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Abstract

A model of coupled molecular biochemical oscillators is proposed to study nonequilibrium 

thermodynamics of synchronization. We find that synchronization of nonequilibrium oscillators 

costs addition energy to drive the exchange reaction (chemical interaction) between individual 

oscillators. By solving the steady state of the many-body system analytically, we show that the 

system goes through a nonequilibrium phase transition driven by energy dissipation, and the 

critical energy dissipation depends on both the frequency and strength of the exchange reaction. 

Moreover, our study reveals the optimal design for achieving maximum synchronization with a 

fixed energy budget. We apply our general theory to the Kai system in Cyanobacteria circadian 

clock and predict a relationship between the KaiC ATPase activity and synchronization of the 

KaiC hexamers. The theoretical framework can be extended to study thermodynamics of collective 

behaviors in other extended nonequilibrium active systems.

I. INTRODUCTION

Synchronization among a population of interacting single oscillators is ubiquitous in nature 

[1, 2], e.g., Josephson junctions [3], circadian clocks [4], physiological rhythms [5], neurons 

firing [6, 7], and communication in cell populations [8, 9]. Synchronization dynamics have 

been well studied by using theoretical models, in particular, the Kuramoto model [10–13]. 

However, relatively little is known about synchronization of molecular oscillators in cellular 

systems where the underlying mechanism is governed by biochemical reactions with a small 

number of molecules and large fluctuations.
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Recently, several studies were published on understanding the energetics of individual 

biochemical oscillators (clocks) for maintaining their phase accuracy and sensitivity [14–

18]. Here, we investigate whether and how much additional energy is required to drive 

interaction (coupling) among individual molecular oscillators to achieve their collective 

behavior, i.e., synchronization. We find that exchange reactions (chemical interactions) 

between individual oscillators, in combination with the phase dynamics of individual 

oscillators, break detailed balance and thus continuous energy dissipation is needed to drive 

the oscillator-oscillator coupling contrary to previous thought [13, 19]. In a general model of 

coupled molecular clocks, we show that synchronization is achieved only when the energy 

dissipation reaches a critical value that depends on both the strength and frequency of 

oscillator-oscillator exchange reactions. Our theory further reveals the optimal choice 

(design) of the exchange reaction frequency and strength that leads to the maximum 

synchronization with a given energy budget. Finally, we apply our theory to the Kai system 

in the circadian clock of S. elongatus to understand its molecular mechanism for 

synchronization.

II. MODELS AND RESULTS

A. A model of coupled molecular clocks: the global and local dissipative cycles

We consider m interacting molecular clocks, each with N microscopic states labeled by n = 

1, 2, …, N. As shown in Fig. 1A, these microscopic states can be arranged on a ring with a 

periodic boundary condition, i.e., state N + 1 is the same as state 1, and a phase variable ϕ ≡ 
n∆ϕ is defined. In this paper, we study the simple “Poisson” clock model where both the 

forward (clockwise) and backward (counterclockwise) transitions between two neighboring 

states n and n + 1 are Poisson processes with the forward rate kn
+ = k and the backward rate 

kn
− = γk.

When γ ≠ 1, detailed balance is broken as the products of reaction rates in the 

counterclockwise and clockwise directions in the full global clock cycle 1 → 2 → ⵈ → N 
→ 1 become unequal as shown in Fig. 1A:

Γg ≡ ∏
n

kn
−/∏

n
kn

+ = γN ≠ 1, (1)

which means that time reversal symmetry is broken in the system and a sustained oscillation 

is possible. Driven by free energy dissipation, reactions along the ring advance the phase of 

the oscillator [14–16], and are thus called the processive reactions in this paper.

However, spending free energy to keep γ ≠ 1 is only a necessary condition for oscillation in a 

single clock. Due to large fluctuations in the molecular level chemical reactions (Poisson 

processes), individual clocks quickly become asynchronous and macroscopic (averaged) 

oscillatory behavior disappears. To achieve synchronous oscillation, we introduce coupling 

between two individual clocks i and j as shown in Fig. 1B (red reaction arrows in the right 

panel). Specifically, we introduce exchange reactions between the two-clock states (ϕi, ϕj) 

and (ϕi + ∆ϕ, ϕj − ∆ϕ). Since the phase of an oscillator molecule (e.g., KaiC hexamer in the 
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Kai system) is given by its chemical property such as its phosphorylation level, the total 

phase is conserved during the exchange reaction. The exchange reactions introduce chemical 

interactions between individual oscillators. These chemical interactions are different from 

physical interactions in the sense that they only act during the exchange reactions and they 

are independent of and thus do not affect the processive reactions of individual oscillators.

