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Amyloidogenic processing of amyloid 8 protein precursor
(APP) is enhanced in the brains of alcadein a-deficient mice
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Alzheimer’s disease (AD) is a very common neurodegenera-
tive disorder, chiefly caused by increased production of neu-
rotoxic B-amyloid (AB) peptide generated from proteolytic
cleavage of B-amyloid protein precursor (APP). Except for
familial AD arising from mutations in the APP and presenilin
(PSEN) genes, the molecular mechanisms regulating the amy-
loidogenic processing of APP are largely unclear. Alcadein
a/calsynteninl (ALCa/CLSTN1) is a neuronal type I trans-
membrane protein that forms a complex with APP, mediated
by the neuronal adaptor protein X11-like (X11L or MINT?2).
Formation of the ALCa-X11L—-APP tripartite complex sup-
presses A3 generation in vitro, and X11L-deficient mice ex-
hibit enhanced amyloidogenic processing of endogenous
APP. However, the role of ALCa in APP metabolism in vivo
remains unclear. Here, by generating ALCa-deficient mice
and using immunohistochemistry, immunoblotting, and co-
immunoprecipitation analyses, we verified the role of ALC«
in the suppression of amyloidogenic processing of endoge-
nous APP in vivo. We observed that ALCa deficiency attenu-
ates the association of X11L with APP, significantly enhances
amyloidogenic f-site cleavage of APP, especially in endo-
somes, and increases the generation of endogenous Af} in the
brain. Furthermore, we noted amyloid plaque formation in
the brains of human APP-transgenic mice in an ALCa-defi-
cient background. These results unveil a potential role of
ALCa in protecting cerebral neurons from Af-dependent
pathogenicity in AD.

Alzheimer’s disease (AD) is the most common neurodege-
nerative disorder, primarily caused by augmented production
of neurotoxic B-amyloid (AB) peptide generated from one of
the alternative proteolytic cleavages of 3-amyloid protein pre-
cursor (APP). One of the factors that could affect the onset of
AD is the alteration of A3 generation in quality and quantity.

In familial AD cases associated with causative mutations
in PSEN genes, neurotoxic longer A3 species such as AB42
increase along with attenuated y-secretase activity (1). Similar
altered y-secretase activity is also observed in brains of sporadic
AD subjects (2). In another familial AD case associated with

This article contains supporting information.
*For correspondence: Toshiharu Suzuki, tsuzuki@pharm.hokudai.ac.jp;
Tohru Yamamoto, tohru@med.kagawa-u.ac.jp.

9650 J. Biol. Chem. (2020) 295(28) 9650-9662

causative mutations in the APP gene, Af3 generation altered
in quality and quantity is induced (3-6). Mutations in Af3
sequence also alter the aggregative state of AB (7). Individuals
with Down syndrome carry an extra copy of chromosome 21,
where the APP gene resides, and are prone to develop AD in
their 50s or 60s (reviewed in Ref. 8), suggesting that even a rela-
tively moderate increase in A3 generation may affect the onset
of AD. Although the primary causes of sporadic AD may be
various and it is still controversial whether altered A genera-
tion in quality and quantity contributes to the pathology of spo-
radic AD (9-11), there are reports that Af3 generation can be
altered qualitatively and/or quantitatively in the absence of
pathogenic mutations on causative genes (12, 13). These obser-
vations underscore the relevance of elucidating modulatory
factors involved in amyloidogenic processing of endogenous
APP in vivo.

One such factor is a submembrane scaffolding protein, X11-
like (X11L), encoded by the APBA2 gene. X11L was isolated as
a binding partner of APP and shown to suppress A3 generation
in vitro (14). Although overexpressed X11L suppressed overall
metabolism of APP in vitro (14, 15), loss of X11L protein prefer-
entially enhanced the amyloidogenic cleavage of APP in the
brains of X11L-deficient mice (16, 17). Furthermore, amyloid
plaque formation in the brains of human APP-transgenic mice
was facilitated in an X11L-deficient background (18). A gen-
eration in the brain was suppressed in transgenic mice produc-
ing increased amounts of X11L (19). These results indicate that
X11L is involved in the suppression of amyloidogenic process-
ing of APP; however, it is unclear whether other molecules
associated with X11L affect APP metabolism.

Alcadein « (Alca) was isolated as a single-pass transmem-
brane protein, and it binds to X11L through its cytoplasmic
region (20). Alca colocalizes with APP in dystrophic neurites
and senile plaques of AD patients’ postmortem brains, suggest-
ing that the Alca may be involved in AD pathogenesis (20).
This notion is further supported by reduced expression of Alca
in AD patients’ brains (21). Alca is one of three closely related
protein family members (Alca, AlcB, and Alcy). It was also
identified as a postsynaptic Ca®*-binding protein calsynteninl
(Clstnl) (20, 22). Binding of APP to X11L in vitro is strength-
ened in the presence of Alca by the formation of a tripartite
complex comprising APP, X11L, and Alca (20, 23). APP within
the tripartite complex is subject to greater suppression of
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proteolytic processing compared with APP with X11L alone in
transient expression studies (20, 23). These results suggest that
Alca may play a role in APP metabolism. In addition, Alcs are
subject to proteolytic processing as is APP, the quality and
quantity of which may correlate with a pathogenic processing
of APP (24, 25).

APP generates a p3 fragment by sequential cleavages with
a-secretase (mainly ADAM10/17) and +y-secretases. We have
shown that Alc is also cleaved by these proteases to generate a
p3-Alca fragment (26). APP is alternatively cleaved by a combi-
nation of B-secretase (BACE1) and +y-secretases to generate A3
peptide (reviewed in Ref. 27). Alcs are not cleaved by BACEL;
however, the generation of p3-Alca from Alca likely correlates
with pathobiology in Alzheimer’s disease. We have shown that
the quantity and quality of p3-Alca peptide in cerebrospinal
fluid and blood are altered and correlate with AD pathogenesis
(28-32). Another in vitro study showed that siRNA-mediated
reduction of Alca, in cultured neurons, enhanced amyloido-
genic processing of APP (21). These observations collectively
suggest a functional link between Alca and APP metabolism;
however, the physiological significance of Alca in APP metabo-
lism in vivo remains unclear.

