from 4.5 to 1.8% between the two studies. They
observed that “radiologists with variable experience and exper-
tise may use CAD in a nonstandardized idiosyncratic fashion,”
and “Some community radiologists, e.g. may decide not to recall
females because of the absence of CAD marks on otherwise
suspicious lesions” Lehman et al'* compared 271 radiologists

in 66 facilities before and after implementation of CAD. They
found that the average sensitivity decreased by 2.3% and the
recall rate increased by 4.5% with the use of CAD. They noted
that “cancers are overlooked more often if CAD fails to mark
a visible lesion” and that “CAD might improve mammography
performance when appropriate training is provided on how to
use it to enhance performance” These comments indicated that
some radiologists may have used CAD prematurely as a concur-
rent reader to speed up reading while CAD was approved only
as a second opinion. On the other hand, some studies showed
that radiologists may overlook true positive CAD marks amid
the large number of false positives they have to dismiss per
1000 cases to detect an additional cancer as the breast cancer
prevalence is generally less than 1%.">"'7 These clinical experi-
ences of CAD reveal that, useful CAD tools in the clinic should
be either those significantly increasing workflow efficiency
without reducing sensitivity or specificity, or those significantly
improving clinical efficacy without impeding workflow, although
ideally delivering both. A mismatch of the performance levels of
CAD with the expectations and the need of the clinicians will
increase the risk of misuse and negative outcomes. The recent
success of DL over conventional machine learning approaches
in many Al applications may offer new opportunities to improve
the performance of CAD tools and meet the high expectations of
achieving these goals.

Deep learning driven CAD development in breast
imaging

DL is a type of representation learning method that can discover
representations of data automatically by transforming the input

Table 2. Two prospective clinical trials that compared double reading to single reading with CAD

Single reading
(first read of double reading)

Double reading Single reading with CAD

Sens Recall rate PPV3 CDR Sens

Recall rate PPV3 CDR Sens

Recall rate PPV3 CDR

Gromet'! 2008 81.4% 10.2% 30.6% 4.12 88.0%

11.9% 29.8 % 4.46 90.4% 10.6% 27.8% 4.20

Gilbert et. al'® 2008 87.7%

3.4% 21.1% 7.06 87.2% 3.9% 18.0% 7.02

CAD, computer-aided diagnosis; CDR = cancer detection rate per 1000 females screened.

Gromet et al™:

single center, nine radiologists, Nsingle, double = 112,413, Nsingle+cap =118,808. CAD system alone: 81.7% sensitivity at 2.8 FPs/case
Gilbert et al'®: CADET 1/ study, three centers, two arms reading matched cases Ngouple

= Nsingle+cap = 28,204. CAD system alone: sensitivity

(mass) 88% at 1.5 FPs/case, sensitivity (calcification) = 95% at 1 FPs/case
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information into multiple layers of abstractions in a deep neural
network architecture.'® By training with a large data set and
an appropriate cost function, the multiple layers of weights in
the deep neural network are iteratively updated, resulting in a
complex mathematical model that can extract relevant features
from the input data with high selectivity and invariance. DL has
led to significant advancements in many automated or computer-
assisted tasks such as target detection and characterization,
speech and text recognition, face recognition, autonomous vehi-
cles, smart devices, and robotics.

Deep learning convolutional neural networks (DCNN) are the
most popular method for pattern recognition and computer
vision applications in image analysis at present. Convolu-
tional neural networks (CNN) originated from neocognitron
proposed in the early 1980%.!° CNN was introduced into
medical image analysis in 1993%**! and applied to microcalci-
fication detection on mammograms in the same year,”*** and
subsequently to mass detection.**” A similar shift-invariant
neural network was applied to the detection of clustered micro-
calcifications in 1994.%® These early CNNs were relatively
shallow but they demonstrated the feasibility of using CNN in
medical images. In 2012, Krizhevsky et al*® designed a DCNN
with five convolutional layers (called “AlexNet”). Using the
“ImageNet” data set containing over 1.2million photographic
images for training, the AlexNet achieved top performance
and outperformed all previous methods at the ImageNet Large
Scale Visual Recognition Challenge for classification of over
1000 classes of everyday objects (cars, animals, planes, etc).
The performance of DCNN was shown to increase with depth
for some tasks® and deeper and deeper DCNNs have been
proposed since then.