Without loss of generality, the forward and backward exchange reaction rates can be written 

as:

kex− ϕi + Δϕ, ϕj − Δϕ ϕi, ϕj =
Ωij
m Rij

− 1
2,

kex+ ϕi, ϕj ϕi + Δϕ, ϕj − Δϕ =
Ωij
m Rij

1
2,

where 
Ωij
m ≡ kex

+ kex
− 1/2

 is the mean exchange frequency per oscillator and Rij ≡ kex
+ /kex

−  is 

the ratio of the two exchange reaction rates. We can define a reaction potential difference 

ΔEij ≡ ln Rij . Assuming the exchange reaction rates only depend on the phase difference of 

the two oscillators involved, we can further express ΔEij = E ϕi − ϕj − E ϕi − ϕj + 2Δϕ
where E(ϕ), a periodic function of ϕ with period 2π, characterizes the exchange reaction 

potential of the oscillator pair (ϕi, ϕj). For theoretical convenience, we study the case with a 

constant Ωij = Ω and a simple cosine form for E(ϕ) in this paper. Other choices of the 

exchange reaction rates do not change the main conclusion of this study (see SI for details).

Although the ratio of the forward and backward exchange reaction rates is written formally 

here as e−ΔEij as in an equilibrium system, the exchange reactions cost energy in the final 

nonequilibrium steady state (NESS) due to the presence of the independent processive 

reactions of individual clocks that are not governed by ∆Eij. This additional energy cost has 

an intuitive origin as we take a close look at the triangular local exchange cycle formed by 

the combination of two processive reactions and one exchange reaction: (ϕi, ϕj) → (ϕi + ∆ϕ, 
ϕj) → (ϕi + ∆ϕ, ϕj − ∆ϕ) → (ϕi, ϕj) as shown in Fig. 1B. It is easy to show the ratio of the 

products of the reaction rates in the clockwise and counter-clockwise directions for this local 

cycle is:

Γl = kex
−

kex
+ × γ−1 × γ = e−ΔEij, (2)

and Γl
−1 for the accompanying sister local cycle: (ϕi, ϕj) → (ϕi + ∆ϕ, ϕj − ∆ϕ) → (ϕi, ϕj − 

∆ϕ) → (ϕi, ϕj). The existence of this dipole of cycles with Γl ≠ 1 indicates violation of 

detailed balance at the local level when ΔEij ≠ 0 (for any oscillator pair) in addition to the 

global violation due to full period phase procession (Eq. 1). Since synchronization requires 

the exchange reactions to favor the pair of oscillators with a smaller phase difference, i.e, 
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∆Eij < 0 if the pair (ϕi, ϕj) has a smaller phase difference than that of (ϕi + ∆ϕ, ϕj − ∆ϕ), Eq. 

2 indicates that additional energy (in excess of those used for driving individual clocks) must 

be dissipated to power the exchange reactions for synchronization.

B. An analytical solution for the many-oscillator phase distribution

In the limit N → ∞, the phase of each oscillator can be described by a continuous phase 

variable ϕi ≡ niΔϕ. By rescaling reaction rates with ∆ϕ accordingly: k(∆ϕ)2 → k, Ω(∆ϕ)2 → 

Ω, we obtain the Fokker-Planck equation for the joint distribution function of all the 

oscillator phases P (ϕ1, ϕ2, …, ϕm, t) :

∂P
∂t = k∑

i

∂
∂ϕi

−eg + ∂
∂ϕi

P + Ω
m ∑

i < j

∂
∂φij

2E′ φij + ∂
∂φij

P, (3)

where φij = ϕi − ϕj is the relative phase variable and ∂/∂φij = ∂/∂ϕi − ∂/∂ϕj. In the continuous 

limit, the net speed of phase procession is keg with eg = limN ∞ln γ−1 /Δϕ = − lnΓg/2π.

