Mass detection
|
Samala et al.37
|
2016 |
2282 SFM & DM (2461 masses, 3173 FPs), 230 DBT vols (228 masses, 28330 FPs), 4-fold CV |
94 DBT vols (89 masses) |
Cuda-convNet: Stage 1 training with mammograms, Stage 2 fine-tuning with DBT |
AUC(stage1 mam)=0.81; AUC(stage2 DBT)=0.90; FROC: Breast-based 91% sens at 1FP/vol |
Kim et al.38
|
2017 |
154 cases (616 DBT vol, 185M, 431N); 5-fold CV |
|
ImageNet pre-pretrained VGG16 and LSTM depth directional long-term recurrent learning |
AUC(DCNN)=0.871, AUC(DCNN + LSTM)=0.919 |
Jung et al.39
|
2018 |
Private set: 350 pts (222 DMs) for second pretraining. INbreast: 115 pts (410 DMs), 5-fold CV |
|
ImageNet-pretrained ResNet50 with a feature pyramid network (class subnet, box subnet) |
FROC:Sens 0.94 at 1.3 FPI, Sens 0.97 at 3 FPI |
Mass Classification
|
Arevalo et al.40
|
2016 |
344 cases (736 images, 426B, 310M): 50% training, 10% validation |
40% |
CNN with one or two conv layers. Also ImageNet-pretrained DeCAF |
AUC(CNN)=0.822; AUC(combined with hand-crafted features)=0.826; AUC(DeCAF)=0.79 |
Jiao et al.41
|
2016 |
300 images (150B, 150M) |
300 images (150B, 150M) |
|
Fine-tuning of ImageNet-pretrained AlexNet as feature extractor. Two SVM classifiers for mid-level level and hi-level features. |
Accuracy = 96.7% |
Dhungel et al.42
|
2017 |
INBreast 115 cases, Detection: 410 images, Segmentation & classification: 40 cases (41B, 75M masses); 60% training, 20% validation |
20% |
Detection: multiscale deep belief network, a cascade of R-CNNs and random forest classifiers |
FROC: 90% at 1FPI; AUC(DCNN features)=0.76; AUC(Manually marked mass)=0.91. |
Sun et al.43
|
2017 |
2400 ROIs (100 labeled, 2300 unlabeled) |
758 ROIs |
DCNN with three convolution layers |
AUC = 0.8818, Accuracy = 0.8234 |
Antropova et al.44
|
2017 |
DM: 245 masses (113B, 132M); 5-fold CV |
|
ImageNet-pretrained VGG19 as feature extractor, SVM classifier |
AUC(maxpool features)=0.81AUC(Fused with radiomic features)=0.86 |
Samala et al.45
|
2017 |
SFM & DM 1335 views (ROI: 604M, 941B); 4-fold CV |
SFM 907 views (ROI:453M, 456B) |
ImageNet-pretrained AlexNet |
AUC = 0.82 |
Kooi et al.46
|
2017 |
Set 1: (1487M, 73102N); Set 2: (1108M, 696 cysts) |
Set 1: (342M, 21913N), Set 2: nested CV |
|
VGG-like DCNN pretrained with Set 1, used as feature extractor on Set 2. Gradient boosting trees classifier. |
Malignant-vs-cysts classif. (CC + MLO): AUC(DCNN features)=0.78, AUC(with contrast features)=0.80 |
Jiao et al.47
|
2018 |
DDSM 300 images |
DDSM 150 images |
DDSM 150 images; MIAS set |
Joint model of ImageNet-pretrained AlexNet and fine-tuned as feature extractor and parasitic metric learning net. |
Accuracy(DDSM)=97.4%; Accuracy(MIAS)=96.7% |
Samala et al.48
|
2018 |
SFM & DM 2242 views (ROI: 1057M, 1397B), DBT 230 vols (ROI: 590M, 550B); 4-fold CV |
DBT 94 vols (ROI: 150M, 295B) |
ImageNet-pretrained AlexNet, 2-stage transfer learning, pruning |
AUC(with pruning)=0.90; AUC(without pruning)=0.88 |
Chougrad et al.49
|
2018 |
1529 cases (6116 images) from DDSM, INbreast, BCDR; 5-fold CV |
MIAS (113 images) |
Compare ImageNet-pretrained VGG16, ResNet, InceptionV3 |
InceptionV3: AUC = 0.99, Accuracy = 98.23% |
Al-masni et. al.50
|
2018 |
DDSM 600 images (300M, 300B); 5-fold CV |
|
ImageNet-pretrained DCNN with 24 convolutional layers (You-Only-Look-Once detection & classification) |
AUC = 0.9645; Accuracy = 97% |
Wang et al.51
|
2018 |
BCDR 736 images; 50% training, 10% validation |
40% |
Multiview-DCNN: ImageNet-pretrained InceptionV3 as feature extractor with attention map, Recurrent NN for classification |
