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S O C I A L  S C I E N C E S

The shape of educational inequality
Christopher L. Quarles*, Ceren Budak, Paul Resnick

Hundreds of thousands of students drop out of school each year in the United States, despite billions of dollars of 
funding and myriad educational reforms. Existing research tends to look at the effect of easily measurable student 
characteristics. However, a vast number of harder-to-measure student traits, skills, and resources affect educa-
tional success. We present a conceptual framework for the cumulative effect of all factors, which we call student 
capital. We develop a method for estimating student capital in groups of students and find that student capital is 
distributed exponentially in each of 140 cohorts of community college students. Students’ ability to be successful 
does not behave like standard tests of intelligence. Instead, it acts like a limited resource, distributed unequally. 
The results suggest that rather than removing barriers related to easily measured characteristics, interventions 
should be focused on building up the skills and resources needed to be successful in school.

INTRODUCTION
Over 500,000 high school students and over 600,000 college stu-
dents drop out of school every year (1, 2). Practitioners, researchers, 
and pundits have proposed a variety of explanations for why so 
many students are unable to achieve their goals. However, despite a 
variety of different education policies and billions of dollars spent 
ensuring no children are left behind, millions of children and adults 
are unable to achieve their academic goals. Unfortunately, there is 
no simple explanation that can point to simple interventions. The 
process of becoming successful in school can be complicated and 
difficult, requiring the right combination of social, personal, aca-
demic, and financial traits and skills. Researchers and policy makers 
have not yet found the secret to consistently cultivating success in 
students. So, it is no surprise that so many students are unable to 
successfully navigate the educational system.

Student capital
Here, we present a conceptual framework for studying students’ 
capacity to be successful in school, which we call student capital. 
We also demonstrate an analytical method for measuring this quan-
tity in community college students. Broadly speaking, we define 
student capital as the cumulative amount of resources a student can 
bring to bear to be successful in a particular school context. These 
resources might come in many forms, such as economic resources, 
social, cognitive, noncognitive, and academic skills. Like other 
forms of capital, these resources both help drive students toward 
their goals and insulate them against the random shocks that affect 
all of us. For example, consider the unlucky situation of a commuter 
college student whose car has broken down and therefore may have 
to miss class. If the student has a supportive social network, then she 
might be able to catch a ride with a friend. Strong academic skills 
might ensure that missing a class does not affect her learning. Cultural 
capital and self-confidence might give her the ability to communi-
cate clearly with her instructor to minimize any effects on grades. 
Economic resources might have allowed her to live in a campus 
dormitory, possibly at a more elite college, thus avoiding the situa-
tion in the first place. And of course, the more resources she has, 
the better off she will probably be.

There is a rich body of literature examining the factors that affect 
student persistence in college. An incomplete list of personal factors 
related to college success includes academic preparation (3, 4), 
students’ self-discipline, self-confidence, commitment to college, 
amount of social activity, race, age, full-time/part-time enrollment, de-
gree expectations, distance between home and school, number of 
hours worked at a job, parents’ income, parents’ education level (5), 
perceptions of faculty, peer groups, campus engagement (6), familial 
responsibilities, interest in school, lack of money (7), unreliable 
housing, and food insecurity (8). In addition, the skills required to 
be successful in a classroom can be confusing and vary from class to 
class (9, 10), with some researchers calling classrooms a “black box” 
(11, 12). So, college success may be partly attributable to a student’s 
ability to learn new classroom expectations. Many researchers have 
attempted to disentangle this web of causal relationships (13). They 
face substantial challenges from selection bias and hidden variables. 
Our goal is not to wade into that discussion but to consider the cu-
mulative effects of all factors as a single variable.