The physical meaning of the Fokker-Planck equation, Eq. 3, is clear. The first term on the 

right hand side (RHS) is due to the processive reactions of individual clocks, while the 2nd 

term on the RHS is due to the clock-clock interaction. Remarkably, the steady state 

distribution of the coupled many-oscillator system can be obtained analytically with a simple 

solution (see Methods for derivation):

Ps ϕ = Z−1exp −βEt ϕ , (4)

where Et = 2
m ∑ i < j E ϕi − ϕj  is the effective total interaction potential during exchange 

reactions, Z is the normalization constant (or the partition function), and the parameter 

β = Ω
Ω + k  serves as an effective inverse temperature.

It is important to point out that even though the steady state phase distribution given in Eq. 4 

follows a Boltzmann distribution, the system is in a nonequilibrium steady state (NESS) 

with an effective nonequilibrium temperature:

Teff = β−1 = 1 + k/Ω, (5)

which is higher than the thermal equilibrium temperature (set to unity in our study). The 

nonequilibrium processive reactions increase the effective temperature by k/Ω without 

changing the exchange interaction strength Et.

From the steady state distribution Ps given by Eq. 4, we can compute the probability flux in 

the phase space of the coupled clock system. There are two types of fluxes:

Ji = k eg + 2β
m ∑

j
E′ φij Ps, (6)
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Jij = − 2Ω
m E′ φij − β

m ∑
k

E′ φjk − E′ φjk Ps, (7)

where Ji is the processive flux for the i-th clock; Jij is the exchange flux between clock-i and 

clock-j. Both fluxes are nonzero, which means that continuous energy dissipation is needed 

to maintain the NESS. The free energy dissipation rate per oscillator is given by the entropy 

production rate [20] (see SI for derivation):

Ẇ = 1
m∫ ∑

i

Ji
2

kPs
+ ∑

i < j

Jij
2

Ω
m Ps

dϕ , (8)

where the two terms in the RHS of Eq. 8 correspond to the dissipation for phase procession 

and phase exchange, respectively.

C. The energy cost for driving the nonequilibrium transition to synchronization

Following standard convention [12], we define the synchronization order parameter 0 ≤ r < 1 

by

reiψ ≡ 1
m ∑

j = 1

m
eiϕj,

where ψ is the phase of the collective oscillation. We define the phase fluctuation of 

oscillator i from that of the mean oscillation as:θi ≡ ϕi − ψ, which can be described by a 

distribution ρ(θ). In the asynchronous phase, ρ(θ) is uniform and r = 0; in the synchronous 

phase, ρ(θ) peaks at θ = 0 and r becomes finite (0 < r < 1).

For simplicity, we study a “ferromagnetic” interaction potential function 

E ϕi − ϕj = −
E0
2 cos ϕi − ϕj , with E0(> 0) the coupling strength. By using the exact 

solution Eq. 4, we obtain the steady state distribution for ρ(θ) in the mean-field limit m = ∞ 
(see SI and Fig. S1 for simulation results for finite m):

ρ θ = Z−1exp rβE0cosθ . (9)

By using the above distribution function ρ(θ) in the definition for r, we obtain the self-

consistent equation for the order parameter r(E0, Ω) for any given E0 and Ω:

r = ∫
0

2π
cosθρ θ dθ = I1 βE0r

I0 βE0r , (10)

where I0(x) and I1(x) are the modified Bessel functions.
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It can be derived from Eq. 10 (see SI for details) that the oscillators are asynchronous, i. e., r 
= 0 when βE0 < 2. A phase transition to a synchronous state with r ≥ 0 occurs when βE0 ≥ 2 

or equivalently when the exchange frequency Ω is larger than a critical frequency Ωc(E0):

Ω ≥ Ωc E0 ≡ 2k
E0 − 2 . (11)

As shown in the phase diagram Fig. 2A, the synchronization transition depends on both the 

strength and frequency of the exchange reactions. A necessary condition for synchronization 

is for the exchange strength to be higher than a critical value E0 > E0, c ≡ 2, which is 

analogous to the critical coupling strength in phase transitions in equilibrium systems such 

as the Ising model. However, this condition is not enough as synchronization also requires 

the exchange frequency (rate) to be larger than a critical value Ω > Ωc(E0). Unlike previously 

studied cases where nonequilibrium phase transitions are driven by varying temperature [21] 

or thermal force [22], this requirement for kinetic rates studied here is unique to 

nonequilibrium systems and has no counter part in equilibrium phase transitions.