DCNN has been applied to CAD for breast imaging in recent
years; the main areas to date include detection and classifica-
tion of microcalcifications or masses, characterization of cancer
subtypes, breast density estimation and classification. The
majority of the studies were conducted with mammographic
images, a substantial number of studies used ultrasound images,
but only a few studies used magnetic resonance (MR) images,
likely because of the differences in the availability of imaging
data. We summarize the studies reported in peer-reviewed jour-
nals for the three modalities in (Tables 3-5) except for some
papers that appeared too preliminary with very few training
samples. In the tables, we include the number of training and
validation samples, and whether there was independent test
set for performance evaluation. The training sample size is an
important factor that impacts the robustness of the trained
model, while testing with a true independent set is an important
step to evaluate the generalizability of the trained model to
unseen cases. Many of the studies have multiple comparisons
with traditional methods or different DCNN approaches. To
keep this paper concise, we tabulated the main proposed method
and key results in the tables and do not discuss the approach of
individual papers. Interested readers may refer to the original
paper for the detailed description of each study. We will briefly
summarize some observations for DL studies in each modality
in the following.

Chan et a/

Deep learning in mammography

There have been a number of studies applying DCNN to
mammography for detection®~** or classification**~*® of micro-
calcifications (Table 3(A)), and detection® ™ and classifica-
tion**% of masses (Table 3(B)). Another common application
of DCNN is the segmentation of breast density and classifica-
tion of the breast in terms of BI-RADS density categories or
dense-vs-non-dense®~7? (Table 3(C)). Although most of the
DCNNs used in these studies adapted the structural frame-
work from the AlexNet,”” the VGG nets by the Visual Geom-
etry Group,” different versions of Inception by Google,”**> and
different versions of ResNet by Microsoft,”® there were varia-
tions in how the hyperparameters or the kernels and layers in
the original structure were modified, especially the number of
fully connected layers near the output for a specific classification
task. Some studies proposed more complex structures by adding
parallel channels or branches of networks to perform auxiliary
functions. Many of the modifications were designed based on the
image characteristics of the specific task of interest (“target task”).
In some studies, a DCNN pre-trained in other image domain,
with or without being fine-tuned with the target domain images,
was used as feature extractor and the extracted deep features
were trained with an external classifier such as support vector
machine (SVM) or random forest for the target task. The studies
show that different DCNN approaches can be trained to accom-
plish the same task, and generally obtain good performance for
the specific data sets used.

Digital breast tomosynthesis (DBT) is increasingly being used
for breast cancer screening, either standalone or in combination
with two-dimensional mammography. A few studies have been
conducted with DBT to detect microcalcifications or masses, and
classification of masses as malignant or benign using DCNN.
Because of the similarity between DBT and mammography and
that mammographic images are more readily available, Samala
et al’”*° showed that an intermediate stage of fine-tuning with
mammographic images was useful for transfer learning in DBT
tasks. Contrast-enhanced spectral mammography or dual-
energy contrast-enhanced digital mammography is a relatively
new modality for diagnostic work-up, especially for dense
breasts, but it has not been commonly implemented in the clinics
so that data are scarce. Only two studies have been reported,
both had a data set of only about 50 cases,”*”” to demonstrate the
feasibility of using contrast-enhanced spectral mammography or
contrast-enhanced digital mammography in DCNN training for
mass classification.

Deep learning in breast ultrasound

Ultrasound is an important breast imaging modality for diag-
nostic work-up to distinguish solid masses from cysts, and for
screening in dense breasts. Machine learning methods have been
applied to breast ultrasound in various applications.”®'% An
increasing number of DL applications in breast ultrasound has
been reported in the past 2 years. We summarize these studies in
Table 4. The majority of the studies were related to breast mass
characterization,**”*"82 followed by mass segmentation,**~*> and
detection.®*®” The most commonly used DL models for ultra-
sound were again AlexNet, VGG-19, ResNet, GoogLeNet, and
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Table 4. Studies using deep learning approach for mass segmentation, detection and classification on breast ultrasound (US)