We call this quantity student capital to fit with prior literature on 
other forms of capital, which can be used for both a source of invest-
ment income and a reserve of resources to insulate against shocks. 
Social scientists have examined a variety of forms of capital, includ-
ing economic, social, and human capital. Social capital is some form 
of social relationship that can be used to benefit individuals or 
groups, such as membership in neighborhood groups (14), networks 
of parents (15), or professional connections (16). Human capital is 
the set of skills embodied in a given workforce, typically measured 
in terms of economic benefit. For example, researchers have exam-
ined the wage benefits of specific skills, on-the-job training, and a 
variety of college degrees (17–19). Different forms of capital can 
manifest in multiple ways, and there have been many debates about 
how to measure them (14, 15, 17, 20, 21). Economic and social 
capital are most often defined in terms of what they consist of: 
money and social relationships, respectively. In contrast, human 
capital is usually defined in terms of economic benefit and can 
consist of many types of embodied skills and traits. Student capital 
is more like human capital, since it is defined by the educational 
success it can provide.

Operationalizing student capital
We consider student capital as the amount of success that a student 
is able to achieve. In our study, this is the number of credits they 
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could earn if that many credits were required for their goals. To com-
pare with more financial forms of capital, in an economic system 
without a standardized currency, an individual’s wealth can only be 
determined by what it can be traded for. Depending on the circumstances, 
a bag of gold might be worth more or less than a bag of rice. Similarly, 
a supportive family or good social skills may have a varying effect 
on a student’s outcome, depending on a variety of situational factors. 
Furthermore, those factors might interact in a way that helps or hinders 
the student. We operationalize student capital as the total amount of 
educational success (credits completed) that can be “bought” by a student, 
in their particular context, using their skills, traits, and resources. This 
runs the risk of conflating student capital with the returns on student 
capital. However, given the notable universalities in our results, we 
think that this metric measures something meaningful.

It is important to distinguish student capital from student 
outcomes, which might include whether a student graduated or 
transferred to a 4-year school. Outcomes are measurable represen-
tations of whether a student reached a certain goal, rather than 
giving a measure of how well they could have done. Student capital 
is harder to measure in individuals. The student capital of students 
who have dropped out of school can be directly observed as the 
number of credits they earned. However, students who graduated 
or transferred may not have run out of student capital. We only 
know that their capacity to earn credits is greater than or equal to 
the number they earned. This is good for those students but makes 
data analysis more challenging. It makes it impossible to measure 
the student capital of every student. Instead, we can estimate the 
distribution of student capital in a group using right-censored 
maximum likelihood estimation. This is still useful, since statistics 
like this are commonly used to describe groups of students.

The shape of inequality
Despite humankind’s best efforts, inequality has always been with 
us (22). However, the amount of inequality has varied, depending 
on the era and location (20, 22). This suggests that, beyond the idio-
syncratic forces unique to specific groups, there are systemic forces 
that keep resources allocated unequally. To better understand those 
forces, we look at the shape of educational inequality. In a more 
economic context, studying the shape of inequality might involve 
examining income or wealth distributions (23, 24). In the context of 
education, we look at the shape of student capital distributions. If 
we find that these distributions have the same universal shape 
across colleges, then this will give us insight into the underlying 
macroscale processes that create educational inequality.

To analyze the shape of educational inequality, we used data from 
156,712 students from 28 Washington community colleges. We grouped 
students into 140 cohorts, each containing the students who started at 
the same college during the same academic year. We focus on degree-
seeking community college students who aim to transfer to a 4-year 
college. This group has the benefit of being fairly diverse (25) while 
sharing the same goals and educational context. This allows us to measure 
their student capital on the same credit-based scale. For each student, 
we calculated the total number of community college credits they had 
earned within 5 years of enrolling and whether the student dropped 
out of school without earning a degree or transferring to a 4-year college.

Models for student capital distribution
To explore the shape of educational inequality, we consider a num-
ber of different models for how student capital might be distributed. 

Each model represents a universe with plausible educational behavior 
that leads to a particular distribution of student capital. Graphical 
comparison of the models is shown in Fig. 1. In the next section, we 
test whether these models fit the data.