Here, we explored the role of Alca in APP metabolism, in
vivo, by generating Alca-deficient mice. The B-site cleavage of
endogenous APP and generation of A were enhanced in the
brains of Alca-deficient mice, and amyloid plaque formation
was facilitated in the brains of human APP-producing trans-
genic mice in an Alca-deficient background. These observa-
tions indicate that Alca plays a physiologically relevant role in
APP metabolism to ameliorate AD pathogenesis.

Results
Generation of Alca-deficient mice

To evaluate the role of Alca in endogenous APP metabolism,
Alca-deficient mice were generated using a standard gene
knockout method with a targeting vector in which the coding
sequence of exon 1 was replaced with the LacZ-pA-PGK-Neo-
PA cassette (Fig. 1A). Mutant mice carrying the allele without
pGKNeo were backcrossed with C57BL/6 mice over 10 genera-
tions. The mutation was confirmed by Southern blotting and
PCR analysis (Fig. 1, B and C). The absence of Alca protein was
confirmed by immunoblotting and immunostaining (Fig. 1, D
and E) of brain extracts and slices with specific antibodies, as
Alca is predominantly expressed in brain tissue (20). Two
bands representing full-length Alca and Alca C-terminal frag-
ment (CTF), which is the cytoplasmic CTF generated following
the cleavage of Alca by APP a-secretase (ADAM10/17), were
detected with antibodies that recognized the carboxyl cytoplas-
mic region of Alca in the WT (+/+) mouse brains (20, 23, 26).
Neither band was detected in the brains of knockout (—/—)
mice (Fig. 1D). Alca was expressed in whole-brain tissue with a
stronger expression in the hippocampal neurons of WT (+/+)
mice, based on immunohistochemical staining; these signals
were not detected in knockout (—/—) mice (Fig. 1E). These
results indicate that homozygous mutant mice expressed nei-
ther the full-length Alca nor the truncated/processed frag-
ments of Alca.
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Alca deficiency enhances cleavages of APP by [3-secretase but
not a-secretase

APP is primarily cleaved by either - or B-secretase to gener-
ate APP CTFs. The a-cleavage of APP generates C83/CTFa by
cleaving the peptide bond between Lys-687 and Leu-688
(sequence numbering refers to the APP770 isoform) within the
AR sequence. Thus, this cleavage is amyloidolytic. Alterna-
tively, B-cleavage of APP generates C99/CTER by cleaving the
peptide bond between Met-671 and Asp-672 and generates
C89/CTER' by cleaving the peptide bond between Tyr-681 and
GIn-682 (27, 33). We examined whether defects in Alca would
influence the primary cleavages of APP in vivo (Fig. 2). The cer-
ebral cortex and hippocampus membrane fractions, prepared
from WT (+/+) and Alca-KO (—/—) mice brains (3 months
old), were analyzed for Alca expression and cleavages of APP
by immunoblotting. Identical protein amounts were loaded per
lane, as indicated in the figure legends, and the densities of
bands were quantified followed by normalization using the in-
tegral membrane protein flotillin-1. Among the three major
APP isoforms (amino acid numbers 770, 751, and 695), brain
neurons exclusively expressed the APP695 isoform and showed
three protein bands. These comprised two mature forms with
different O-glycosylation with N-glycosylation and one imma-
ture form with N-glycosylation alone on an immunoblotted
membrane (reviewed in Ref. 34). Maturation of APP was largely
identical and a slight alteration of APP protein level was
observed, however not statistically significant, between the WT
(+/+) and knockout (—/—) mouse brains (Fig. 2 (A and C) and
Fig. S1). This suggests that defects in Alca expression did not
significantly affect the expression or posttranslational modifi-
cation of the APP.

We next examined APP CTF levels in the brains of these
mice. Three CTF fragments (C99, C89, and C83) were
detected and measured by immunoblotting phosphatase-
treated membrane fractions prepared from the cerebral cor-
tex and hippocampus of the indicated mice, with antibodies
raised against the APP cytoplasmic region (see Fig. S1). Lev-
els of C99 and C89, generated by B-cleavage of APP, were
significantly increased in Alca-KO mouse brains compared
with WT mice. Levels of C83, generated by a-cleavage of
APP, were not altered among the brains of WT and Alca-de-
ficient mice (Fig. 2, B and C). These results indicate that the
B-site cleavage of APP was enhanced in the brains of Alca-
deficient mice. We further examined age-specific altera-
tions of the enhanced B-site cleavage in Alca-KO mice.
Selective enhancement of B-site cleavage in Alca-KO mice
was observed from 2-month-old adult mice (Fig. S1). The ra-
tio of B-site cleavage enhancement was virtually unaltered
with age. The observed enhancement of [3-site cleavage in
Alca-KO mice was probably not due to the augmented
expression of BACE]L, as no statistically significant altera-
tion of BACE1 expression was observed between the WT
and Alca-deficient mouse brains (see Fig. 4A4).

