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ABSTRACT:
A lifetime ago, as an undergraduate, I joined a team that developed a new way of thinking about the sensitivity of

sensory systems. My teammates were Wilson (Spike) Tanner and John Swets, both now deceased, and we were

working at the University of Michigan. I also wish to thank J.C.R. Licklider, J. P. Egan, and Lloyd Jeffress who

aided and encouraged that development. I am gratified that what came to be called signal-detection theory (SDT)

was so widely accepted and its methods so widely adopted. However, I am somewhat disappointed about how SDT

commonly is portrayed, and taught. My reasons are presented here. VC 2020 Acoustical Society of America.
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I. INTRODUCTION

For a recent conference on signal detection theory, held

at Northwestern University and sponsored by the Hugh

Knowles Foundation, the cover on the program listing the

participants contained a logo that has long been associated

with signal detection theory, namely, two equal-variance

Gaussian distributions separated by about one standard devi-

ation (see Fig. 1).1 My complaint is that similar logos have

become the main message of the theory, rather than only

one particular embodiment of it. Therefore, I composed this

brief homily on the topic to illustrate what I believe is the
critical contribution of this theory, the true gospel if you

will. I will argue that, while the equal-variance Gaussian

icon is commonly used, it is inappropriate for illustrating the

essential contribution of the theory. Rather, we should be

focusing on more general measurements of a signal’s detect-

ability and how those different measurements are related. I

also must disclose that I had nothing to do with the adver-

tisements for that conference nor, for that matter, the choice

of the honoree.

II. NARRATIVE

In determining how human observers detect weak signals,

historically, investigators often simply asked them whether

they heard, saw, or sensed a given signal. Such responses

were private evaluations, and there was no means of counting

such actions as anything more than individual opinions. The

responses did not indicate whether or not the signal was actu-

ally detected. The sensations produced by the stimuli were

subjective; they were private or covert. The only objective

fact was the observer’s response on that particular trial.

The objective fact, a datum that we all can agree upon,

is whether an observer says that he/she detects a signal or

does not detect a signal. That leaves but one problem. What

shall be done when the observer says he/she detects a signal

when no signal had been presented? Historically, these

responses were called false positives or false alarms, and the

general advice to the observers was to avoid making such

incorrect responses. To determine if, in fact, the observer

was following these instructions, occasional “catch” trials

were offered where no signal was presented with the hope

that a correct response of “no detection” would occur.

An early and important contribution of signal detection

theory was to suggest that not a few but many trials without

signals should be presented. Accurately estimating both the

proportion of affirmative responses (yes) on these no-signal

trials (called false alarms), as well as the proportion of yes

responses when the signal was actually presented (called

hits), provides a much more useful data set than just estimat-

ing the yes responses on signal trials.

Suppose an observer’s attitude was very conservative

about saying when a signal was presented. Then, the proba-

bility of a hit will be low and the proportion of false alarms

also will be low. If, on the other hand, the observers were

very liberal about saying they detected a signal, then the

proportion of hits will be high and the proportion of false

FIG. 1. Logo of two equal-variance Gaussian distributions printed on the

cover of the program for the conference on signal detection theory spon-

sored by the Hugh Knowles Foundation.
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alarms will also be high. An investigator can use induce-

ments (say, by altering the total number of signals presented

or providing financial incentives) to encourage an observer

to say yes more or less often on different blocks of trials. In

the parlance of signal detection theory, the observer has

been induced to adopt different criteria for those subjective

events that are accepted as a “signal.” The investigator next

can use the pairs of hit rates and false-alarm rates obtained

under these different inducements to construct a receiver

operating characteristic (ROC) curve. The probability of a

false alarm is plotted along the abscissa of a ROC curve,

and the probability of a hit is plotted on the ordinate. If a

signal were not detectable, then the two probabilities should

be equal and would fall along the major diagonal of the

ROC curve (the chance line). The area under that diagonal

is 0.5 or simple chance performance. As the signal becomes

more detectable, the hit rate exceeds the false-alarm rate and

the curve encompasses a greater area. The area under the

ROC curve is, thus, a measure of the signal’s detectability.

Figure 2 illustrates the pairs of points one might obtain for a

moderately detectable signal. To understand this, it will be

helpful to get a bit technical and explain how the theory han-

dles these notions explicitly.