The cognitive ability model comes from the claim that educa-
tional outcomes are largely determined by, or equivalent to, cogni-
tive ability as measured by achievement tests such as intelligence 
quotient (IQ) (26). This model is consistent with the common prac-
tice in the education literature of using standardized tests such as 
the SAT as measures of ability or achievement (27, 28). These tests 
measure specific cognitive abilities or knowledge at the time the stu-
dent takes the test. The cognitive ability model assumes that student 
capital, which is nominally a student’s ability to navigate successfully 
through the complex social, personal, and academic demands of 
a school system, is mostly dependent on IQ or cognitive abilities. 
Since these cognitive abilities, as measured, tend to be normally 
distributed, this model suggests that student capital might also be 
shaped like a bell curve.

It could also be possible that, like forms of financial capital, a 
given community has a limited amount of student capital that can 
be generated in their college-going population. Collectively, parents, 
family, and friends may have a finite amount of experience, non-
cognitive skills, social stability, and financial resources to share with 
children and college-bound adults. Some communities, particularly 
wealthier and more educated ones, have more of this resource than 
others. This is consistent with the well-established fact that children 
of wealthier and more educated parents tend to have more of the 
skills necessary for academic success (5, 27, 29). The finite resource 
model assumes that the only thing constraining students’ capacity to 
complete college is the limited nature of this resource in a population. 
For this model, we assume that resources are at least partially substitutable 
so that we can treat these resources as coming from a single pool. 

0 20 40 60 80 100

0.00

0.01

0.02

0.03

0.04

0.05

Student capital

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n Cognitive ability model (normal)

Finite resource model (exponential)
Rich-get-richer model (power law)

0 20 40 60 80 100

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Student capital

H
az

ar
d 

ra
te

Cognitive ability model (normal)
Finite resource model (exponential)
Rich-get-richer model (power law)

A

B

Fig. 1. Potential models of student capital distributions. (A) Probability distri-
bution function for each model. (B) Hazard rate of dropping out specified by each 
model. Specifically, the vertical axis gives the probability that a student who has 
k units of student capital will stop their education before earning k + 1 units. In 
both cases, the trends suggested are qualitative, designed to show the shape of 
the distribution rather than any specific numbers.
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For instance, a student whose home is too unstable for studying may 
be able to spend money to work at a coffee shop. If society distrib-
utes this finite student capital in the least informative way, we would 
expect to see an exponential distribution of student capital for a given 
community. Put another way: If, in a given population, the only 
major limitation is that student capital is finite, then there are many 
ways that it could be distributed to individuals. However, in this case, 
the vastly most probable distribution is exponential—or something very 
close. More details and examples of the principle of maximum entropy, 
which underlies this model, can be found in (30–33). A similar model 
was proposed in (34) to explain why income distributions between 
the 10th and 90th percentiles are distributed exponentially (24).

The rich-get-richer model assumes that the student capital gained 
from an additional resource is roughly proportional to the student capital 
they already have. For instance, a student with good study skills 
might be able to benefit more from increased wealth, because they 
might be able to use the time not working at a job to study more 
efficiently. The rich-get-richer phenomenon has been well studied 
in a variety of other areas (35–37) and leads to a heavy-tailed distri-
bution such as a power law or log-normal distribution. Since these 
distributions often have similar behavior and can be difficult to 
distinguish from each other, we focus on whether the distribution 
of student capital fits a power law.

Of course another mental model, often implicitly assumed among 
those who do educational interventions, is that (i) interventions and 
college policies can have a substantial effect on student progress at 
various points in the college process and (ii) the policies and sup-
ports in different colleges vary enough to see this effect. If this 
context-specific model were true, we would expect distributions of 
student capital to have varying, idiosyncratic shapes depending on 
the school itself and perhaps even the year. For example, a college 
with a strong student onboarding program might have a mode at 
15 or 30 credits, while other colleges with regular enrollment cycles 
might have periodic distributions of student capital. In this case, 
institutional structures would be more important for student suc-
cess than the resources, skills, and traits student brought with them. 
Student capital would be a relatively unimportant consideration in 
educational success. This model is not shown in Fig. 1, because the 
context-specific model would imply that each cohort of students 
has its own distinctive curve.