One hallmark of a nonequilibrium system is that it continuously dissipates energy even in its 

steady state. But what does it dissipate energy for? Here, we relate the synchronization 

performance characterized by its order parameter r with the free energy dissipation. By using 

the phase fluctuation distribution (Eq. 9) in Eq. 8, the dissipation rate per oscillator 

W = Ẇ Tp in a period Tp = 2π/(keg) (note that the period is independent of the exchange 

reactions because the total phase is preserved during an exchange reaction), can be 

determined analytically in the limit m → ∞:

W E0, Ω = W 0 + 2πΩβE0
2

keg
(A2
2β − A3), (12)

where W0 = 2πeg is the free energy cost per period for an independent clock, 

A3 sin ϕ1 − ϕ2 sin ϕ1 − ϕ3 = r2/ βE0  and A2 = sin2 ϕ1 − ϕ2 = 2
βE0

1 − 1
βE0

 for βE0 ≥ 2 

are the two- and three-point correlation functions (see SI for derivation). The second term in 

the RHS of Eq.(12), W ex E0, Ω ≡ W E0, Ω − W 0, represents the energy cost to power the 

exchange reactions. The dependence of Wex on E0 and Ω is shown in Fig. 2B.

It is clear from Eq. 12 that a finite additional energy cost is needed to increase Ω to reach the 

onset of synchronization at Ω = Ωc = 2k/(E0 − 2). This additional energy cost at the onset of 

collective oscillation can be defined as the synchronization energy:

W s = W Ω = Ωc − W 0 = πE0
2

E0 − 2 eg
. (13)

Near the synchronization transition, the order parameter depends on the energy dissipation 

W in a power-law: r ≈ aw W − W c
1
2  with a mean-field exponent 1/2 and a constant prefactor 
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aw = 2eg/ πE0
1
2 E0 − 2 / E0 − 4 . The critical energy cost W c ≡ W 0 + W s contains two 

parts, W0 and Ws, which are responsible for the oscillation of individual clocks and their 

synchronization, respectively.

D. Maximizing synchronization with a ftxed energy budget

Given the dependence of r and W on Ω and E0, we next ask what is the maximum achievable 

synchronization rmax(W) for a given energy budget W, and what is the optimal design of E0 

and Ω that lead to this maximum performance.

From the dependence of Ws on E0 given by Eq. 13, there exists a minimum synchronization 

energy Ws,min = 8π/eg at E0 = 4 with the corresponding critical exchange frequency equal to 

the clock frequency Ω = 2k/(E0 − 2) = k. For W < W c, min ≡ W 0 + W s, min, synchronization is 

impossible, i.e., rmax = 0, for any coupling interaction. For W ≥ Wc,min, rmax ≥ 0, 

synchronization becomes possible for certain choices of E0 and Ω.

In Fig. 2C, the dependence of r on W for different choices of E0 are shown. The (upper) 

envelop of these r(W, E0) curves defines rmax(W), which is also shown. Near the onset of 

synchronization 0 < W /W c, min − 1 ≪ 1, rmax follows a power law:

rmax W ≈ cw W − W c, min
1
4 (14)

with a nontrivial exponent 1/4 and cw = 3eg/ 2π
1
4 . For W /W c, min ≫ 1, rmax approaches 1 

(perfect synchronization) with the difference (1 − rmax) inversely proportional to the energy 

dissipation (see SI for derivations):

rmax W ≈ 1 − π
eg W − W 0

. (15)

The optimal choices of E0
∗ W  and Ω*(W) that leads to the optimal performance for a given 

W are also determined. In Fig. 2D, we show the optimal exchange reactions (E0
∗ and Ω*) and 

the corresponding energy cost (W*) versus the achieved maximum synchronization rmax. For 

up to a modestly high level of synchronization ∼ 0.7, the optimal design for the exchange 

reaction is to have a roughly constant E0 (slightly higher than 4) and to tune Ω higher for 

higher synchronization. This weak dependence of rmax on E0
∗ (as long as it is larger than a 

critical value) is related to the small exponent 1/4 in Eq. 14 (see Methods for a brief 

discussion and SI for a detailed derivation). This design for efficient synchronization is 

consistent with biological constraints as the reaction strength E0 may be hard to vary in 

biochemical systems, but the kinetic rate Ω can be modulated by enzymes.

