
Pharmacogenomic polygenic response score

predicts ischaemic events and cardiovascular

mortality in clopidogrel-treated patients

Joshua P. Lewis1*, Joshua D. Backman 1, Jean-Luc Reny 2,3,

Thomas O. Bergmeijer 4, Braxton D. Mitchell 1,5, Marylyn D. Ritchie 6,
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Aims Clopidogrel is prescribed for the prevention of atherothrombotic events. While investigations have identified
genetic determinants of inter-individual variability in on-treatment platelet inhibition (e.g. CYP2C19*2), evidence
that these variants have clinical utility to predict major adverse cardiovascular events (CVEs) remains
controversial.

...................................................................................................................................................................................................
Methods
and results

We assessed the impact of 31 candidate gene polymorphisms on adenosine diphosphate (ADP)-stimulated platelet
reactivity in 3391 clopidogrel-treated coronary artery disease patients of the International Clopidogrel
Pharmacogenomics Consortium (ICPC). The influence of these polymorphisms on CVEs was tested in 2134 ICPC
patients (N = 129 events) in whom clinical event data were available. Several variants were associated with
on-treatment ADP-stimulated platelet reactivity (CYP2C19*2, P = 8.8 � 10-54; CES1 G143E, P = 1.3 � 10-16;
CYP2C19*17, P = 9.5 � 10-10; CYP2B6 1294þ 53 C > T, P = 3.0 � 10-4; CYP2B6 516 G > T, P = 1.0 � 10-3; CYP2C9*2,
P = 1.2 � 10-3; and CYP2C9*3, P = 1.5 � 10-3). While no individual variant was associated with CVEs, generation of
a pharmacogenomic polygenic response score (PgxRS) revealed that patients who carried a greater number of
alleles that associated with increased on-treatment platelet reactivity were more likely to experience CVEs
(b = 0.17, SE 0.06, P = 0.01) and cardiovascular-related death (b = 0.43, SE 0.16, P = 0.007). Patients who carried
eight or more risk alleles were significantly more likely to experience CVEs [odds ratio (OR) = 1.78, 95%
confidence interval (CI) 1.14–2.76, P = 0.01] and cardiovascular death (OR = 4.39, 95% CI 1.35–14.27, P = 0.01)
compared to patients who carried six or fewer of these alleles.

...................................................................................................................................................................................................
Conclusion Several polymorphisms impact clopidogrel response and PgxRS is a predictor of cardiovascular outcomes.

Additional investigations that identify novel determinants of clopidogrel response and validating polygenic models
may facilitate future precision medicine strategies.
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Introduction

Clopidogrel is prescribed for the prevention of atherothrombotic
events in patients with coronary artery disease.1 Given its effective-
ness and cost, clopidogrel continues to be used frequently compared
to newer alternatives such as prasugrel and ticagrelor.2,3 However,
substantial inter-individual variability in clopidogrel response exists,
and patients who experience sub-optimal therapy have high on-
treatment platelet reactivity (HPR) and are at greater risk of experi-
encing a recurrent event.

Variability in clopidogrel efficacy is caused by multiple factors,
including age, sex, smoking, existing comorbidities, and drug–drug
interactions.4 However, these factors explain a small proportion of
the total phenotypic variation in clopidogrel response. Recent studies
indicate that genetic variation substantially impacts clopidogrel effi-
cacy, accounting for �75% of the variability in response, as assessed
by agonist-induced platelet aggregation.5

Multiple studies have been performed to identify genetic deter-
minants of clopidogrel response. Though several candidate gene
polymorphisms, most notably the loss-of-function CYP2C19*2 vari-
ant, have been identified, relatively small sample sizes have ham-
pered discovery efforts, and discrepant findings in replication
efforts have made it difficult to draw firm conclusions. Here, we
assessed the role of 31 candidate single nucleotide polymorphisms
(SNPs) implicated in modulating clopidogrel transport (e.g.
ABCB1), metabolism (e.g. CYP450 enzymes, PON1, CES1), and

mechanism of action (e.g. P2Y12) in a large cohort of 3391
clopidogrel-treated patients of the International Clopidogrel
Pharmacogenomics Consortium (ICPC). We also evaluated these
polymorphisms on cardiovascular event (CVE) risk. Our results
suggest that application of a pharmacogenomic polygenic response
score (PgxRS), analogous to polygenic risk score for complex dis-
eases, may be a superior predictive model with potential applica-
tion to precision antiplatelet medicine.