Signal detection theory assumes that the covert sensory

events occurring on signal and non-signal trials can be char-

acterized by two different probability density functions. One

such function is labeled the signal density function fs(x) and

the other is the non-signal density function fn(x), where x is

the magnitude of the covert sensory events aroused on dif-

ferent trials. Accordingly, the signal function lies to the right

of the non-signal function because, on average, signal trials

produce larger sensory events than do non-signal trials.

Signal detection theory assumes that the observer estab-

lishes a criterion value C along the x dimension such that

when the covert sensory events exceed C, the observer

responds yes; otherwise, he/she responds no. Therefore, if a

signal is present, the probability that the sample exceeds C
yields the hit probability P(Yjs). If the non-signal event is

presented and the sensory sample exceeds C, we have the

false-alarm probability P(Yjn),

P Yjsð Þ ¼
ð1

C

fs xð Þdx; (1)

P Yjnð Þ ¼
ð1

C

fn xð Þdx: (2)

An important point here is that the way that the hit and

false-alarm probabilities change with C (the shape of the

ROC) depends on the forms of the underlying functions fs
and fn. In signal detection theory, these functions are often

drawn as equal-variance Gaussian distributions, but this is

not a requirement of the theory; they can be any functions

whatsoever. Indeed, the shape of the ROC curve can inform

us about the underlying functions, which reflect an essential

property of the underlying sensory/perceptual process.

Another detection procedure, advocated by many engi-

neers, is called the A/B test. This procedure is also com-

monly called two-alternative forced-choice (2AFC), or in

audition, it is called two-interval forced choice (2IFC). In

this test, a pair of stimulus alternatives is presented in suc-

cessive time intervals or in different spatial locations. The

target (A) is presented in one interval (or location), the non-

target (B) is presented in the other, and the observer is asked

when (or where) the target appeared. The 2AFC test is, gen-

erally, regarded to be superior to single-interval (yes/no)

tasks because the listener hears an example of the signal on

every trial and is reminded of what the signal sounds like.

Signal detection theory can also describe the A/B or

2AFC test. Let us call the A alternative a signal event, and

the B alternative is called a non-signal event. In the A/B
task, what produces a correct response? The observer gets

two samples, one from the signal alternative and one from

the non-signal alternative. If the sample xs from the signal

distribution fs, is greater than the sample xn from the non-

signal distribution fn, then the observer will choose the cor-

rect interval or location and a correct response will occur.

Or, to express it in integral terms,

P Cð Þ ¼ P xs > xnð Þ ¼
ð1
�1

fs xð Þ
ðxs

�1
fn yð Þdy dx: (3)

The probability of being correct in the A/B or 2AFC test

is simply that integral when summed for all possible

values of xs.

So, now we have two different ways of assessing the

detectability of a signal. One is the yes/no method, in which

we construct the ROC curve, and signal detectability is mea-

sured as the area under this curve. The other method is the

A/B task, in which a signal is presented in only one of two

FIG. 2. Example of a receiver operating characteristic (ROC) curve. The

solid curve gives all possible pairs of theoretical hit and false-alarm proba-

bilities, P(Yjs) and P(Yjn), respectively, for a given level of detectability.

The solid symbols give two hypothetical outcomes corresponding to differ-

ent inducements to report the presence of a signal. The diagonal line repre-

sents chance performance. The small area in the rectangle given by the

dashed lines is used in the calculus to compute the area under the ROC

curve, which corresponds to percent correct in the two-alternative forced-

choice (2AFC) task.
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observation intervals (locations), and the detectability of the

signal is measured by the proportion of times the signal is

correctly selected in a number of trials. To understand a

remarkable fact of signal detection theory, we now will

prove that the area under the ROC curve is equal to the

probability of being correct in the A/B task.2 Although well

known, I believe the importance of this relationship has

been overlooked in the intervening years.

Consider, first, how we usually calculate the area under a

function, y¼ f(x). One method is to make approximations to

that area by constructing vertical slices along the function.

The area of each slice is equal to the slice’s width, dx, times

the height of the rectangle, f(x), at that value of x. Thus, the

area of the small slice is simply dA¼ f(x)dx, which is the fun-

damental theorem of calculus. By making the slices smaller

and smaller, that is, by making dx approach zero, we converge

on the actual value of the area under the function f(x).