RESULTS
Unfortunately, we cannot directly measure the number of credits 
that every student could have earned. Instead, we only have data for 
the number of credits students actually earned and whether they 
dropped out, graduated, or transferred. Figure 2 shows the distribu-

tion of credits, graduation, and transfer for two colleges. Figure S1 
has similar graphs for all colleges in the dataset. White bars repre-
sent students who dropped out so that their observed number of 
credits is equal to their student capital. Blue, green, and yellow 
students represent censored data points. These individuals’ student 
capital is greater than or equal to the observed number of credits 
shown on the graph. The number of successful students peaks 
around 90 to 100 credits, because associate’s degrees in Washington 
require at least 90 credits. Note that Fig. 2 and fig. S1 do not show 
student capital, just the observed number of earned credits. Most 
graduating/transferred students will have student capital values 
larger than the number of credits they earned. So, we can imagine 
what the student capital of successful students might look like by 
flattening the colored bars to the right. The distribution of student 
capital might look like Fig. 2, but with a smaller bump. Or it could 
be continually decreasing so that the number of students who have 
k credits of student capital decreases as k increases.

Testing the models
The cognitive ability, finite resource, and rich-get-richer models 
each assumed that the distribution of student capital follows a given 
parametric model: normal, exponential, or power law. So, we ex-
plored them all using the same approach. We assumed that student 
capital is distributed according to the specified model, with a 
censoring process corresponding to graduation/transfer, which is 
estimated individually at each credit level. We used right-censored 
maximum likelihood estimation to estimate the parameters for each 
model. We then examined goodness of fit for each model using 
both the Akaike information criterion (AIC) and quantile-quantile 
(QQ) plots.

AIC is a standard information-theoretic method for comparing 
distribution fit. If a model has K parameters and log-likelihood 
ℒ, then AIC = 2K − 2ℒ. We used AIC to compare the fit of the three 
parametric models on each of the 140 cohorts. The finite resource/
exponential model gave the best fit to the data on every cohort (table 
S2). So, the inferred distribution of student capital fits an exponential 
distribution better than a normal or power law distribution.

While the AIC analysis shows which of the chosen distributions 
is better, it does not show if that fit is good. To qualitatively examine 
goodness of fit, we used QQ plots. To generate a QQ plot for a given 
cohort of students, we fit the parameters for each of the three models 
and then used those parameters to generate a set of simulated stu-
dents. We then compared the distribution of simulated students’ 
credits earned to the actual distribution of credits earned. Figure 3 
shows QQ plots using this process for three representative cohorts 
and also for the combined set of all students. QQ plots and AICs for 
all cohorts can be found in fig. S2 and table S1.
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Fig. 2. Distribution of credits earned. Each graph corresponds to the distribution of students in one college in the dataset within 5 years of enrolling. White bars repre-
sent students who dropped out.
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The finite resource model fit the data well. Using both QQ plots 
and AIC, this model fit best across colleges and across years. 
After accounting for the censoring effect of students graduating 
and transferring, student capital seems to follow an exponential 
distribution.

The rich-get-richer model fit the data very poorly. The power 
law seems to expect more students dropping out early and more 
students with very high student capital than is found in the real 
data. The heavy-tailed behavior found in the power law distribution 
is inconsistent with our data, suggesting that other heavy-tailed 
distributions such as log-normal would be poor fits as well.

Because students in our dataset only earned positive integer 
numbers of credits, we used a truncated discrete normal distribu-
tion for the cognitive ability model. At first glance, the cognitive 
ability model seems to fit the data almost as well as the finite 
resource model. The QQ plots for the normal distribution are 
reasonably close to the diagonal. However, the results were not 
consistent with what we would consider a normally distributed 

population. In such a population, the mean will be between the 
minimum value and the maximum value. However, for every cohort 
in our dataset, the inferred mean was ​​  ​  =  1​. This was the minimum 
possible number of credits earned and also the minimum allowed ​​  ​​ 
using our algorithm. Inferred parameter values, ​​  ​​, were distributed 
between 90.5 and 169.0 credits [mean(​​  ​​)  =  120.1, SD(​​  ​​)  =  12.7]. 
These values of ​​  ​​ tend to be larger than the number of credits 
earned by most degree-receiving students. These pathological re-
sults are consistent with a continually decreasing probability distri-
bution of student capital. The best way to fit a normal distribution 
to a decreasing distribution is to just fit the right tail. The result-
ing simulated data are missing the characteristic bell curve shape of 
the normal distribution. Therefore, we cannot say that the cognitive 
ability model is supported by our results.