Enhanced (-site cleavage of APP should induce increased
A generation as APP CTFs are subject to a secondary cleavage
by vy-secretase that generates AP and p3 peptides. We next
quantified the endogenous Af levels in the brains of WT and
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Figure 1. Generation of Alca-deficient mice. A, gene-targeting procedure. Shown is a schematic of the partial gene structure of the Alca allele, including exon 1,
the targeting construct, and targeted allele after crossing with FLPe-Tg mice. B, Southern blotting analysis. Probes indicated in A were used to detect WT (20 kbp) and
the targeted (8.5 kbp) fragments. C, PCR products specific to the WT allele (+/+) generated with primers i plus i (416 bp) and to the targeted allele (—/—) generated
with primers ii plus iii (1,224 bp) were analyzed by agarose gel electrophoresis. D, immunoblot analysis of Alca and Alca: CTF. Whole-brain lysates (20 g of protein) of
WT (+/+) and homozygous mutant (—/—) mice were analyzed in 8% resolving gel with an anti-Alca antibody and anti-actin antibody. *, nonspecific product. E, im-
munostaining of sagittal sections of WT (+/+) and homozygous mutant (—/—) mouse (2-3 months old) brains with the anti-Alca antibody. Scale bar, 1 mm.

Alca-deficient mice (Fig. 2D). Mouse A is largely recovered
into a TBS-insoluble fraction, regardless of its nonaggregative
nature (17). We thus examined AB40 and AB42 levels in TBS-
insoluble fractions of the hippocampus and cerebral cortex of
WT and Alca-deficient mice at ages 2, 6, and 12 months. En-
dogenous mouse AB40 and AP42 levels were significantly
increased in the brains of Alca-deficient mice (filled columns)
compared with the WT mice (open columns). The enhance-
ments were roughly comparable with those of the enhanced
production of AB peptides at the corresponding ages. As stated
earlier, endogenous mouse Af3 is less aggregation-prone than
the human A, and it is rather natural to not observe significant
age-related accumulation of mouse Af in these mice. Taken to-
gether, these results indicate that Alca may functionally sup-
press amyloidogenic 3-cleavage of APP in the brain.
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Mouse A does not form amyloid plaques due to its nonag-
gregative nature (33), and the mouse endogenous Af3 peptides
did not accumulate in their brains with age, as shown in Fig.
2D. Hence, it is unclear whether Alca deficiency would be suffi-
cient to contribute to plaque formation that characterizes AD
pathology. Therefore, we crossed Alca-deficient mice with
APP23 human APP-transgenic mice to generate APP23/Alca-
deficient mice and examined brain amyloid plaque formation
(Fig. 3). Brain slices (10 35-pum-thick slices with 350-pum inter-
vals, —2.8 to +0.7 mm to bregma) of these mice (12 months
old) were immunostained with an anti-human A B-specific anti-
body (Fig. 3B). APP23/Alca-deficient mice appeared to form
more plaques, including cortex and hippocampus, without read-
ily recognizable morphological alteration at this age (Fig. 3A).
The numbers and area of amyloid plaques in APP23 and APP23/
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Figure 2. Enhanced (3-site cleavages of APP in the brains of Alca-deficient mice. A and B, immunoblot analysis of APP (A) and APP CTFs (B). Membrane
fraction (5 ng (A) or 15 ug (B) of protein) of the hippocampus and cerebral cortex of WT (+/+) and homozygous mutant (—/—) mice (3 months old) were ana-
lyzed in 8% (A) or 15% (B) resolving gel with anti-APP, anti-Alca, and anti-flotillin-1 antibodies. APP, mature (N- and O-glycosylated APP695) and immature (N-
glycosylated APP695) forms. Alca CTF exhibits double bands under these electrophoresis conditions. C, band densities of APP and APP CTFs for WT (open col-
umns) and Alca-deficient (filled columns) mice were standardized to the density of flotillin-1, and the value of WT was assigned as a reference value of 1.0. m,
mature APP (top two bands); im, immature APP (bottom band); t, total APP (mature plus immature APP); C99, CTF3; C89, CTFB'; C83, CTF« of APP CTFs (unpaired
ttest; *, p < 0.05; n = 3 mice/group). Error bars, S.E. D, endogenous mouse AB40 and AB42 in the hippocampus and cerebral cortex of WT (open columns) and
Alca-deficient (filled columns) mice at the indicated ages (2, 6, and 12 months old) were quantified using sandwich ELISA. The AB40 and AB42 concentrations
were normalized to tissue weight (unpaired t test; **, p < 0.01; ***, p < 0.001; n = 5 mice/group). Error bars, S.E.

Alca-deficient mice were quantified, including the cerebral cor-
tex, hippocampus, and entorhinal cortex. The numbers of pla-
ques and proportion of plaque area were significantly higher in
APP23/Alca-deficient mice than in APP23 mice (Fig. 3C), imply-
ing that Alca ameliorates AD pathogenesis and that Alco defi-
ciency augments amyloid plaque formation.

Alcf3 deficiency does not affect APP metabolism

Alca has closely related family members alcadein B/calsyn-
tenin 3 (AlcB) and alcadein 7y/calsyntenin 2 (Alcy). Alcf is
also highly expressed in the brain (Fig. S2D). It is therefore
plausible that Alc8 may also be involved in amyloidogenic
processing of APP. To address this question, we generated
AlcB-deficient mice by replacing exons 1-3 with the PGKNeo
cassette (Fig. S2A4) and verified their APP metabolism in vivo
(6 months old) (Fig. 4). As demonstrated in Fig. 2, Alca defi-
ciency significantly augmented amyloidogenic processing of
endogenous APP and subsequent generation of AB-peptides,
without affecting BACE1 levels (Fig. 4, A and B). However,
AlcB-deficient mice did not show any significant differences
in APP metabolism or A peptide generation (Fig. 4, A and
B). Alcp deficiency did not augment amyloidogenic processing
in an Alca-deficient background, even in older (12-month-old)
mice (Fig. S3), suggesting that Alcf likely plays a different role
in Alzheimer’s disease pathobiology in vivo. Therefore, we
focused our subsequent analyses on Alca.