Methods

Study sites and participants
Participating ICPC sites and patient characteristics have been previously
described.6 Briefly,�150 investigators who led clopidogrel-related clinic-
al studies of 50 or more subjects and for which DNA samples, on-
clopidogrel platelet reactivity data, and clinical outcome information avail-
able were invited to participate. In total, 17 centres from 13 countries
contributed data. Data deposition into a central database was managed
by the Pharmacogenomic Knowledge Base (PharmGKB) and data quality/
accuracy was assessed by the Pharmacogenomics Research Network’s
Statistical Analysis Resource. This report includes 3391 Caucasian ICPC
subjects in whom on-clopidogrel platelet reactivity data, covariate data,
and DNA were available.

All protocols were approved by their respective institutional review
boards and adhered to the Declaration of Helsinki. Informed Consent
was obtained from each participant.

204 J.P. Lewis et al.
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Study outcomes
Platelet reactivity

In ICPC sites, one or more of the following platelet reactivity assays
were used to assess clopidogrel response: Vasodilator-Stimulated
Phosphoprotein (VASP) assay, Light Transmittance Aggregometry (LTA),
Multiplate, and the VerifyNow P2Y12 assay. While all of these assays as-
sess adenosine diphosphate (ADP)-stimulated platelet reactivity, differen-
ces in assay biochemistry and units to express each test result required
the generation of a standardized platelet reactivity phenotype. The crite-
ria to generate this phenotype were reported previously.6 Briefly, for
sites that used more than one platelet test, the following prioritization
scheme was predefined and applied: VASP assay > VerifyNow P2Y12 >
LTA (higher > lower ADP concentration) > Multiplate. The standardized
mean difference of the chosen platelet test within each site was calculated
by subtracting mean platelet reactivity from the observed platelet reactiv-
ity and dividing by the standard deviation to generate a Z-score, thus har-
monizing platelet reactivity data across sites.

Cardiovascular endpoints

Post-discharge CVEs were evaluated in a subset of 2134 patients in
whom clinical event data were available and were defined as spontaneous
myocardial infarction (troponin value greater than the upper-limits of
normal with ischaemic symptoms or electrocardiogram changes), ischae-
mic stroke, stent thrombosis (probable or definite stent thrombosis
according to the Academic Research Consortium criteria7), and
cardiovascular-related death. A composite endpoint, consisting of all the
aforementioned outcomes, was used for analysis. Individual components
of the composite endpoint were also evaluated. Study site physicians lo-
cally adjudicated all endpoints through review of source documents
obtained from medical records. More information regarding CVE deter-
mination and adjudication has been reported previously.6

Genotyping
Thirty-one candidate polymorphisms were chosen based on prior litera-
ture and unpublished data by consortium members. Genotyping was per-
formed with the QuantStudioTM 12K Flex OpenArrayVR System (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. Genotype calls were performed using QuantStudioTM 12K
Flex Software v1.2.2. The mean SNP call rate was 98.6% and overall con-
cordance rate in a subset of blind duplicates was 99.3%.

Statistical analyses
Summary statistics, frequencies, and measures of Hardy–Weinberg equi-
librium were calculated using PLINK v1.07 (https://www.cog-genomics.
org/plink2). Linkage disequilibrium (LD) metrics (jD’j and r2) were calcu-
lated using Haploview v4.2.8 To account for multiple testing, P-val-
ues < 0.0016 were considered statistically significant (0.05/31 SNPs) in
single-SNP models. All statistical tests were two-sided.

