Skip to main content
. 2019 Dec 13;93(1108):20190580. doi: 10.1259/bjr.20190580

Table 5.

Studies using deep learning approach for breast MRI

Journal article Year Training set Validation set Independent test set Convolutional neural network (CNN) structure Performance (validation or independent test)
Classification
Rasti et al.88 2017 112 pts (53M, 59B); 5-fold CV CNN (three convolutional layers); mixture ensemble of CNNs (ME-CNN) with three CNNs and a convolutional gating network AUC(CNN)=0.95
AUC(ME-CNN)=0.99
Antropova et al.44 2017 690 pts (478M, 212B); 5-fold CV ImageNet-pretrained VGG19 as feature extractor, SVM classifier AUC(Maxpool features)=0.87; AUC(fused with radiomic features)=0.89
Antropova et al.89 2018 690 pts (478M, 212B); maximum intensity projection (MIP), 5-fold CV ImageNet-pretrained VGG19 as feature extractor, SVM classifier AUC(MIP features)=0.88
Segmentation/Classification
Zhang et al.90 2019 224 pts (combination of CV and using all data for training different U-Nets) 48 pts Multiple U-Nets for breast segmentation, landmark detection and mass segmentation DSC(mass segment.)=71.8
AUC(Luminal A vs others)=0.69 for variance of time-to-peak kinetic feature
Truhn et al.91 2019 447 pts (787M from 341 pts, 507B from 237 pts); 10-fold CV in outer loop and 5-fold CV in innerloop CNN: ImageNet-pretrained ResNet18
Radiomics: PCA and L1 regularization
562 radiomics
AUC(CNN)=0.88
AUC(radiomics-PCA)=0.78
AUC(radiomics-L1 regularization)=0.81
AUC(radiologist)=0.98
Segmentation of fibroglandular tissue/breast density assessment
Dalmış et al.92 2017 39 pts 5 pts 22 pts 3-class U-Net (non-breast, fatty tissue, fibroglandular tissue) DSC(breast)=0.93; DSC(FGT)=0.85;
Correlation(manual vs U-Net segmented FGT)=0.97

PCA, principal component analysis.