Alca deficiency attenuates APP-X11L association to enhance
APP [-site cleavage in endosomes

Our previous reports indicated that X11L deficiency
increases 3-site cleavage of APP in the brain due to the lack of
association between APP and X11L (16, 17). Alca is also identi-
fied as an X11L-binding protein and forms a complex with
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APP, mediated by X11L. Furthermore, the interaction between
APP and X11L is enhanced by the association of Alca with X11L
in vitro (20). Alca and X11L were co-immunoprecipitated with
anti-APP antibody from mouse brain lysate and were found to
be co-localized in the hippocampus (20). To further confirm the
co-expression of APP, Alca, and X11L in neurons, we performed
triple labeling of single primary cultured cortical neurons with
mouse anti-X11L, rabbit anti-APP, and guinea pig anti-Alco
antibodies (20, 35, 36). Co-localization was readily observed for
these proteins, especially around the perinuclear structures in
neurons (Fig. S4). We therefore postulated that the association
of APP with X11L would be attenuated by Alca deficiency in the
brain. To examine this possibility, we performed a co-immuno-
precipitation assay of APP with X11L in the brain (hippocampus
and cerebral cortex) lysates of WT and Alca-deficient mice (Fig.
5). Anti-X11L antibody recovered APP along with X11L from
solubilized brain membranes of WT (+/+) and Alca-deficient
(—/—) mice. A smaller amount of APP was recovered from the
brains of Alca-deficient mice compared with the WT, indicating
that the association of APP with X11L was attenuated in the
brains of Alca-deficient mice. These results supported the idea
that the failure to form a tripartite complex comprising of APP,
X11L, and Alca in the brains of Alca-deficient mice increased
the 3-site cleavage of APP by BACEL.

BACEL1 is active in the acidic compartment of the endosomal
pathway, and CTEB and CTE' are largely generated in endo-
somes (27, 37). Therefore, we examined whether the B-site
cleavage of APP was facilitated in endosome-enriched fractions
from the brains of Alca-deficient mice (Fig. 6). Endosome-
enriched fractions of the brain were prepared by ultracentrifu-
gation of the post-nuclear supernatant of the brain homogenate
with a discontinuous sucrose gradient solution (Fig. 6A4). A typi-
cal fractionation profile of a WT mouse brain is shown in Fig.
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Figure 3. Quantification of amyloid plaques in APP23 mouse brain in the presence or absence of Alca. A, immunostaining of coronal sections of brain
regions including the cerebral cortex and hippocampus of APP23 (top) and APP23/Alca-deficient mice (bottom) at 12 months of age. The brain sections were
stained with anti-human AB antibody. Arrowheads, typical amyloid plaques. A magnified view of the area around the hippocampus and cortex is shown on the
right with magnified images of plaques (squares in red and green). Scale bar, 300 um (sections) or 50 um (plaques). B and C, 10 35-um-thick sections with 315-
um intervals were examined in one mouse. The total plague numbers in 10 sections/mouse were counted and are indicated as the number (left) or area (right)
of plaques per area (left) or section area (right). Error bars, S.E. (unpaired t test; *, p < 0.05; 4 mice for APP23, 3 mice for APP23/Alca-deficient background).

6B. ~10% of post-nuclear proteins were recovered in the endo-
some-enriched fraction (fraction 5), and others containing cyto-
plasmic proteins were recovered in fractions 9 and 10 (Fig. S5).
EEA1, a cytoplasmic protein associating with early endosomes
through phosphatidylinositol 3-phosphate, and BACE1 were
readily detected in the endosome-enriched fraction. The major-
ity of APP CTFs were recovered in the endosome-enriched frac-
tions of WT (+/+) and Alca-deficient (—/—) mouse brains
(Fig. 6C) and were examined and compared with the endosome-
subtracted fractions. Greater amounts of CTFB/C99 and
CTER’'/C89 were recovered from the endosome-enriched frac-
tions of Alca-deficient mouse brains than from the WT mouse
brains. The amounts of APP CTFs of other protein fractions
were not significantly different between the WT and Alca-KO
mouse brains (Fig. 6, C and D). These results suggest that APP
cleavage at the B-sites in endosomes was facilitated in the brains
of Alca-KO mice, thus supporting the notion that the presence
of Alca attenuates APP cleavage by BACEL.

Discussion

In this study, we explored the role of Alca in the amyloido-
genic metabolism of APP, especially in the regulation of

9654 . Biol. Chem. (2020) 295(28) 9650-9662

B-site cleavage of APP, in brains in vivo using Alca gene KO
mice. The generation and neurotoxic oligomer formation of
AP in the brain causes neurodegeneration and promotes the
onset of Alzheimer’s disease, the most common neurodege-
nerative disease of aged subjects (38—40). Therefore, precise
elucidation of the mechanisms regulating AB generation in
the brain will be crucial to understand AD pathogenesis and
inform therapeutic development. We demonstrated that
Alca is involved in the regulation of amyloidogenic process-
ing of endogenous APP, and Alca deficiency sufficiently aug-
ments Af3 generation to enhance amyloid plaque formation
in human APP-Tg mice, with a reduced association of X11L
with APP.

The neuronal adaptor protein X11L is a regulator of -site
cleavage of APP, and X11L forms a complex with APP and
Alca. The presence of the tripartite complex comprising APP,
X11L, and Alca has been demonstrated in mouse brains by co-
immunoprecipitation (20). Our observations strongly support
the idea that the tripartite complex formation is a physiologi-
cally relevant step that affects APP metabolism.