Association analyses with platelet reactivity were performed using lin-
ear regression under an additive genetic model while adjusting for age,
sex, site, body mass index (BMI), smoking, diabetes, and proton pump in-
hibitor (PPI) use (PLINK v1.07). For analyses of CVEs, we used logistic
regression and adjusted for the same covariates. For variants that were
significantly associated with on-clopidogrel platelet reactivity in single-
SNP analyses (N = 6), a PgxRS was developed to assess the impact of
multiple alleles (min = 0; max = 12) that resulted in increased platelet re-
activity on the occurrence of CVEs. For this analysis, alleles that led to
increased platelet reactivity were coded as ‘risk’ and logistic regression
was used using identical covariates. The impact of carrying a high (eight
or above) vs. low (six or fewer) number of alleles that were associated

with increased platelet reactivity on CVEs was calculated. Weighted risk
score analyses that accounted for genotype effect sizes were also per-
formed. The proportion of variation in on-clopidogrel platelet reactivity
explained by the PgxRS was calculated using SAS v9.4 (SAS Institute,
Cary, NC, USA).

Power calculations (N = 3391) indicated 80% power at �a = 0.002 to de-
tect SNPs with minor allele frequencies (MAF) ranging from 0.01 to 0.30
with effect sizes ranging from 0.48 to 0.11 standard deviation units, respect-
ively. In CVE analyses, we had 80% power to detect odds ratios (ORs) rang-
ing from 1.70 (MAF = 0.30) to 2.55 (MAF = 0.05) given a sample size of
2134 and 129 recorded events (�a = 0.002). Power calculations were per-
formed using Quanto v1.2.4 (http://biostats.usc.edu/Quanto.html).

Results

Characteristics of the participants are listed in Table 1. Most subjects
were male (72.7%), middle-aged (mean age = 60.8 years), overweight
(mean BMI = 27.4 kg/m2), and had high prevalence of conventional
risk factors [e.g. hypertension (81.6%), hypercholesterolaemia
(86.4%), and diabetes (18.3%)]. Most subjects were taking aspirin
(94.3%), 64.4% were prescribed statins, and 21.1% were on PPIs.

Associations with platelet reactivity
We performed single-SNP association tests between all polymor-
phisms and platelet reactivity (Table 2, Supplementary material online,
Figure S1, and Supplementary material online, Table S1). Participants
who carried the loss-of-function CYP2C19*2 allele (rs4244285) had
significantly higher platelet reactivity compared to non-carriers
(b = 0.51, P = 8.8 � 10-54). Participants who carried the loss-of-
function CES1 G143E allele (rs71647871) had significantly lower on-
treatment platelet reactivity compared to non-carrier patients
(b = -0.79, P = 1.3 � 10-16). Similarly, those who carried the putative
gain-of-function CYP2C19*17 allele (rs12248560) had better clopi-
dogrel response compared to non-carriers (b = -0.18, P = 9.5 �
10-10). Polymorphisms in CYP2B6 (rs8192719 and rs3745274) and
CYP2C9 (rs1057910) were associated with increased platelet reactiv-
ity (b = 0.11, P = 3.0 � 10-4, b = 0.10, 1.0 � 10-3, and b = 0.15,
P = 0.001, respectively). In contrast, CYP2C9*2 (rs1799853) was asso-
ciated with lower on-treatment platelet reactivity (b = -0.11,
P = 0.001). After correction for multiple testing, no other variant
showed association with platelet reactivity (Table 2).

Given the strong association between CYP2C19*2 and platelet re-
activity, we sought to determine if association signals of other variants
might be unmasked by adjusting for this variant (Table 2). After adjust-
ment, association between variants in CES1 and PEAR1 and platelet
reactivity were strengthened, while associations of CYP2B6 SNPs
rs8192719 and rs3745274 with platelet reactivity were essentially un-
changed (Table 2). Other variants that were not associated with
platelet reactivity in the CYP2C19*2 unadjusted model remained
without significant association after adjustment.