The context-specific model assumes that the shape of the distri-
bution of student capital is highly dependent on the college. Evidence 
for this model would involve very different distributions of student 
capital, with some colleges having high dropout rates for students 
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with low numbers of credits and others having high dropout rates at 
higher credit levels. However, our previous analysis shows that dis-
tributions of student capital, across years and across colleges, all fit 
an exponential model very well. It seems that colleges do not have a 
substantial impact on the shape of educational inequality. At every 
college, there are more low-resourced students than high-resourced 
students.

Student capital as a finite resource
We now explore the finite resource/exponential model in more 
depth. Colleges often want to compare the experiences of different 
groups of students. Because the exponential distribution can be 
uniquely characterized by a single parameter, we can use our model 
to assign a number to any group of students. This number can be 
used like any other statistic, such as graduation rate. One possible 
such parameter is the per-credit retention rate q, which is one 
minus the traditional exponential decay rate. For example, one 
college might find that 95% of their students, at any credit level, will 
take one more five-credit class. This corresponds to q5 = 0.95, or 
q = 0.9898. Another such parameter is the mean of the distribution 
​​​ S​​ = ​   1 _ 1 − q​​. This has the units of credits and is reasonably easy to 
interpret as the average student capital in the student population. 
Equivalently, nS is the total amount of student capital collectively 
possessed by a group of students. Both q and S can be easily 
inferred with the algorithm we used. Figure 4A shows the distribu-
tion of average student capital S for the 140 cohorts in the dataset. 
Student populations in most of the colleges we studied have an 
average student capital between 90 and 130 credits, with a peak 
around 110 credits. It may seem surprising that most students drop 
out of school, given that the average student capital in most cohorts 
is larger than the typical 90 to 100 credits required for an associate’s 
degree in Washington. The high dropout rate comes from the fact 
that the exponential distribution is right-skewed. Some students 
would be able to achieve very high levels of education, which pulls 
up the average student capital but only increases the number of 
graduates by one. Note that the values in Fig. 4A are specific to 
Washington state community colleges. Schools that measure credits 
differently, such as those on a semester system, will not be able to 
compare their average student capital with Washington’s quarter 
system.

Typically, education regression models include R2 values to 
show how well the model explains variation in a set of data. So, we 

calculated the amount of variance in college dropout rates explained 
by our model. Again, our process is as follows: (i) select a cohort of 
students; (ii) fit the finite resource model, which involves inferring 
the decay rate for the exponential model and inferring the full 
distribution of success points; (iii) generate 10,000 simulated stu-
dents using this new fitted model; and (iv) compare the percentage 
of simulated students who dropped out with the percentage of actual 
students who dropped out. Figure 4B is a plot of these percentages, 
with one point for each college-year cohort. The figure shows that 
the estimated dropout rate is close to the actual dropout rate. However, 
the estimates are systematically biased so that the model estimates 
are systematically higher than the true values. The relationship is 
very strongly linear (R2 = 0.982, F1,138 = 7731, P < 0.001), which 
means that the actual dropout rate could be reconstructed with high 
accuracy from this biased estimate. This reconstructability means 
that the combination of the exponential parameter and the distribu-
tion of success points contain effectively all of the information con-
tained in college dropout rates.

This approach assumes the full distribution of success points, 
which involves estimating the percentage of graduating/transferring 
students at every credit level. In pursuit of simplicity, we repeated 
the process without such a strong assumption. For each cohort, we 
took the mean of the success point distribution, effectively assum-
ing that all students would graduate or transfer at the same credit 
value. This simplified two-parameter model still explained 92.4% of 
the variation in dropout rates by cohort (F1,138 = 1680, P < 0.001).