Let us now calculate the area under the ROC curve for

the yes/no task using the same approximation method as

above. To make things easier, let us imagine horizontal rather

than vertical slices made along the ROC curve. The horizontal

slices extend from the ROC curve to the right-hand border of

Fig. 1 (see the dashed rectangle in Fig. 1). The length of the

slice is equal to 1 � P(Yjn), the complement of the false-

alarm probability at the hit probability, P(Yjs). Next, look

carefully at Eq. (3). The second integral, the area of fn(y)dy
from minus infinity to xs, is also just the complement of the

false-alarm probability at that value of xs, the criterion value

for the hit probability. Now, we must describe the width of the

slice shown in Fig. 2. For the moment, let us call that width

dP(Yjs). That width is given by the difference between two

probabilities, the value of Pu(Yjs) at the upper value of the

slice minus the value of Pl(Yjs) at the lower value of the slice.

As the slice becomes smaller and smaller, that difference

approaches the value of the signal distribution function fs(y).

Again, we see from Eq. (3) that fs(y) is the multiplier of the

complement of the false-alarm term. So, the quantities used to

calculate P(C) are exactly those used to approximate the area

under the yes-no ROC curve. Using the same calculus argu-

ments, the approximation becomes the exact value as the

widths of the horizontal slices are made smaller and smaller.

Hence, we have proved that the total area under the ROC

curve is equal to the probability of being correct in the A/B
task. One should also note that the proof does not make any

assumption about the form of the functions fs and fn. They do

not need to be Gaussian.

I should note here for extra credit that if in Eq. (3) the

second integral is raised to the M� 1 power, we can find the

probability of being correct in an M-alternative forced-

choice task. The non-signal samples are all independent,

and, thus, all M� 1 samples must be less than xs and the

joint probability is simply the probability P (raised to the M
– 1st power). If we alter the original yes-no ROC curve by

simply moving the false-alarm values to the right by raising

their value to a power of M � 1, then the percent correct in

the M-alternative task is simply the area under the altered

ROC curve. Once more, we have predicted the behavior in

one task from the behavior in another task. We also should

note that this method is not equal to the erroneous

“correction for chance” formula, sometimes used to predict

the percentage of correct responses in a different M-alterna-

tive forced-choice task.

Finally, I should mention a third general measure of a sig-

nal’s detectability, Kullback-Leibler divergence (DKL), also

known as information divergence or discriminable information.

DKL is the expected value of the log-likelihood ratio of fs and fn,

DKL fs k fnð Þ ¼ Efs ln
fs

fn

� �
: (4)

It is a measure of how two distribution functions differ and,

if expressed as bits, is related to a number of important quan-

tities in Shannon information theory (Kullback, 1959). Like

our previous two measures, it is distribution free. Its value is

in indexing optimal performance for the detection task when

there is information that distinguishes the signal from the

noise in the higher moments of the distributions beyond the

mean. Note that our equal-variance Gaussian assumption

would have us believe that the only information identifying

the signal is a shift along the axis of the two distributions.3

Having a general measure of optimal performance can also

be of tremendous value because it serves as a standard for

identifying limits of observer sensitivity across a broad range

of stimulus conditions and psychophysical tasks. Indeed, this

approach has been central to signal detection theory from the

outset and is treated in the theory of ideal observers.

III. CONCLUSION

The moral of this homily is that while individual per-

ceptual experiences are covert subjective quantities, there

are procedures that can convert them into completely objec-

tive data. Those data are as objective as any of the quantities

used in the so-called hard sciences. The contribution of sig-

nal detection theory is to provide a means of understanding

the structure of different detection tasks and generate predic-

tions about how the quantities measured in each task should

be related. The theory does assume the existence of distribu-

tion functions of sensory events, but these distributions need

not be equal-variance nor Gaussian; that is just a simplifying

assumption.
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1To indicate how widely Fig. 1 is used, the reader might exercise a Google

search on “signal detection theory” to uncover a bevy of images of the

icon in question, precisely underscoring my point.
2This relationship was suggested in a simple finite summation by Green

(1960). A proof was offered by Green and Swets (1966, p. 47); Egan

(1975, pp. 46-47) offered a more rigorous proof, and MacMillan and

Creelman (1991, p. 125) called it the area theorem.
3Readers familiar with signal detection theory will note that where

fs and fn are equal-variance Gaussian, DKL is proportional to d0

squared.
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