images
Convolutional Performance
Journal Independent | neural network (validation or
article Year Training set Validation set | test set (CNN) structure independent test)
Mass classification
Antropova et 2017 1125 cases (158M, 967B), 2393 ROIs ImageNet-pretrained AUC(maxpool
al (415M, 1098B cystic, 880B solid), 5-fold VGGI19 as feature features)=0.872;
(6\% extractor, SVM classifier AUC(fused
with radiomics
features)=0.902
Han et al.”® 2017 6579 masses: 6579 masses: 829 masses: ImageNet-pretrained AUC =0.958
(2814M, 3765B) 10-fold CV (340M, 489B) GoogLeNet
Xiao et al.”’ 2018 2058 images 10 % 10% ImageNet-pretrained AUC(ResNet50)=0.91,
(688M, 1370B): ResNet50, Xception, and AUC(InceptionV3)=0.91,
80% training InceptionV3 AUC(combined)=0.93
Zhou et al.”® 2018 | Shear-wave 45 images 95 images 16-layer DCNN Accuracy: 95.8%
elastography 400
images
Leeetal” 2018 | Images: Images: Study 1: 27 Stacked Denoising Accuracy:
Study 1: 143 Study 2: 40 Autoencoder (SDAE) Study 1: 82%
Study 2: 210 network Study 2: 83%
Huang et al.* 2019 | Images of BI-RADS categories: (3) 531, ImageNet-pretrained Accuracy: 0.734 to 0.998
(4A) 443, (4B) 376, (4C) 565, (5) 323 modified VGG-16 for the five classes
Byra et al.8! 2019 | 582 masses (23% 150 masses (23% | 150 ImageNet-pretrained AUC(VGG19 +FT
M) M) massdetection VGG19 with fine-tuning +ML)=0.936, AUC(four
& classif: (FT) and matching layer radiologists)=0.806 to
INbreastes (23% (ML) at input 0.882
M)
Fujioka et al.% 2019 | 240 masses 120 masses ImageNet-pretrained AUC(DCNN)=0.913,
(144M, 96B) (72M, 48B), 120 Inception v2 AUC(three
947 images images radiologists)=0.728 to
(467M, 480B) (72M, 48B) 0.845
Mass segmentation
Leietal.® 2018 Automated whole breast US, 16 cases: ConvEDNet with deep Jaccard index: 72.2 to
3134 images; Leave-one-case-out CV boundary supervision 86.8%
Huetal® 2019 | 570 images (400 training, 170 validation) ImageNet pre-trained DSC(DFCN + active
from 89 patients. VGG16, U-Net, DFCN, contour)=88.97 %
DEFCN +active contour
model
Yap et al® 2019 Total: 469 masses (113 M, 356 B); 70% 20% ImageNet-pretrained B mass:
training, 10% validation; 5-fold CV FCN-AlexNet, FCN-32, DSC(FCN-16)=0.7626;
FCN-16, and FCN-8 M mass:
DSC(FCN-8)=0.5484
Mass detection
Yap et al.% 2018 | Study 1: 306 images GoogLeNet, U-Net, FROC: Sens 77 to 98% at
(60M, 246B), 10-fold CV ImageNet-pretrained 0.28 to 0.10 FPI,
Study 2: 163 images FCN-AlexNet, FCN-AlexNet: best
(53M, 110B), 10-fold CV performance
Shin et al.¥ 2019 | 800 strongly 600 strongly ImageNet-pretrained FROC: 84.5% at 1 FPI
& 4224 weakly annotated images VGG16, ResNet

annotated images

FCN, fully convolutional network.