DISCUSSION
This paper has presented a conceptualization of student capital as a 
many-faceted resource, operationalized it, and shown that there is a 
universal shape to educational inequality. This shape suggests that, 
in a given population, the amount of student success is finite. The 
results have ramifications for how colleges think about student 
success and interventions. In addition, the informationally equiva-
lent parameters mentioned here—the per-credit retention rate q 
and the average student capital S—might be used to compare groups 
of students. For instance, they could be used to compare demo-
graphic groups.

We defined student capital using an input-based approach: as 
the resources that students can marshal toward achieving their 
academic goals. In contrast, the more common practice of measur-
ing student outcomes is an output-based approach. The cohorts in 
this study started in different years and came from colleges with 
different policies, geographies, and populations. However, in all 
cases, the shape of educational inequality was the same.

Student capital distributions across colleges and years were sur-
prisingly all exponential distributions. This model explained 98% of 
the variation in graduation rates of cohorts in our dataset.

Our explanation for this systemic inequality is that student cap-
ital is a finite resource in a given population. Society has a limited 
amount of student capital to distribute to the community college-
going population and distributes that capital in the least informa-
tive way possible. Student capital as a finite resource makes sense if 
ability to be successful in school is truly a form of capital that one 
gathers from parents, mentors, and friends. Throughout their life, 
people gain things like social skills (29), academic skills (38), emo-
tional regulation (39), and economic resources (40) from their envi-
ronment. Geographic areas that are less educated and poorer have 
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fewer resources like this. So, they have less ability to share that 
student capital with their college-bound population.

We have also discarded a number of hypotheses that are common 
in scholarly and popular conceptions of academic achievement. 
Many of the colleges were running interventions focused on student 
success (41, 42), which we might expect would change the shape of the 
student capital distribution. Despite their attempts, the general shape 
of the student capital distribution was similar across cohorts. It seems 
that small-scale interventions do not have a substantial effect without 
affecting students throughout the college-going process.

Students’ ability to earn college credits has a fundamentally 
different distribution than that of intelligence and academic achieve-
ment tests. This is consistent with previous research showing that 
tests of knowledge have limited relationship with more comprehensive 
measures of ability to be successful in school, like grade point average 
(GPA) (3, 43). Even students who are academically knowledgeable 
are subject to different types of knowledge tests and to instructors 
with wildly varying grading practices (44–46) and pedagogical 
practices (9,  10). Successfully navigating school at least partially 
amounts to learning and adapting to the particular expectations of 
teachers and school bureaucracy. The results also caution researchers 
against cavalier use of the word ability to describe test scores. An 
individual’s ability to do well on standardized tests, which might 
more aptly be called cognitive ability, is not the same as student 
capital, the ability to complete schooling.

Nor does student capital follow the power law behavior of a rich-
get-richer model. In some sense, this is unsurprising. Many of the 
examples we have of power law behavior, such as social media 
follower networks (47) and academic citation (48), require a negli-
gible cost for each additional unit of capital. Given that each addi-
tional college credit has, at minimum, a financial cost, we would not 
expect to see power law behavior in this regime. However, wealth 
and income distributions do have heavy tails at the high end 
(24, 49). So, it would not be surprising if there was an unobserved 
tail of students who had nearly unlimited ability to be successful 
in school.

We think that these results will be useful for the design of stu-
dent success interventions. These interventions often focus on find-
ing and reducing barriers in the college-going process. However, 
students face a great many barriers, most of which are outside of the 
college’s influence (7). This paper suggests that successful educa-
tional interventions should be focused on building up resources and 
skills in students rather than minimizing barriers. Interventions 
that focus on resource building are also likely to improve life 
outcomes in the broader sense. Results from comprehensive, resource-
building interventions show significant returns (50). Although 
these interventions are more costly, the benefit to society is lower 
than the cost (51).

A common concept in community colleges is student momentum. 
Our results suggest that we might instead think of student capital as 
a form of energy. The exponential distribution of student capital is 
very similar to the Boltzmann-Gibbs distribution in physics, which 
has been used to study economic capital (49). In this formulation, 
the average student capital S is a state variable corresponding to the 
average energy of the students in the system. Colleges might con-
ceptualize interventions that focus on increasing the energy of their 
student body.