The CYP2C locus on chromosome 10q24 includes several variants
tested in this investigation and, through LD, could be associated with
platelet reactivity because it is physically linked to a causative variant
without having an independent effect. Indeed, adjustment for
CYP2C19*2 ablated association of CYP2C19*17 with clopidogrel re-
sponse after correction for multiple testing (P = 0.006). Adjustment
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for CYP2C19*2 also influenced the magnitude of association between
platelet reactivity and the two CYP2C9 SNPs (Table 2).

Since adjustment for CYP2C19*2 substantially altered the associ-
ation between CYP2C19*17 with platelet reactivity, we assessed LD
patterns between these polymorphisms and performed genotype-
stratified association analyses (Supplementary material online, Table
S2A). The CYP2C19*2 and *17 variants (minor alleles of rs4244285
and rs12248560, respectively) are located �20 kbp from each other,
and consistent with prior reports,9 the rs12248560 minor allele
occurs only on the rs4244285 major allele haplotype (i.e. the
so-called *1 allele; jD’j=1.0). Stratified analyses showed that the
minor allele at rs4244285 (CYP2C19*2) remained strongly associated
with platelet reactivity in patients who were homozygous for the
major allele at rs12248560 (N = 2068, P = 7.9 � 10-37), while associ-
ation of the minor allele of rs12248560 (CYP2C19*17) with platelet
aggregation was markedly attenuated in patients who were homozy-
gous for major allele (N = 2386, P = 0.01) or heterozygotes (N = 933,
P = 0.09) at rs4244285 (Supplementary material online, Figure S2).
These analyses provide further evidence that CYP2C19*17 is not an
independent predictor of on-clopidogrel platelet reactivity, but ra-
ther dependent on rs4244285 genotype.

Similarly, we assessed LD and performed stratified association
analyses between CYP2C19*2 and the 2 CYP2C9 SNPs [*2 (minor al-
lele at rs1799853) and *3 (minor allele at rs1057910)]. LD data and
estimation of haplotype frequencies are shown in Supplementary

material online, Tables S2B and S2C. While CYP2C19*2 was strongly
associated with platelet reactivity in patients who were major allele
homozygotes of rs1799853 (N = 2444, P = 6.8 � 10-10), the CYP2C9
minor allele at rs1799853 (CYP2C9*2) was not associated with plate-
let reactivity in CYP2C19*1 homozygotes (N = 2375, P = 0.69). In con-
trast, when we evaluated the impact of CYP2C9 minor allele of
rs1057910 (CYP2C9*3) in CYP2C19*1 homozygotes (N = 2375), we
observed a significant association between this SNP and clopidogrel
response (P = 1.7� 10-4), suggesting that rs1057910 increases plate-
let reactivity independently of CYP2C19*2.

Associations with clinical outcomes
We evaluated the impact of investigated polymorphisms on CVEs in
a subset of 2134 patients for whom event data were available.
Clinical characteristics of this subset of participants are shown in
Supplementary material online, Table S3. In total, 129 of the 2134
patients experienced an event (event rate = 6.0% over a mean
follow-up of �13 months). No single variant was associated with
CVEs before or after adjustment for CYP2C19*2 (Supplementary ma-
terial online, Table S4). Similarly, we observed no evidence of associ-
ation between polymorphisms and the individual components of the
composite events phenotype, although the number of events and
statistical power for these sub-analyses was considerably diminished
(Supplementary material online, Table S5).

....................................................................................................................................................................................................................