MV-DNN: AUC = 0.882, Accuracy = 0.828; MV-DNN + Attention map: AUC = 0.886, Accuracy = 0.846. |
Al-antari et al.52
|
2018 |
INbreast: 115 cases (410 DMs, 112 masses); 4-fold CV: 75% training, 6.25% validation |
18.75% |
Detection DCNN (Al-masni et al); segmentation by second DCNN, Classification by simplified AlexNet. |
Detection accuracy = 98.96%,AUC(M-vs-B classification)=0.9478 |
Gao et al.53
|
2018 |
SCNN: 49 CEDM cases; DCNN ResNet50: INbreast 89 cases; 10-fold CV |
|
Shallow-deep CNN (SD-CNN): SCNN generated virtual CEDM of mass. Pretrained ResNet50 as feature extractors for 2-view virtual CEDM and DM, Gradient boosting trees classifier |
AUC(DM)=0.87; AUC(DM + virtual CEDM)=0.92 |
Kim et al.54
|
2018 |
DDSM (178M. 306B) |
DDSM (44M, 77B) |
DDSM (170M, 170B) |
BI-RADS guided diagnosis network: ImageNet-pretrained VGG16, plus BI-RADS critic network and relevance score |
AUC(with B-RADS critic network)=0.841; AUC(without BI-RADS critic network)=0.814 |
Perek et al.55
|
2019 |
54 CESM cases with 129 lesions (56M, 73B); 5-fold CV |
|
Fine-tuning (FT) ImageNet-pretrained AlexNet, RawNet without pretraining |
Using deep features and BI-RADS features: AUC(FT-AlexNet)=0.907; AUC(RawNet)=0.901 |
Samala et al.56
|
2019 |
SFM & DM 2242 views (ROI: 1057M, 1397B), DBT 230 vols (ROI: 590M, 550B); 4-fold CV |
DBT 94 vols (ROI: 150M, 295B) |
ImageNet-pretrained AlexNet, 2-stage transfer learning |
AUC(one-stage fine-tuning with DBT)=0.85; AUC (two-stage fine-tuning with mammo then DBT)=0.91 |
Mendel et al.57
|
2019 |
76 cases (2-view DM, DBT, synthetic SM) with 78 lesions (30M, 48B) including 34 masses, 15 ADs, 30 MC clusters; Leave-one-out CV |
|
ImageNet-pretrained VGG19 as feature extractor, SVM classifier |
Two-view AUC: all lesions DBT = 0.89, SM = 0.86, DM = 0.81; mass&AD DBT = 0.98; MC DBT = 0.97 |
Cancer detection (any lesion types)
|
Becker et al.58
|
2017 |
Study 1: (95M, 95N); Study 2: (83M, 513N) |
Study 1: (48M, 48N); Study 2: (42M, 257N) |
Study 1: BCDR (35M, 35N); Study 2: (18M, 233N) |
dANN from commercial “ViDi” image analysis software |
AUC(Study 1)=0.79; AUC(Study 2)=0.82; |
Carneiro et al.59
|
2017 |
(1) classification: DDSM 86 cases; (2) detection & classif: INbreast 115 cases |
(1) DDSM 86 cases; (2) INbreast 5-fold CV |
|
ImageNet-pretrained ConvNet |
Two-view AUC: (1) M-vs-B>0.9 or M-vs-(B + N)>0.9. (2) M-vs-B 0.78; M-vs-(B + N) 0.86 |
Kim et al.60
|
2018 |
3101M, 23,530 normal cases (four views/case) |
1238 cases (619M) |
1238 cases (619M) |
DIB-MG: (ResNet with 19 convolutional layers + 2-stage global-average-pooling layer) |
AUC(M-vs-(B + N))=0.906 |
Ribli et al.61
|
2018 |
DDSM 2620 cases and private DM set 174 cases |
INbreast 115 cases |
Faster R-CNN: ImageNet-pretrained VGG16 with region proposal network for localizing target |
Detection FROC: 90% sensitivity at 0.3 FPI; Classification AUC = 0.95 |
Aboutalib et al.62
|
2018 |
DDSM 3294 images, private DM set 1734 images; 6-fold CV |
private DM 100 images |
ImageNet-pretrained AlexNet, pretrained with DDSM then fine-tuned with DM (best among other variaitons) |
AUC(M-vs-recalled B)=0.80; AUC(M-vs-negative&recalled B)=0.74. |
Akselrod-Ballin et al.63
|
2019 |
9611 cases (1049M, 1903 biopsy negative, 247 BI-RADS3, 6412 normals) |
1055 cases + 31 FNs |
2548 cases + 71 FNs |
InceptionResnetV2 without pretraining |
AUC(predict M per breast with clinical data)=0.91; AUC(identify normal case per breast with clinical data)=0.85; Identify M in 48% of FNs of radiologists |