U-Net.!”! Due to the relatively small available breast ultrasound
image sets, transfer learning was used to train the DCNNs and
the DCNNs were most commonly pre-trained with the ImageNet
data. The DCNN models were often used directly as classifiers
but were also used as feature extractors, where the extracted deep

features were merged by machine learning classifiers such as
SVM, logistic regression or linear discriminant classifiers. Most
of the studies used only training and validation sets without an
independent test set. The reported performances were therefore
preliminary and further development is needed.
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Deep learning in breast MRI

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) measures the properties of tissue microvascula-
ture by imaging the small excess in the Boltzmann distribution
of the spins within the magnetic field.'?*!®> DCE-MRI provides
functional and structural characteristics of the disease'®* and is
routinely used to assess the tumor extent and detect multifocal
and multicentric breast cancer. The apparent diffusion coefficient
from diffusion-weighted MRI (DW-MRI) can be correlated with
the macromolecular and microstructural changes at the cellular
level, providing a useful biomarker during cancer treatment.'®®
Breast MRI is used for screening females at high risk of breast
cancer, treatment response monitoring of neoadjuvant chemo-
therapy, detection of residual disease and as supplement to other
imaging modalities.'® % Machine learning methods have been
applied to breast MRI for segmentation of fibroglandular tissue
for breast density assessment, detection and diagnosis of breast
cancer or cancer subtypes, identifying radiomics features as
biomarkers and identifying the mapping between radiomics and
genomics using radiogenomics analysis.'? !

DCNNs have the potential to replace or improve over the
conventional machine learning methods in analysis of MRL
Unlike mammography, only a few studies have been conducted
to develop DL methods for breast MRI to date, and transfer
learning is generally used in these studies. The limited breast
MR data available is the major factor limiting its development.
The few studies that applied DCNNs to breast MRI are shown in
Table 5, which include the use of U-Net for breast tumor segmen-
tation,” VGG for feature extraction,**™ classification of malig-
nant and benign breast lesions,**”! and U-Nets for segmentation
of the breast and the fibroglandular tissue for breast density
assessment.”?

MRI has been shown to have a wide range of clinical applications
as mentioned above. Some of these tasks involve multimodality,
multiparametric imaging and diagnostic tests, where data fusion
and quantitative biomarkers may provide important informa-
tion to support precision medicine. This information is currently
underutilized because manual processing is too complex or too
time-consuming and thus difficult to conduct large clinical vali-
dation studies. Computer-assisted image analysis with machine
learning techniques will be most helpful for these tasks. However,
the development of DL tools in breast MRI is hindered not only
by the difficulty to collect big data for training, but also by the
large variations in image characteristics due to differences in
acquisition protocols and scanner types among clinical sites.!!?
Collecting big data from multi-institutional studies for quanti-
tative DCE-MRI analysis or DL training requires standardized
calibration of the scanners and/or robust image homogenization
methods. The Quantitative Imaging Biomarkers Alliance has
proposed performance standards and tools for MRIL.!"* Before
widespread implementation of the standardization for MRI in
clinical practice, current DL application of MRI data will rely
on post-processing techniques to reduce the variations. Devel-
opment of Al in breast MRI is at an early stage and much more
collaborative effort should be devoted to compile big data so that
investigators can explore the potentials of the DL approach and

BJR

the fusion of multidomain deep features with radiomics features
and/or other patient data for the various stages of the diagnosis
and management of breast cancer.

Promises of deep learning in medical imaging
applications

As the development of DL and AI methods for various CAD
applications is still ongoing, no large-scale clinical studies have
been conducted to evaluate the impact of the new generation of
Al-based CAD on clinicians. One application of strong interest
in breast imaging is to use Al to reduce radiologists’ workload
in screening mammography, which is the highest volume exam
in breast imaging but with a low cancer prevalence of less than
1%. A few retrospective studies have investigated the feasibility
of using Al-based CAD to triage screening mammograms as
having low risk or high risk of breast cancer so that radiologists
can prioritize their reading and improve workflow.

Rodriguez-Ruiz et al''* evaluated the standalone performance of
an Al-based CAD system for breast cancer detection in 9 data
sets used in observer studies from 7 countries which totaled to
be 2652 mammography examinations with 653 cancers. Their
system achieved an area under the receiver operating character-
istic curve (AUC) of 0.840 which was statistically non-inferior to
the average AUC of 0.814 by 101 radiologists from the observer
studies, and was higher than 61.4% of the radiologists. In another
study by the same group using the same data set,''” the Al-based
CAD system was used to assess the risk of malignancy of an
exam by a score (1-10 scale). By selecting a risk score >2and >5
as decision threshold for high risk cases, they could exclude 17
and 47% of the cases from radiologists’ reading but missed 1 and
7% of the cancers, respectively.