E. Synchronization in the Kai system

Our theoretical work is inspired by the Kai system underlying the Cyanobacteria circadian 

clock. The key molecules in the Kai system are the KaiC proteins that form hexamers under 
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physiological conditions. Each KaiC monomer has two autophosphorylation sites (S-431 

and T-432) in its CII domain and the different phosphorylation states of the KaiC hexamer 

constitute the different phases of the oscillation [23, 24]. The processive transitions between 

these phosphorylation states (phases) are driven by phosphorylation and dephosphorylation 

reactions that are controlled by two proteins, KaiA and KaiB, and by transitions between a 

phosphorylation (P) conformation and a dephosphorylation (dP) conformation of the 

hexamer [25–29]. A simple model for a single KaiC hexamer is characterized by rates of 

these reactions as shown in Fig. 3A (see Methods for details of the model).

The molecular mechanism of synchronization in the Kai system is not fully understood. One 

possibility is the experimentally observed monomer-shuffling phenomenon that allows two 

KaiC hexamers to exchange monomers when the hexamers are in certain phases of their 

oscillation [30–35], which we focus on in this study. It is known that KaiC hexamerization 

requires ATP and thus it is highly plausible that ATP hydrolysis leads to KaiC hexamer 

disassembly [36, 37] which allows monomer-shuffling between different hexamers. 

Monomer-shuffling can lead to averaging of phases of the two hexamers involved, which 

can be described by the phase exchange reaction introduced in our coupled molecular clock 

model. Explicitly, for any allowed monomer-shuffling reaction Hi + Hj → Hk + Hl with i + j 
= k + l, where the subscript “x” is the phosphorylation level of the hexamer Hx, the reaction 

rate is R × pij kl, where R is the shuffling rate per hexamer and 

pij kl ∝ exp −Es k − l − i − j  with Es(> 0) a phenomenological energy parameter. We 

study the effect of monomer shuffling by varying the monomer shuffling rate R. In Fig. 3B, 

we plot the amplitude (defined as averaged phosphorylation level) of the oscillation versus 

R. It is clear that synchronization, i.e., macroscopic oscillation with a non-zero amplitude 

appears when the shuffling rate exceeds a critical value Rc. We have also considered the 

cases where the shuffling rate depends on the conformational state (“P” and “dP”), which do 

not change the main conclusions (see SI and Fig. S2&S3 for details).

As shown in Fig. 3C, energy cost increases with the shuffling rate R and the minimum 

energy cost for synchronization Ws (defined the same as in Eq. 13 depends on Es and can be 

bigger than the energy W0 needed for driving oscillation of an individual hexamer. Indeed, 

an average of ∼ 16 ATP molecules are hydrolyzed per KaiC monomer during one period 

[26] while only 2 ATP molecules per KaiC are needed for the phosphorylation-

dephosphorylation clock cycle for the two autophosphorylation sites in KaiC. What are the 

additional ATP molecules used for? It is known that they are hydrolyzed by KaiC’s ATPase 

activity, whose function remains a major mystery in the field. Here, our theory suggests that 

the KaiC ATPase activity, powered by the additional ATP molecules, may be responsible for 

driving synchronization in the Kai system. This additional energy cost for synchronization is 

not only needed for the monomer-shuffling mechanism as shown here, it also holds true for 

the other possible synchronization mechanism in the Kai system, i.e., the KaiA differential 

binding mechanism (see SI and Fig. S4&S5 for details). One immediate consequence of this 

general result is that a reduction in the ATPase activity will suppress any possible energy-

consuming synchronization mechanism and lead to a reduced synchronization. This 

prediction should be tested experimentally to help reveal the underlying molecular 

mechanism for synchronization in the Kai system.

Zhang et al. Page 8

Nat Phys. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



III. DISCUSSION

In this paper, we found that coupling mechanisms such as exchange reactions that favor the 

clocks with a smaller phase difference violate detailed balance and additional free energy 

must be spent to maintain synchronization of individual clocks. This is a general result 

independent of individual clock dynamics and the specific coupling mechanism. The 

additional energy is used to drive the coupling mechanism to correct the phase error 

(difference) between noisy clocks. In a simple model where individual clocks interact 

through exchange reactions, we showed that a finite critical amount of energy dissipation, 

which depends on both the frequency and the strength of the coupling mechanism, is needed 

to drive the non-equilibrium phase transition from a disordered (asynchronous) state to a 

ordered (synchronous) state. We also determined the maximum possible synchronization 

with a fixed energy budget as well as the optimal design of the exchange reaction for 

achieving the maximum synchronization efficiently.