Table 1 Characteristics of candidate gene International Clopidogrel Pharmacogenomics Consortium cohort

Characteristics (units) Male Female All

Number (N) 2464 927 3391

Age (years), mean ± SD 60.8 ± 12.8 60.6 ± 15.7 60.8 ± 13.6

BMI (kg/m2), mean ± SD 27.3 ± 4.0 27.7 ± 5.1 27.4 ± 4.3

Systolic blood pressure (mmHg), mean ± SD 134.3 ± 23.1 127.9 ± 23.0 131.9 ± 23.3

Diastolic blood pressure (mmHg), mean ± SD 77.7 ± 12.2 73.5 ± 10.5 76.1 ± 11.7

Hypertension,a n (%) 2142 (86.9) 625 (67.4) 2767 (81.6)

Total cholesterol (mg/dL), mean ± SD 181.6 ± 49.9 205.3 ± 52.9 189.0 ± 52.0

LDL-cholesterol (mg/dL), mean ± SD 115.9 ± 42.9 130.3 ± 47.4 120.4 ± 44.9

HDL-cholesterol (mg/dL), mean ± SD 48.2 ± 14.8 59.6 ± 16.1 51.7 ± 16.1

Triglycerides (mg/dL), mean ± SD 130.5 ± 112.8 101.0 ± 66.8 121.3 ± 101.7

Hypercholesterolaemia,b n (%) 2216 (89.9) 714 (77.0) 2930 (86.4)

Taking aspirin, n (%) 2309 (93.7) 889 (95.9) 3198 (94.3)

Taking statins, n (%) 1734 (70.4) 450 (48.5) 2184 (64.4)

Taking PPI, n (%) 538 (21.8) 177 (19.1) 715 (21.1)

Self-reported diabetes, n (%) 449 (18.2) 171 (18.3) 620 (18.3)

Haematocrit ± SD (%) 41.6 ± 4.0 37.9 ± 3.4 40.5 ± 4.2

White blood cell count (n � 1000), mean ± SD 7.2 ± 3.1 6.7 ± 2.5 7.1 ± 2.9

Platelet count (n � 100 000), mean ± SD 2.3 ± 0.7 2.5 ± 0.7 2.4 ± 0.7

Ever smoker,c n (%) 1444 (58.6) 242 (26.2) 1686 (49.7)

Current smoker,c n (%) 485 (19.7) 85 (9.2) 570 (16.8)

SI conversion factors: to convert HDL-cholesterol, LDL-cholesterol, and total cholesterol values to mmol/L, multiply by 0.0259; triglycerides to mmol/L, multiply by 0.0113.
BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PPI, proton pump inhibitor; SD, standard deviation.
aDefined as systolic blood pressure >140 mmHg, diastolic blood pressure >90 mmHg, taking prescription blood pressure-lowering medication, and/or source code for
hypertension.
bDefined as LDL-cholesterol >160 mm�mg/dL, taking prescription cholesterol-lowering medication, and/or source code for hypercholesterolaemia.
cSelf-reported history of smoking.
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..Finally, we developed a PgxRS to assess the impact of carrying mul-
tiple alleles that impact platelet reactivity on the occurrence of CVEs.
Specifically, we used CYP2C19*2 and the five SNPs that were signifi-
cantly associated with platelet reactivity after adjustment for
CYP2C19*2 and coded each allele that corresponded to increased
platelet reactivity as the ‘risk’ allele (Figure 1). Collectively, these
SNPs accounted for �3.5% of the variation in platelet reactivity.
We observed that patients who carry an increasing number of alleles
that are associated with high on-clopidogrel platelet reactivity were
more likely to experience CVEs and cardiovascular-related death
compared to those who carry alleles that lead to better platelet in-
hibition (b = 0.17, P = 0.01 and b = 0.43, P = 0.007, respectively).
Consistent with these findings, when comparing patients by number
of risk alleles, patients who carried eight or more alleles associated
with increased platelet reactivity were more likely to experience

both CVEs [OR = 1.78, 95% confidence interval (CI) 1.14–2.76,
P = 0.01] and cardiovascular death (OR = 4.39, 95% CI 1.35–14.27,
P = 0.01) compared to patients who carried six or fewer of these
alleles. Weighting these results based on genotype effect size did at-
tenuate significant findings (CVE P = 0.07) but provided comparable
OR estimates (Table 3).