Kyono et al''® developed a machine learning method to identify
normal cases in screening mammography. A DCNN in conjunc-
tion with multitask learning was trained to extract imaging
features to predict diagnosis, another deep network was trained to
merge the multiview predictions with the patient’s non-imaging
data into an assessment of whether the case is normal. With 2000
cases and 10-fold cross-validation, their DCNN model achieved
a negative predictive value of 0.99 to identify 34 and 91% of the
normal mammograms for test sets with a cancer prevalence of
15 and 1%, respectively. They concluded that machine learning
could be used for patient triage to reduce the normal mammo-
grams the radiologists need to read without degrading diag-
nostic accuracy. These results were superior to those reported by
Rodriguez-Ruiz et al but the generalizability has yet to be vali-
dated with independent testing.

Conant et al''” conducted a retrospective, fully crossed, multi-
reader, multicase observer performance study on using an
Al-based CAD system as a concurrent reader on radiologists’
accuracy and reading time for cancer detection in DBT. 24
radiologists including 13 breast subspecialists and 11 general
radiologists participated to read 260 DBT cases (65 cancer, 65
benign, 130 normal) with and without AI-CAD in different
reading sessions. They found that the mean AUC, the sensitivity,
and the specificity increased, while the reading time per case and
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the recall rate decreased. All improvements by concurrent use of
AI-CAD were statistically significant (p < 0.01). They also showed
that the improvements persisted in the analysis of the subgroups
of breast and general radiologists. In another study, Benedikt et
al'*® found that using concurrent CAD which showed the AI-de-
tected lesion blended onto the synthetic mammograms of DBT
could reduce radiologists’ reading time significantly (p < 0.01)
without significantly affecting the other performance measures.

Yala et al'*? trained a DL model with mammograms of over 56,831
females to triage screening mammograms to predict whether or
not that breast would develop breast cancer within 1year, and
selected a threshold to triage mammograms as cancer-free and
not needing radiologists’ reading. On an independent test set of
7176 females, they showed that although the DL model obtained
an AUC of only 0.82, it could triage 19% of the cases as cancer-
free with only one false negative. The radiologists had a speci-
ficity of 93.6% and a sensitivity of 90.6% in the original test set,
and would have obtained an improved specificity of 94.3% and a
non-inferior sensitivity of 90.1% in a retrospective simulation of
reading the remaining mammograms.

These studies show that AI-based CAD has the potential to reach
sufficiently high sensitivity and specificity such that it may be
used as a concurrent reader to reduce reading time in DBT or
as a pre-screener to exclude some low risk mammograms from
radiologists’ reading in screening mammography. In general, for
Al tools to play these roles beyond providing second opinion
or decision support in patient care, they should be subjected to
rigorous validation in clinical environment and demonstrate
robustness before integration into the routine workflow. It is also
important to ensure the stability of their performance over time.
Although clinicians and developers are enthusiastic about the
potential benefits amid the hype of Al there are many challenges
to achieve these goals, as discussed next.

CHALLENGES FROM THE LABORATORY TO THE
CLINIC

Big data for CAD development

The major challenge of developing a robust DCNN for a specific
task is to collect a large well-curated data set for training and
validation of the model. In addition, a representative indepen-
dent test set sequestered from the training process should be
used to evaluate the generalizability of the trained model in
unseen cases.'?’ Each class in the data sets has to be represen-
tative of the population to which the DCNN is intended to be
applied. In particular, the abnormal class in the training set has
to be sufficiently large and cover the range of subtleties for the
target lesions or diseases that may be encountered in clinical
practice to enable adequate learning of the variations in lesion
characteristics and thus ensure robustness during real-world
deployment, which make data collection even more challenging
for tasks such as screening in which the abnormal class is only
a small fraction of the population. Collecting data in medical
imaging with clinicians’ annotation or biopsy truth is costly and
such resources may not be available to DCNN developers. Data
mining and natural language processing of the electronic health
record may be useful for extracting clinical data and diagnosis
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from the physicians’ and pathology reports'?! to correlate with
images collected from the picture archiving and communication
system. However, the accuracy of the retrieved labels depends on
the methods used,'?* and the automatically mined disease labels
can contain substantial noise'** and most do not contain image-
level or lesion-level annotations.'** In the Digital Mammography
DREAM Challenge (2016-2017),'** the participants could access
a training set of over 640,000 mammograms from 86,000 females
but the cases only had breast-level labeling without lesion anno-
tation. The winning teams all used DL approach but the highest
performance only reached an AUC of 0.8744 and a sensitivity of
80% at a specificity of 80.8%.