There have been some recent studies of synchronization in simple coupled three-state-

oscillator systems [38–40]. Similar to our model, these three-state-oscillator models exhibit 

a second-order phase transition at the onset of synchronization. However, there are two 

important differences. First, since the focus here is to study nonequilibrium thermodynamics 

in synchronization, our model is built on a thermodynamically consistent framework, which 

is absent in these previous studies. Second, the synchronization (coupling) mechanism 

directly affects the processive dynamics in these previous three-state-oscillator models, 

whereas they are independent reactions in our study. As a consequence, the period in these 

previous models varies with the coupling strength while the period is not affected by the 

exchange reaction strength, which is a desirable feature for biochemical oscillators. Due to 

the difference in oscillator-oscillator interaction, we found that synchronization is only 

possible in our model when the number of states in an individual oscillator N ≥ 5 (see SI and 

Fig. S6) whereas synchronization exists for N = 3 in these previous models.

Our theoretical results have important implications for studying biological systems. In 

particular, the insight on energetics of synchronization makes a previously unsuspected 

connection between the energy source such as the ATPase activity and the observed 

synchronization behavior. This connection opens up a new direction to search for possible 

molecular mechanisms for synchronization in specific systems such as the Kai system, 

which we are currently pursuing. Finally, our work provides a framework to study 

thermodynamics of collective behaviors in other extended nonequilibrium systems, such as 

the flocking dynamics [41–43], where global order arises through local interactions between 

active agents.

IV. METHODS

Derivation of the many-oscillator steady state phase distribution.

As the interaction potential E(ϕi, ϕj) only depends on the phase difference ϕi − ϕj , we would 

expect the steady state of the system to have rotational invariance, i.e. 

Ps ϕ1 + ϕ, ϕ2 + ϕ, …, ϕm + ϕ = Ps ϕ1, ϕ2, …, ϕm  for arbitrary ϕ. Consequently, we have 
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∑i ∂Ps/ ∂ϕi = 0, which could simplify Eq.(3) to: 

∂tPs = ∑i ∂ϕi 2Ω∑j ≠ 1 E′ ϕi − ϕj /m + Ω + k ∂ϕi Ps = 0. The solution is 

Ps ϕ1, ϕ2, …, ϕm = Z−1exp −βEt ϕ1, ϕ2, …, ϕm , with β = Ω/ Ω + k , Et = 2
m ∑i < j E ϕi − ϕj , 

and Z the normalization constant (partition function).

The optimal design and its asymptotic behavior.

For a given energy budget W* ≥ Wc,min, the maximum possible synchronization rmax(W*) is 

defined by rmax W ∗ ≡ max E0, Ω ∈ E0, Ω |W E0, Ω = W ∗ r E0, Ω , and the corresponding 

optimal design values are E0
∗, Ω∗ . Considering r increases monotonically with ΩE0/(Ω + k), 

the optimal values E0
∗, Ω∗  are unique. E0

∗, Ω∗  can be determined numerically and they are 

plotted in Fig. 2D.

The asymptotic behavior of rmax(W) when W is near Wc,min and rmax is small can be 

determined as below (see SI for more details). Denoting the small deviations δE = E0 − 4, 

δΩ = Ω − k and δW = W − Wc,min, in the limit of βE0 → 2, we obtain an equation for r 
combining Eq.(10)&Eq.(12), from which we solve r as a function of δE and δW (neglecting 

higher order terms): r δW , δE = 3eg/ 2π
1
4 δW

1
2 + δW

1
2δE/2 − πδW − 1

2δE2/4eg

1
2
. For a 

given δW, r reaches its maximum when δE = egδW /π. Thus we have 

rmax W ≈ 3eg/ 2π
1
4 W − W c, min

1
4  as given in Eq. 14, and correspondingly E0

∗ = 4 + 2
3rmax4

with the high power 4 given by the small exponent 1
4  in Eq. 14. As a result, E0

∗ is insensitive 

to rmax(< 1) – it only increases by ∼ 8% as rmax changes from 0 to 0.7.

Details of the model for the Kai system.