Discussion

We assessed 31 candidate gene polymorphisms on platelet reactivity
and CVEs in clopidogrel-treated Caucasian participants of the ICPC.
Consistent with prior reports, we observed that the CYP2C19*2 al-
lele was a strong determinant of on-clopidogrel platelet reactiv-
ity.5,10,11 We also observed that CES1 G143E strongly influenced
clopidogrel response with carriers of the 143E-allele having

....................................................................................................................................................................................................................

Table 2 Association of candidate gene single nucleotide polymorphisms with adenosine diphosphate-stimulated
platelet aggregation in International Clopidogrel Pharmacogenomics Consortium participants

Gene Allele

designation

rs number Chromosome MAF HWE P-value Beta P-value CYP2C19*2 adjusted

P-value

CYP2C19 *2 rs4244285 10q23.33 0.163 0.084 0.506 8.80 3 10254 NA

CES1 G143E rs71647871 16q12.2 0.016 0.631 -0.787 1.30 3 10216 4.27 3 10218

CYP2C19 *17 rs12248560 10q23.33 0.219 0.755 -0.177 9.48 3 10210 0.006

CYP2B6 1294 þ 53C > T rs8192719 19q13.2 0.229 0.013 0.105 2.99 3 1024 1.15 3 1024

CYP2B6 Q172H rs3745274 19q13.2 0.215 0.032 0.099 9.98 3 1024 3.53 3 1024

CYP2C9 *2 rs1799853 10q23.33 0.151 0.022 -0.113 0.001 0.489

CYP2C9 *3 rs1057910 10q23.33 0.072 0.908 0.153 0.001 2.81 3 1027

PEAR1 NA rs12041331 1q23.1 0.123 0.005 -0.116 0.003 4.15 3 1024

P2RY12 T744C rs2046934 3q25.1 0.175 0.003 0.088 0.004 0.003

CES1 NA rs2244613 16q12.2 0.206 1.000 0.080 0.007 0.006

MED12L NA rs1472122 3q25.1 0.480 0.715 -0.063 0.009 0.002

ITGB3 L59P rs5918 17q21.32 0.150 0.437 -0.081 0.016 0.005

CYP2C19 *8 rs41291556 10q23.33 0.002 0.016 0.560 0.020 0.008

CYP2B6 485-18C > T rs4803419 19q13.2 0.310 0.414 0.058 0.026 0.023

CYP2B6 14593C > G rs4803418 19q13.2 0.306 0.444 0.056 0.038 0.033

CYP2B6 *1B rs7254579 19q13.2 0.322 0.972 0.051 0.050 0.045

CYP2C19 *4 rs28399504 10q23.33 0.003 1.000 -0.488 0.065 0.197

CYP2C19 *3 rs4986893 10q23.33 0.001 1.000 0.709 0.107 0.071

POR IVS11 þ 20G > A rs2286823 7q11.23 0.293 0.071 0.040 0.125 0.086

CYP2C9 *11 rs28371685 10q23.33 0.004 1.000 0.307 0.167 0.772

CYP2C19 *6 rs72552267 10q23.33 0.002 0.024 0.335 0.175 0.198

POR *28 rs1057868 7q11.23 0.288 0.249 -0.032 0.234 0.240

POR NA rs2302429 7q11.23 0.145 6.41 � 1025 -0.036 0.296 0.354

CYP2C19 *7 rs72558186 10q23.33 0.002 4.03 � 1028 -0.248 0.332 0.585

CYP1A2 *1F rs762551 15q24.1 0.317 0.648 -0.024 0.343 0.521

ABCB1 C1236T rs1128503 7q21.12 0.408 0.875 0.021 0.405 0.318

PON1 L55M rs854560 7q21.3 0.371 0.359 -0.019 0.456 0.617

CYP2C19 *5 rs56337013 10q23.33 2.32 � 1024 1.000 -0.600 0.542 0.627

CYP3A5 *3F rs28365085 7q22.1 2.31 � 1024 1.16 � 1024 0.163 0.741 0.621

PON1 Q192R rs662 7q21.3 0.290 0.853 0.007 0.785 0.872

ABCB1 C3435T rs1045642 7q21.12 0.496 0.107 0.007 0.786 0.614

Association P-values in bold represent those that are statistically significant after correction for multiple testing (P = 0.05/31 = 0.0016). Italicized Hardy–Weinberg P-values de-
note deviations from expected Hardy–Weinberg proportions (cut-off P-value <1.0 � 1024).
HWE, Hardy–Weinberg equilibrium; MAF, minor allele frequency; NA, not applicable.