The present study using Alca-deficient mice clearly demon-
strated that in Alca-deficient brains, (i) B-site cleavages of APP
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sities of APP (m, mature APP; im, immature APP; t, total APP) and BACE1 were also quantified and standardized to the density of flotillin-1, and the value of WT
was assigned a reference value of 1.0. Error bars, S.E. C, endogenous mouse AB40 or AB42 in the hippocampus and cerebral cortex of WT (open column) and
Alca- or AlcB-deficient (colored columns as indicated) mice were quantified using sandwich ELISA. The AB40 and AB42 concentrations were normalized to tis-

sue weight (n =4 mice/group; one-way ANOVA; Dunnett’s post hoc test compa

to generate CTFB/C99 and CTEFR'/C89 were significantly
enhanced, (ii) AP generation was significantly increased, (iii)
AD pathology progressed in human APP-Tg mice, and (iv)
association of APP with X11L was also attenuated. Although
the role of Alca in the amyloidogenic cleavage of APP is an
indirect effect mediated by X11L, these results indicate that
Alca plays an important role in the regulation of APP amyloi-
dogenic metabolism in the brain. Our previous observations
suggested that one function of X11L is to prevent APP from
being transported into membrane microdomains in which
active BACELI resides (17). Our present analyses suggest that
Alca enhances the functions of X11L by forming a tripartite
complex comprising APP, X11L, and Alce; the absence of Alca
may facilitate localization of APP in these membrane microdo-
mains, including in endosomes. The mechanism underlying the
formation of the tripartite complex that prevents APP subcellu-
lar localization and enhances its amyloidogenic processing is
yet to be elucidated. Sortilin and its related family members

SASBMB

red with WT; *, p < 0.05; ***, p < 0.001). Error bars, S.E.

affect APP subcellular localization through their direct interac-
tion with APP to modulate amyloidogenic processing of APP
(reviewed in Ref. 41). The tripartite complex formation could
affect their accessibility to APP in a manner attenuating its
amyloidogenic processing. It would also be plausible that the
tripartite complex formation may prevent APP from being
sorted to endocytic pathway in Golgi apparatus. APP and Alco
have similar functions as the cargo receptor molecule of kine-
sin-1 in neurons (35, 42, 43). Transport membrane vesicles,
including APP, bind to kinesin-1 via the cytoplasmic region of
APP; this binding is mediated by c-Jun N-terminal kinase—
interacting protein 1 (JIP1) interaction between APP and kine-
sin light chain of kinesin-1, by which APP vesicles are antero-
gradely transported with high efficiency in axons (43-45). Alca
also associates with kinesin light chain of kinesin-1 directly,
using its cytoplasmic WD motifs, by which transport mem-
brane vesicles, including Alce, transport cargos toward nerve
terminals, as does APP (35, 42). Transport cargos of Alca are
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Figure 5. Attenuated association of APP with X11L in the brains of Alca-
deficient mice. A, co-immunoprecipitation of APP with X11L in the presence
or absence of Alca. Crude membrane fractions (500 g of protein) of the hip-
pocampus and cerebral cortex of WT (+/+) and Alca-deficient (—/—) mice
were subject to immunoprecipitation with anti-X11L antibody, and the
immunoprecipitates were analyzed by immunoblotting with anti-APP, anti-
X11L, and anti-Alca antibodies. B, the band densities of APP in A were quanti-
fied and standardized against X11L in the immunocomplex. APPs, mature
APP plus immature APP; imAPP, immature APP; mAPP, mature APP. WT was
assigned a reference value of 1.0. Statistical significance was analyzed using
three independent experiments (n = 3 mice/group; unpaired t test; *, p <
0.05; **, p < 0.01). Data represent means = S.E. (error bars).

largely independent of APP cargos in functions with different
transport velocity (35, 43). When the functions of either APP or
Alca cargos are impaired, they are likely to compensate for
each other’s roles to maintain neuronal function (46). There-
fore, functional deficiency in Alca may also influence neuronal
function and proteolytic metabolism of APP possibly by affect-
ing its intracellular transport and association with other factors,
such as X11L. Indeed, altered function of Alca disturbs APP
axonal transport and increases the production of AfB. Previous
observations suggest that APP and Alca may function coopera-
tively around Golgi exit sites (47, 48), and release of APP from
X11L may be regulated by phosphorylation of X11L (49). These
observations lead to the hypothesis of a possible mechanism by
which Alca and X11L collectively suppress premature dis-
patching of APP into the endocytic membrane traffic system. It
was recently reported that activity-dependent APP endocytosis
to endosome is required and enhanced by the X11 family pro-
teins to augment AB production in cultured neurons (50).
Given that a considerable amount of Alca resides in the endo-
some-enriched fraction (Fig. 6C, and Fig. S5), it would also be
plausible that X11 family proteins, free from Alca, make APP
become more efficiently internalized into the endosome in
Alca-deficient neurons. Further investigations are required to
verify this. Recent analysis with integrative genomics reports
that the APBA2 gene, which encodes X11L, is a modulator of
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late-onset AD (51). Although this report was retracted later
(52), the integrative genomics analysis itself was not fabricated
(53), and our recent observation suggested that X11L signifi-
cantly affects gene expression profile in the human APOE e4
knock-in mouse brain.® These analyses may collectively sup-
port the idea that Alca plays an important role in the regulation
of X11L function in the AD onset. It should be noted that X11L
is a family member of the X11 family proteins: X11, X11L, and
X11L2. Previous studies showed that X11L is widely expressed
in the brain and appears to be responsible for attenuating amy-
loidogenic processing of endogenous APP (16, 17, 54). How-
ever, other X11 family members are known to share the same
properties in the regulation of APP metabolism (20, 50), and
X11s could possess an equivalently important function in the
brain, especially in the neurons predominantly expressing other
family members.

Alca is also a closely related family member of Alcs: Alca,
Alcp, and Alcy. Contrary to the aforementioned expectation of
X11 family members, Alcf3 deficiency did not augment amyloi-
dogenic processing of APP, suggesting that Alcf has different
functions. Our recent observations suggested that Alcf3 may be
differently involved in AD pathogenesis in terms of p3-Alcf3
peptide generation (55), which would further support this
notion. Alcf is also reported to have synaptogenic activity
through association with a-neurexin; however, Alca does not
exhibit such activity (56). Alcadein family members likely have
different physiological roles despite their similar metabolisms
and primary structures (20, 26).