As illustrated in Fig. 3A, there are two kinds of reactions: the processive reactions and 

monomer shuffling reactions. The processive reactions include phosphorylation, 

dephosphorylation, and conformational change processes. In our simplified model, a KaiC 

hexamer has 2 conformations: P and dP,and 7 possible phosophorylation states 

corresponding to the 7 possible numbers (from 0 to 6) of fully phosphorylated KaiC 

monomers in the hexamer. In its P-conformation, the hexamer favors the phosphorylation 

reactions with the forward and reverse rates for phosphorylation Hi
p Hi + 1

p  given by kp 

and γ1kp, respectively (γ1 < 1). In its dP-conformation, the hexamer favors the 

dephosphorylation reactions with the forward and reverse rates for dephosphorylation 

Hi + 1
dp Hi

dp given by kdp and γ2kdp, respectively (γ2 < 1). The transitions between P and 

dP conformations only occur with reaction H6
p H6

dp and H0
dp H0

p with forward and 

reverse rates given by g and γ3g, respectively (γ3 < 1). This phosphorylation-

dephosphorylation cycle (PdP cycle) and the conformational change process constitute the 

(global) processive cycle similar to the Poisson clock shown in Fig. 1A.
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Following [35], we assume monomer shuffling happens between hexamers with the same 

conformation (P or dP). After shuffling, the two hexamers tend to reduce their difference of 

phosphorylation levels. We explicitly model this process by taking the rate of monomer 

shuffling reaction Hi + Hj → Hk + Hl with rate Rpij kl, where R is the shuffling rate, and 

pij kl = Z−1exp −Es k − l − i − j , with Z = ∑k, l exp −Es k − l − i − j  and Es a 

phenomenological energy parameter. The reverse rate is simply Rpkl ij.

Given all these reactions, the concentration of KaiC hexamers in each state (14 states in 

total) is governed by a set of ordinary differential equations. From simulations of these 

ODEs, we can compute the amplitude and period of the collective oscillation (Fig. 3B) as 

well as the dissipation rate of the whole system (Fig. 3C). More technical details and 

parameters used for Fig. 3B&C are given in the SI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1: 
Nonequilibrium cycle dynamics of Poisson clock(s). (A) A clock steps between 2 

neighboring states by Poisson processes with rates k for clockwise transitions and γk for 

counterclockwise transitions (γ < 1). The global clock cycle is characterized by Γg = γN. (B) 

The distribution function P (ϕi, ϕj) of the phases ϕi and ϕj of two interacting Poisson clocks 

are shown on a torus. The transitions among 4 neighboring states in the dotted box are 

shown with the exchange reactions labeled by red arrows. The two local exchange cycles are 

characterized by Γl = e−ΔEij  and Γl
−1 with ∆Eij the exchange reaction potential between 

states (ϕi, ϕj) and (ϕi + ∆ϕ, ϕj − ∆ϕ).
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FIG. 2: 
Phase diagram and optimal design for synchronization. (A) The synchronization order 

parameter r, and (B) the energy dissipated for the exchange reactions, W − W0, in parameter 

space (E0, Ω/k). The solid line in (A)&(B) is the phase transition line. (C) r versus the 

exchange energy cost (W − W0) for different values of E0. The thick gray line shows the 

envelop rmax(W), i.e., the maximum r for a given W with its asymptotic behaviors given in 

Eqs. (14)&(15) shown by the dotted lines. (D) The optimal choices Ω* and E0
∗, and the 

corresponding energy cost per period W* to reach the maximum performance rmax. The 

optimal design line E0
∗, Ω∗/k  is also shown in (B). Parameter eg = 4π.
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FIG. 3: 
The cost of monomer-shuffling for synchronization in the Kai system. (A) Scheme of single 

hexamer dynamics (top) and monomer shuffling between two hexamers (bottom). The red 

dot represents the two phosphorylation sites on each KaiC monomer. Shuffling is allowed to 

happen between two hexamers with the same conformation (P or dP). (B) The amplitude and 

period of macroscopic oscillation versus the shuffling rate R. A finite critical R, labeled by 

the dotted line (the same as in (C)), is required for the collective oscillation while the period 

(∼ 24hr) is roughly independent of R. (C) Dissipation rate per Kai monomer versus R for 

different values of Es. The two gray lines correspond to the minimum energy cost per KaiC 

monomer for the phosphorylation-dephosphorylation cycle (2ATP/day) and the 

experimentally measured dissipation rate (∼ 16ATP/day), respectively. 1ATP ≈ 20kBT is 

used here.
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