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decreased on-treatment platelet reactivity. CES1 is responsible for
converting clopidogrel into an inactive carboxylic acid derivative.12 In
fact, �85% of administered clopidogrel is metabolized into inactive
derivatives by CES1.13 The 143E-allele results in an approximate 83%
reduction in CES1 activity compared to the wild type 143G-allele,
and is among the strongest determinant of clopidogrel response
using physiology-directed pharmacokinetic/pharmacodynamic mod-
elling.14,15 These results suggest that comprehensive characterization
of CES1 G143E in clopidogrel-treated patients with regard to poten-
tial for pathological bleeding is needed.

We also assessed the well-described putative gain-of-function
CYP2C19*17 variant on platelet reactivity. CYP2C19*17 is believed to
lead to better inhibition of platelet aggregation by increasing tran-
scription of the CYP2C19 gene.16 We initially observed that
CYP2C19*17 resulted in reduced platelet reactivity. However, in con-
ditional analyses adjusting for CYP2C19*2, no association was evident.
These results are consistent with prior data showing that
CYP2C19*17 association results are highly influenced by CYP2C19*2
through LD.9 In stratified analyses, markedly attenuated association
between CYP2C19*17 and platelet reactivity was observed in patients
who did not carry the CYP2C19*2 allele. These results suggest that
CYP2C19*17 has little to no independent effect on clopidogrel re-
sponse. This is particularly noteworthy given that multiple investiga-
tions have reported CYP2C19*17 association results without taking
into account the effects of CYP2C19*2 and the fact that current phar-
macogenetic prescribing algorithms may be incorrectly classifying

patients who carry the CYP2C19*17 allele as ultra-rapid clopidogrel
metabolizers.17

Association between platelet reactivity and SNPs in CYP2C9 was
significantly influenced by CYP2C19*2 adjustment. Rs1799853, which
encodes CYP2C9*2, was no longer associated with clopidogrel re-
sponse while rs1057910, which encodes CYP2C9*3, was more
strongly associated with platelet reactivity. Evaluation of LD between
CYP2C19*2 and CYP2C9 SNPs showed that while CYP2C9 rs1799853
does not independently influence clopidogrel efficacy, rs1057910
increases platelet reactivity independently of CYP2C19*2.

Two SNPs in CYP2B6 (rs8192719 and rs3745274) and one SNP in
PEAR1 (rs12041331) were associated with platelet reactivity after ad-
justment for CYP2C19*2. Previous investigations of CYP2B6 on clopi-
dogrel response have shown mixed results.18,19 Of note, many of
these investigations were conducted in a relatively small sample and
likely had limited statistical power. PEAR1 is a transmembrane recep-
tor that is important in platelet aggregation-induced secondary signal-
ling.20 Rs12041331, which is an intronic variant proposed to modify
PEAR1 expression through differences in allele-specific DNA methy-
lation,21 has been implicated in baseline22 and on-treatment aspirin,23

ticagrelor,24 and dual antiplatelet therapy with aspirin and clopidog-
rel25 platelet aggregation and myocardial infarction in stable coronary
artery disease patients.25 Additional studies in large, well-powered
cohorts will be needed to further define the role of CYP2B6 and
PEAR1 in clopidogrel response.