It may be noted that many of the studies to date as cited in
Tables 1-3 had very small training set. For mammography, the
publicly accessible Digital Database for Screening Mammog-
raphy”® that contains only digitized screen-film mammograms,
was used as the only or the main data set in many studies. The
other two accessible digital mammography sets, Breast Cancer
Digital Repository’* and INbreast data set,” are relatively small.
Most of the studies only included training and validation sets or
by cross-validation without an independent test set. The reported
results are likely optimistically biased because the validation set
is usually used to guide the selection of hyperparameters during
DCNN training. Without the evaluation using a large, represen-
tative independent test set, the generalizability of the reported
trained DCNN models is uncertain. Furthermore, it has been
shown that DCNN training can be biased to the specific char-
acteristics of the training images acquired with certain imaging
protocols or vendors’ machines and thus independent testing
with external data is necessary in addition to that with internal
data to identify these potential biases.'*>'?*

To alleviate the problems of limited data available for DCNN
training, the commonly used approach at present is to use transfer
learning with fine-tuning and data augmentation. Although
these techniques can greatly improve DCNN training, they
cannot compensate for the lack of adequate representations of
disease patterns from the patient population in a sparse training
set. Transfer learning takes advantage of the property of DCNN
that learns from the input images multiple levels of feature repre-
sentations from generic to specific and embedded the infor-
mation in its layers of convolutional kernels and weights. Since
many image features are composed of common basic elements, a
DCNN initialized with weights well-trained in a different source
domain can outperform a DCNN trained from randomly initial-
ized weights,'*® especially when the data set from the target
domain is small. Samala et al*® showed that the performance of
the pre-trained DCNN increased with fine-tuning in the target
domain and it steadily increased with increasing training sample
size. Transfer learning can therefore complement but not replace
the need for a large data set to achieve high performance in the
target task. Data augmentation generates a number of slightly
different versions of a given training image using techniques
such as scaling, flipping, rotation, translation, cropping, intensity
or shape transformation and combinations of these techniques.
Data augmentation can easily increase the apparent number of
training samples by thousands of times. However, the augmented
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images are highly correlated with the original image so that
they carry little new information or features for the DCNN to
learn. Data augmentation can reduce the risk of overfitting to
the training data®”'?”'?® by introducing some variations to the
images but cannot fill in the missing information if the original
small training set does not contain samples that cover the wide
range of disease characteristics in the real-world population.
Other methods are also being considered for data augmenta-
tion, such as generative adversarial networks that can create
new images from the learned features after training with an
available set of images'?’ and digitally inserting artificial lesions
into normal images.'*” Whether these methods can mimic the
pathological characteristics of real lesions other than structural
similarity, especially the texture features inside and surrounding
the lesion, and produce useful samples for training DL models to
classify real patient cases remain to be studied.

Clinical implementation—acceptance testing and
quality assurance

If properly trained with a large data set, Al-based CAD is expected
to be more robust and more accurate than conventional CAD
tools. However, studies showed that the large learning capacity of
DL allows it to even learn non-medical features such as imaging
protocols or the presence of accessories related to a patient’s
comorbidity to estimate the risk of certain disease.'** As a result,
an Al-based CAD tool well trained and independently tested
using data collected from some clinical sites may not translate
to other sites. Similar to installation of new clinical equipment,
acceptance testing should be performed to verify that its perfor-
mance can pass a certain reference level using a data set repre-
sentative of the local patient population. In addition, given the
current high expectation that DL technologies are “intelligent;’
it will be even more important for clinicians to understand the
capabilities and limitations of a CAD tool and what it is designed
for before clinical use. After the installation, the clinic and the
users should allow for a test period in which the users refrain
from being influenced by the CAD output. Rather, the users
should review the correct and incorrect recommendations by
CAD and assess its performance on a large number of consecu-
tive clinical cases. By learning the characteristics of the cases and
understanding the strengths and weaknesses of the CAD tool, the
users may be able to establish proper expectation and confidence
level and reduce the risk of improper use and adverse outcomes.
The test period therefore serves both as a real-world evaluation
of the CAD tool on the local population and user training.

