Table 5.
Journal article | Year | Training set | Validation set | Independent test set | Convolutional neural network (CNN) structure | Performance (validation or independent test) |
---|---|---|---|---|---|---|
Classification | ||||||
Rasti et al.88 | 2017 | 112 pts (53M, 59B); 5-fold CV | CNN (three convolutional layers); mixture ensemble of CNNs (ME-CNN) with three CNNs and a convolutional gating network | AUC(CNN)=0.95 AUC(ME-CNN)=0.99 |
||
Antropova et al.44 | 2017 | 690 pts (478M, 212B); 5-fold CV | ImageNet-pretrained VGG19 as feature extractor, SVM classifier | AUC(Maxpool features)=0.87; AUC(fused with radiomic features)=0.89 | ||
Antropova et al.89 | 2018 | 690 pts (478M, 212B); maximum intensity projection (MIP), 5-fold CV | ImageNet-pretrained VGG19 as feature extractor, SVM classifier | AUC(MIP features)=0.88 | ||
Segmentation/Classification | ||||||
Zhang et al.90 | 2019 | 224 pts (combination of CV and using all data for training different U-Nets) | 48 pts | Multiple U-Nets for breast segmentation, landmark detection and mass segmentation | DSC(mass segment.)=71.8 AUC(Luminal A vs others)=0.69 for variance of time-to-peak kinetic feature |
|
Truhn et al.91 | 2019 | 447 pts (787M from 341 pts, 507B from 237 pts); 10-fold CV in outer loop and 5-fold CV in innerloop | CNN: ImageNet-pretrained ResNet18 Radiomics: PCA and L1 regularization 562 radiomics |
AUC(CNN)=0.88 AUC(radiomics-PCA)=0.78 AUC(radiomics-L1 regularization)=0.81 AUC(radiologist)=0.98 |
||
Segmentation of fibroglandular tissue/breast density assessment | ||||||
Dalmış et al.92 | 2017 | 39 pts | 5 pts | 22 pts | 3-class U-Net (non-breast, fatty tissue, fibroglandular tissue) | DSC(breast)=0.93; DSC(FGT)=0.85; Correlation(manual vs U-Net segmented FGT)=0.97 |
PCA, principal component analysis.