While several polymorphisms in this investigation influenced plate-
let reactivity, none were individually associated with CVEs. This was
relatively surprising, particularly for CYP2C19*2, as there is an increas-
ing amount of evidence that suggests this variant increases risk of car-
diovascular outcomes, particularly in acute coronary syndrome
patients undergoing percutaneous coronary intervention. Indeed,
several high-profile investigations including the TRITON-TIMI 38
trial,26 FAST-MI,27 PLATO Genetic Substudy,28 and IGNITE net-
work29 have shown that clopidogrel-treated patients who carry this
allele have worse clinical outcomes compared to those who do not.
Interestingly, however, when we combined the impact of multiple
SNPs through generation of a PgxRS, it revealed that patients who
carried a greater number of alleles that lead to increased platelet re-
activity were more likely to experience CVEs. While significance was
diminished in weighted analyses, OR point estimates do suggest
enhanced risk of CVEs in these patients. These findings may have im-
portant implications. Specifically, for complex phenotypes such as
CVEs, multiple genetic and non-genetic factors are critical in the de-
velopment (or prevention) of the clinical outcome. Given this com-
plexity, it is often difficult to reproducibly identify any one factor of
small to moderate effect, and clinical utility of any single factor to pre-
dict risk and act to prevent adverse clinical outcomes is poor.30,31

Our findings underscore the importance of considering multiple
sources of genetic variability. Therefore, we highly encourage strat-
egies such as those used in the current investigation to construct ro-
bust genetic response scores of platelet reactivity to evaluate
potential impact on clinical outcomes. As shown here, these re-
sponse scores can be built-in cohorts that utilize several platelet func-
tion tests through use of statistical approaches that implement Z-
scores as well as cohorts that have limited genetic and platelet func-
tion data. The use of such strategies by the scientific community will

Figure 1 Change in standardized adenosine diphosphate-induced
platelet reactivity based on increasing number of alleles used in the
pharmacogenomic polygenic response score. For each box plot, the
horizontal line within each box indicates the median; the top and
bottom borders of each box indicate the interquartile range. The
whiskers extending from each box indicate the 95% confidence
interval and the points beyond the whiskers indicate outliers be-
yond ±2.5% CI. Platelet reactivity is expressed as Z-scores as
described in the Methods section.

208 J.P. Lewis et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..be required to determine whether a clopidogrel PgxRS has high
enough predictive value to identify those at high risk of recurrent
CVEs in whom an alternative anti-platelet agent might be indicated.

This investigation has limitations. All participants evaluated were of
European descent. Therefore, caution should be used in extrapolat-
ing these findings to populations of different ethnic or racial origins.
This may be particularly important for polymorphisms that vary con-
siderably in frequency across populations. For example, CYP2C19*3,
which is more common in Asian populations, and other reported
loss-of-function variants in CYP2C19 (i.e. CYP2C19*4–8) were ex-
tremely rare in this population, consistent with other European-
derived populations; therefore, caution should be used when inter-
preting the negative association results reported here as statistical
power of analyses related to these variants is low. In addition, the
prognostic value of the HPR phenotype is not established in patients
at low cardiovascular risk even if they previously had a myocardial in-
farction.32 While CYP2C19*2 and the PgxRS used are strong determi-
nants of platelet reactivity in these patients, the association with
clinical outcomes will require further investigation. Finally, this was a
retrospective study. Prospective studies will be required to deter-
mine whether alternative antiplatelet therapy can ameliorate
increased risk of CVEs in high PgxRS patients.

In summary, we have performed one of the largest studies of clopi-
dogrel pharmacogenetics conducted to date. Our findings suggest
that several polymorphisms independently influence on-clopidogrel
platelet reactivity and that accumulation of these alleles may increase
CVE risk. The availability of alternative treatment options for patients
with clinical indications for clopidogrel underscores the need to bet-
ter understand the genetic architecture of variable drug response
which is critical for optimizing anti-platelet pharmacotherapy, reduc-
ing therapeutic failure and adverse side effects, and ultimately improv-
ing patient outcomes.

Supplementary material

Supplementary material is available at European Heart Journal –
Cardiovascular Pharmacotherapy online.
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