Overall, our study provided evidence to strengthen the
notion that the neuronal membrane protein Alca is closely
related to APP function and AD pathogenesis through intracel-
lular interactions between APP and Alca. Alca deficiency leads
to augmented amyloidogenic processing of endogenous APP in
vivo. Further analysis of the roles of Alca in APP metabolism
and neurodegeneration will deepen our understanding of AD
pathogenesis and contribute to novel therapeutic development
for AD.

Experimental procedures

Generation of Alca-KO, Alc3-KO, and human APP-Tg/Alca-
KO mice

All experimental protocols were approved by the animal care
and use committees of Hokkaido University, RIKEN Kobe
Branch, and Kagawa University. All experiments were con-
ducted in compliance with the ARRIVE guidelines. Mouse
genomic DNA containing the first exon of the Alca gene
(CLSTNI) was obtained from a C57BL/6 BAC clone (Invitrogen)
and used to construct a targeting vector. The coding sequence
was replaced by a LacZ-pA-PGK-Neo-pA cassette from DT-A/
LacZ/Neo plasmid to construct the targeting vector, which was
electroporated into T'T2 embryonic stem (ES) cells (57). The suc-
cessful recombinants were identified by PCR using the primer
sets 5'-ACCGCTTCCTCGTGCTTTACGGTATC-3" and 5'-
TAAGAACCTATTTAACAGGGGCTAGC-3' and further con-
firmed by Southern blotting analysis. The recombinant ES cells

6T. Nakaya and T. Suzuki, unpublished observation.
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were injected into ICR eight-cell stage embryos to generate chi-
meric founders, which were crossed to C57BL/6 females to
obtain mice carrying the disrupted allele. The resultant mice
(accession no. CDB0472K; RIKEN Center for Biosystems
Research) were backcrossed to C57BL/6 mice for more than 10
generations. The PGK-Neo region of the cassette was removed
by crossing to transgenic C57BL/6 mice ubiquitously
expressing flippase (58). The presence of the WT allele and
floxed LacZ-pA-pA allele was verified by PCR using the
following primer sets: 5'-CGGGGTCTGGGCCGCGCGAG-
GTAA-3" and 5'-CCACCTCCTTGCACCCGGTTACTAT-3’
for WT (416 bp); 5'-CGGGGTCTGGGCCGCGCGAGGTAA-
3’ and 5'-GCTGGCTGCCATGAACAAAGGTTGG-3’ for
LacZ-pA-pA (1,224 bp) (see Fig. 1).

For generating Alc3-KO mice, the genomic DNA fragment
of 129 Sv mice containing Alcf3 exons 1-5 was isolated, and
its EcoRV-EcoRI region containing exons 1-3 was replaced
with the pGKneo (59) cassette. The resultant targeting vector
was electroporated into ES-D3 cells, and successful recombi-
nants were identified by Southern blotting. The recombinant
ES cells were injected into ICR eight-cell stage embryos to
generate chimeric founders, which were crossed to C57BL/6
females to obtain mice carrying the disrupted allele. The re-
sultant mice were backcrossed to C57BL/6 mice for more
than 10 generations. The presence of the WT allele and
pGKneo allele was verified by PCR using the following primer
sets: 5'-GGTACCCTTCGAGGCTGTGATC-3" and 5'-GAG-
ACTTCTTGGTATTGGTGCCATC-3' for WT (158 bp);
5'-ATACCGTAAAGCAGGAAGCGGTC-3' and 5'-CATT-
CGACCACCAAGCGAAACATCGC-3" for pGKneo (343
bp) (see Fig. S1).

The human APP751swe-tg APP23 mouse was kindly sup-
plied from Novartis Pharma Inc. (60). APP23/Alca-KO mice
were generated by mating APP23 mice with Alca-KO mice.
Heterozygous human APPswe transgenic (Tg+/—, Alca—/—)
and (Tg+/—, Alca +/+) mutant mice were used for
experimentation.

Immunohistochemistry

Frozen mouse brain sections (20-um-thick) were prepared
as described previously (61). Sections were incubated with 0.1%
(v/v) Triton X-100 in PBS and blocked with PBS including 5%
(v/v) heat-inactivated goat serum, incubated with rabbit poly-
clonal anti-Alca 958 antibody (serum 1:1,000 dilution) (48), fol-
lowed by anti-rabbit IgG Alexa Fluor 488 (Invitrogen). After

washing the sections with PBS, the sections were mounted on
glass slides with Shandon Immu-Mount (catalog no. 9990402,
Thermo Fisher Scientific) and observed by fluorescence mi-
croscopy with a X10 objective and X 10 eyepiece lens followed
by merging respective images (BZ-9000, Keyence (Osaka, Ja-
pan)). Mouse primary cultured cortical neurons were prepared
as described previously (17). Fixed neurons were incubated
with 0.1% (v/v) Triton X-100 in PBS, blocked with PBS
including 5% (v/v) heat-inactivated goat serum, and then
incubated with guinea pig polyclonal anti-Alca antibody
(col90, 1:200 dilution) (36), mouse monoclonal anti-X11L
(MINT2, 1:250 dilution, BD Bioscience), and rabbit anti-
APP (G369, 1:100 dilution) (17) followed by a secondary
incubation with anti-rabbit IgG Alexa Fluor 488, anti-mouse
IgG Alexa Fluor 633 (Invitrogen), and anti-guinea pig IgG
Cy3 (Jackson ImmunoResearch Laboratories). After wash-
ing the sections with PBS, the slides were mounted using
Shandon Immu-Mount (catalog no. 9990402, Thermo Fisher
Scientific), observed by fluorescence microscopy with a X63
objective and a X 10 eyepiece lens, and then merged into respec-
tive images (BZ-9000, Keyence). Specificities of antibodies were
verified using corresponding deficient mice whenever possible
(see Fig. 1E and Fig. S2D).