The performance of a CAD tool may be affected by the proper-
ties of the input image, which depend on many factors such as
the imaging protocol or equipment and the image processing or
reconstruction software that may change or upgrade from time
to time. As Al-based CAD tools are expected to have widespread
use in health care in the future, either as second opinion or auto-
mated decision maker in some applications such as pre-screening
or triaging, CAD tool can directly impact clinical decision and
thus patient management. It is important to establish quality
assurance (QA) program and appropriate metrics to monitor the
standalone CAD performance as well as the effectiveness and effi-
ciency of CAD use in the clinic over time. The need for QA and
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user training on CAD devices has been discussed in an opinion
paper by the American Association of Physicists in Medicine
CAD Subcommittee."*! Professional organizations should take
the lead to establish performance standards, QA and monitoring
procedures, and compliance guidance, to ensure the safety and
effectiveness for implementation and operation of CAD/AI tools
in clinical practice.

INTERPRETABILITY

A DCNN extracts layers of feature representations from the
input data, merges them with a highly complex model and
predicts the probability that the input belongs to a certain class.
It is difficult to decipher the process of how the DCNN derives
its prediction. Researchers have developed visualization tools to
display the deep feature layers in the DCNN"**!** and to visu-
alize the relative importance of regions on the input image that
contribute to the DL output by a heat map, such as the class
activation map.'** These visualization tools are the first steps
to gain some understanding of the deep features in relation to
the input data but still far from explaining why and how specific
features are connected and weighted to make a clinical decision.
For clinicians to be convinced of the recommendation by the Al
model, especially for clinical tasks more complicated than lesion
detection, the DL model has to provide reasonable interpreta-
tions of how its extracted features and output are correlated with
the patient’s medical conditions or other clinical data. Ideally,
an Al tool should be able to convey the interpretation to clini-
cians in direct medical languages and can even provide deeper
level of explanation if the recommendation is questioned. The
level of interpretation and the method of presenting the inter-
pretation will depend on the specific purpose of each type of Al
tools. Much more research and development efforts are needed
to determine clinicians’ preferences on each type of applications
and to advance the DL models to be truly intelligent decision
support tools.

SUMMARY

DL technology has the potential of bringing the performance of
CAD tools to a level far beyond those developed with conven-
tional machine learning methods. However, the development of
DL-based CAD tools including those for breast imaging are still
at an early stage due to the lack of large data sets for training
the DCNNs to date. Collaborative efforts from multiple institu-
tions to compile big patient data for various diseases is the most
urgent step to allow effective utilization of DL technology for
the development of practical CAD or AI tools. With sufficiently
large well-curated data for a given task, DL technology can build
a robust predictive model based on the cumulative experiences
from a large number of previous cases collected from the patient
population, much greater than those human clinicians can ever
learn from or memorize. It is likely that AI tools, if properly
developed and integrated into the clinical workflow, can deliver
performance comparable to or even exceeding clinicians’ in some
routine tasks. However, medical decision making is a highly
complex process, which often cannot rely solely on statistical
prediction but may vary based on individual patients conditions
and medical history, as well as some unpredictable physiolog-
ical processes or reactions of the human body. A well-developed
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CAD or Al tool can merge patient data from multiple resources
efficiently and provide a reliable and hopefully interpretable
assessment to clinicians, who should then play the key role as

machine learning.

the final decision maker on the best course of management for

a specific patient based on the CAD information, together with
his/her experience and judgment. It can be expected that the
efficient data analytics from CAD or Al tools can complement

Chan et a/

the human intelligence of clinicians to improve the accuracy and
workflow in the clinic and thus patient care in this new era of
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