Measurement of AB plaque load

APP23 mice brains were fixed and sliced to prepare 35-pm-
thick sections (—2.8 to +0.7 mm to bregma), and 10 slices per
brain with a 315-pm interval were further processed. The slices
were incubated in PBS containing 0.3% (v/v) hydrogen perox-
ide, washed in PBS three times, and incubated in PBS contain-
ing 70% (w/v) formic acid for 1 min prior to blocking. The sec-
tions were incubated with mouse monoclonal anti-human Af3
82E1 antibody (1 pg/ml; IBL, Fujioka, Japan) and washed three
times for 10 min. The sections were then incubated for 1 h at
room temperature with horse anti-mouse IgG conjugated with
biotin (Vector Laboratories, Burlingame, CA, USA), followed
by VECTASTATIN ABC kit (Vector Laboratories). Peroxidase
activity was revealed using diaminobenzidine as a chromogen.
The sections were viewed using a BZ-9000 microscope with a
X10 objective and X 10 eyepiece lens followed by merging of re-
spective images (Keyence). Numbers of plaques in these 10 sli-
ces per brain were counted manually, and the resultant number
was divided by the area of the slices. For measurement of the
plaque area, the same images were turned to black-and-white
images with Image]J software by thresholding nonplaque signals

Figure 6. Increased [3-site cleavages of APP in the endosome-enriched fraction of Alca-deficient mouse brains. A, preparation of endosome-enriched
membrane fraction. Post-nuclear supernatant (PNS) prepared from brain homogenate was adjusted to 42.5% sucrose and set at the bottom. Buffer with 35%
sucrose was overlaid, and the same buffer with 5% sucrose was subsequently applied as shown in the figure. Very light membrane (VLM) largely composed of
late endosomes entered the 5% sucrose layer, and heavy membrane (HM)-containing plasma membrane and rough endoplasmic reticulum membrane with
cytosol proteins resided in the 42.5% sucrose layer. Light membrane (LM)-containing early endosomes with Golgi and other membranes accumulated under-
neath the interface between 5 and 35% sucrose layers after ultracentrifugation. See Fig. S5 for briefly illustrated preparation scheme. B, typical isolation of
endosome-enriched fraction from WT mouse hippocampus and cerebral cortex. The endosome-enriched fraction (fr. 5) and other protein fractions (fr. 9) are
shown in boldface type. PNS and the respective fractions were analyzed by immunoblotting with antibodies to detect indicated proteins. Some EEAT and
BACE1 resided in the endosome-enriched fraction 5. ~10% of the protein was separated in fraction 5, and ~80% of protein resided in fractions 9 and 10 (Fig.
S5). TfR, transferrin receptor. C, immunoblot analysis of the endosome-enriched (fr. 5) and other protein (fr. 9) fractions of WT and Alca-deficient mouse brains.
Samples of WT (+/+) and Alca-deficient (—/—) mice were analyzed with antibodies to detect the indicated proteins. D, the band densities of APP and APP
CTFs in C were quantified and standardized against transferrin receptor. The value of WT was assigned a reference value of 1.0. Statistical significance was ana-
lyzed using three independent experiments (n = 3 mice/group; unpaired t test; *, p < 0.05). Data represent means = S.E. (error bars). APP, mature APP plus
immature APP; C99, CTF3; €89, CTFB'; €83, CTF of APP CTFs.
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after manually removing artifacts derived from edges or folds.
The sum of the numbers of still positively stained pixels in each
image was counted with Image] software, and the resultant
number was divided by the pixel numbers of the area occupied
by the slices.

Immunoblot analysis of APP and Alca in mouse brains

For preparing whole-brain lysates, mouse brains were ho-
mogenized in a 10-fold volume of radioimmunoprecipitation
assay lysis buffer (50 mm Tris-HCI, pH 8.0, containing 0.1% (w/
v) SDS, 0.5% (w/v) sodium deoxycholate, 1% (v/v) Nonidet P-
40, and 150 mm NaCl) containing a protease inhibitor mixture
(5 pg/ml cymostatin, 5 pg/ml leupeptin, and 5 pg/ml pepstatin)
and centrifuged at 14,200 X g for 20 min at 4 °C. The superna-
tant (crude lysate) was used for immunoblot analysis. For pre-
paring brain membrane fractions, mouse cerebral cortex and
hippocampus were homogenized (five strokes of a Dounce ho-
mogenizer) in an 8-fold volume of buffer H (20 mm HEPES (pH
7.4), 150 mm NaCl, 10% (v/v) glycerol, 5 mm EDTA) containing
a protease inhibitor mix. The homogenate was centrifuged at
1,000 X g for 10 min at 4°C. The supernatant was subject to
ultracentrifugation at 100,000 X g (TLA-55 rotor; Beckman
Coulter) for 1 h at 4°C, and the resultant precipitates (P100
fraction) were used for immunoblot analysis. The indicated
amounts of proteins were separated by SDS-PAGE (8% (w/v)
polyacrylamide Tris-glycine gels for APP, Alca, Alcf3, BACEL,
and X11L; 12% (w/v) polyacrylamide Tris-glycine gels for
BACEI1 (Fig. 4A); or 15% (w/v) polyacrylamide Tris-Tricine gels
for APP CTF and Alca CTF, which are carboxyl-terminal frag-
ments of APP and Alca cleaved by a- or B-secretase, respec-
tively). To identify APP CTFB/C99, CTEB'/C89, and CTFa/
C83 precisely, samples were treated with A protein phosphatase
(400 units; Sigma—Aldrich) for 2 h as phosphorylation of APP
CTFs at Thr-668 (amino acid number for APP695 isoform)
causes the complex protein pattern on immunoblotting (62, 63)
(reviewed in Ref. 34) (see Fig. S1). The separated proteins were
transferred onto a nitrocellulose membrane and probed with
primary antibodies. Immunoreactive proteins were detected
using Clarity Western ECL substrate (catalog no. 170-5061,
Bio-Rad) and quantitated on LAS-4000 (FUJIFILM, Tokyo, Ja-
pan). Rabbit polyclonal anti-Alca UT83 (1:500) (20), anti-Alcf3
UT99 (1:500) (11), anti-APP 369 (1:4,000) (64), and anti-
BACE1 Ab-2 (1:1,000) (Millipore, Burlington, MA, USA) anti-
bodies; rabbit monoclonal anti-BACE1 D10E5 (for Fig. 4 (A
and B), 1:1,000; Cell Signaling Technology, Danvers, MA,
USA); and mouse monoclonal anti-actin (1 pg/ml; Chemicon
International, Temecula, CA, USA), anti-X11L Mint2 (1:1,000,
BD Transduction Laboratories/BD Bioscience), anti-a-tubulin
(1:10,000; Santa Cruz Biotechnology, Inc., Dallas, TX, USA),
anti-flotillin-1 (1:1,000; BD Transduction Laboratories), anti-
EEA1 (1:10,000; Santa Cruz Biotechnology), and anti-transfer-
rin receptor (1:1,000, BD Transduction Laboratories) were as
described or purchased. Results were derived from multiple in-
dependent experiments. The numbers of experiments (1) are
indicated in the figure legends. Specificities of antibodies were
verified using corresponding deficient mice whenever possible
(see Figs. 1D and 4A).
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A levels in mouse brains

Mouse endogenous AB40 and APB42 were measured as
described previously (16). Hippocampus and cortex from mice
were homogenized in a 6-fold volume of TBS (50 mm Tris-HCI,
pH 7.6, 150 mm NaCl) containing a protease inhibitor mixture.
The homogenates were centrifuged at 200,000 X g for 20 min,
and the pellet was washed in TBS at 200,000 X g for 5 min
(TLA 100.4 rotor; Beckman Coulter, Brea, CA, USA), and 9.1 ul
of 6 M guanidine chloride in TBS was added to the washed pel-
let. The pellet was sonicated for 30 s, allowed to stand for 60
min at room temperature, and subjected to centrifugation at
200,000 X g for 20 min The supernatant was diluted with a 12-
fold volume of ELISA buffer (PBS containing 0.05% (v/v)
Tween 20 and 1% (w/v) BSA) and centrifuged at 14,000 X g for
5 min. The resulting supernatant was used for quantification of
mouse AB with an ELISA kit (IBL (Fujioka, Japan), catalog no.
27720 for AB40 and catalog no. 27721 for A342).

Co-immunoprecipitation of APP and X11L from solubilized
brain membrane fraction

Mouse cerebral cortex and hippocampus were homogenized
(five strokes of a Dounce homogenizer) in an 8-fold volume of
buffer H (20 mm HEPES (pH 7.4), 150 mm NaCl, 10% (v/v) glyc-
erol, 5 mm EDTA) containing a protease inhibitor mix. The ho-
mogenate was centrifuged at 1,000 X g for 10 min at 4°C. The
supernatant was subjected to ultracentrifugation at 100,000 X g
(TLA-55 rotor; Beckman Coulter) for 1 h at 4 °C, and the result-
ant precipitates (P100 fraction) were suspended in PBS-CHAPS
buffer (10 mm PBS (pH 7.4), 150 mm NaCl, 10 mm CHAPS)
containing 1 mm NaF, 1 mm NazVO,, and a protease inhibitor
mix under rotation for 30 min at 4 °C. The suspension was cen-
trifuged at 10,000 X g for 5 min, and the supernatant was used
for immunoprecipitation samples. Samples (1 mg of protein)
were subject to preclearing with Protein G-Sepharose
(Thermo Fisher Scientific). Anti-X11L antibody (2.5 pg each;
Mint2, BD Transduction Laboratories) was added to samples
and incubated for 8 h at 4°C, and the immunocomplex was
recovered by the addition of Protein G—Sepharose. The immu-
noprecipitates were analyzed by immunoblotting with the indi-
cated antibodies following SDS-PAGE (Tris-glycine buffered
12% polyacrylamide gel). The band densities were quantified
and standardized against X11L in the immunocomplex.

Preparation of endosome-enriched fraction

The cerebral cortex and hippocampus of mouse brains were
homogenized (30 strokes of Dounce homogenizer) in an 8-fold
volume of solution (0.25 M sucrose, 3 mm imidazole, pH 7.5)
and subjected to centrifugation at 1,000 X g for 10 min at 4°C.
The resultant supernatant (1 ml) was suspended in 2 ml of
buffer (final 42.5% sucrose, 3 mm imidazole) in a centrifugation
tube (Beckman Coulter PA13.2) and mixed. Solutions of 35 and
8% sucrose containing 3 mm imidazole, respectively, were lay-
ered in the tube, and the sample was subjected to centrifugation
at 35,000 rpm for 3 h at 4 °C (SW41 Ti rotor, Beckman Coulter).
Samples were collected with a 1-ml fraction from top to bot-
tom. Fraction 5 (Fig. 6, fr. 5), including the interface between 35
and 8% sucrose density solution, was recovered as the
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endosome-enriched fraction along with fraction 9 (fr. 9), con-
taining other membranes with cytoplasmic proteins (65). An
equal volume of solution (0.25 M sucrose/3 mMm imidazole) was
added to both fractions and centrifuged at 100,000 X g for 1 h
at4°C (TLA-55 rotor, Beckman Coulter). Resultant precipitates
were analyzed for immunoblotting.

Statistical analysis

Data are expressed as means *= S.E. Statistical differences
were assessed using unpaired two-tailed Student’s ¢ tests for
two comparisons and two-way nonrepeated measures ANOVA
with Tukey’s post hoc test for multiple comparisons. A p value
of <0.05 was considered statistically significant. No sample size
calculation, tests for normal distribution, or tests for outliers
were performed. The study was not preregistered.

Data availability

All data described are contained in the article and the
supporting information.
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