A few notes of caution are warranted to readers trying to gener-
alize or extend our work. For our analytical technique to work, 

there needs to be a sufficient number of uncensored data points to 
infer the distribution. These are dropouts that, sadly, community 
colleges have in plenty. High schools and more selective colleges 
likely have too few dropouts to accurately make an inference.

It is also worth emphasizing that randomness can play a role in 
a student’s ability to be successful. An inspirational teacher or 
an unexpected financial challenge may have a huge effect on a stu-
dent’s outcomes. This randomness creates error in the use of credits 
to measure individuals’ student capital. When looking at groups of 
students, this error should average out. Some people will have the 
inspirational teachers and some will not.

The institutional context also plays a role in student persistence 
and completion. For example, the skills necessary to thrive in a 
low-income high school may be very different from those required 
in an elite university. So, a student who has a lot of student capital 
in one school may have less in another. Most differences in student 
persistence by college are associated with the differences between 
2- and 4-year institutions and college selectivity. After controlling 
for the student populations, other factors seem to have a relatively 
small effect (6, 13, 52).

MATERIALS AND METHODS
Data
We use deidentified data provided by the Washington State Board 
for Community and Technical Colleges (SBCTC), which included 
all students who started at 30 of the 31 community/technical col-
leges in Washington within the 5-year period between summer 
2006 and spring 2011. One college declined to participate. The orig-
inal dataset contained 303,390 students. To create a group of people 
with nominally similar goals, we only included degree-seeking 
students who self-identified as academic transfer students during 
their first quarter. We excluded reverse transfer students, dual-
enrollment high school students enrolled through Washington’s 
Running Start program, and anyone who enrolled but earned zero 
credits. We also excluded two colleges that had less than 100 trans-
fer students. The remaining colleges each had over 1000 transfer 
students. This reduced the dataset to 156,712 students, split into 
140 college-year cohorts. Descriptive statistics on students and 
cohorts can be found in figs. S3 and S4 and table S2. Data explora-
tion was initially performed on 4 of the 28 colleges. These four were 
chosen to have different general shapes and to have a sufficient 
sample size. Once the statistical methods were designed and writ-
ten, we then examined the remaining colleges.

There were two main observable variables of interest. The first 
was xi, the number of community college credits each student 
earned within 5 years of enrolling in the Washington community 
college system. We did not differentiate between credits based on 
when they were earned. We assume that students are putting 
resources into being successful in college at the rate that is optimal 
for them. Our other observable variable is ​​​y​​ ˇ ​​ i​​​, a binary variable that 
describes whether a student dropped out. We say a student grad-
uated if they earned an associate’s or bachelor’s degree in the 
SBCTC system within 5 years of initial enrollment. All degrees re-
quired at least 90 credits, although some students brought credits 
into the SBCTC system and graduated with fewer than 90 credits 
in our data. We say that a student transferred if they enrolled at a 
4-year college within 5 years of initial community college enroll-
ment. Transfer data were obtained by SBCTC from the National 
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Student Clearinghouse. A student dropped out if they did not trans-
fer or graduate. Analysis was performed using R version 3.5.1 (53) 
using the VGAM package (54).

Statistical analysis
The parametric models assume that each student has two inde-
pendent latent variables: their student capital yi, which is the 
number of credits they can earn before they have to dropout, and 
their success point gi, the credit level where they achieve their 
academic goals by transferring or graduating with an associate’s 
degree. The observed number of credits is then xi = min (yi, gi). 
Students who have dropped out (​​​   y ​​ i​​ =  1​) correspond to the case 
where yi < gi. Otherwise, ​​​   y ​​ i​​ =  0​.

To test the parametric models, we assume that yi and gi are 
drawn from theoretical probability distributions, infer the parame-
ters of those distributions, and then compare the inferred distribu-
tions with the real data. Let Yk be the probability that a randomly 
drawn student will have a student capital of exactly k credits. Let Gk 
be the probability that a randomly drawn student has a success 
point of exactly k credits. This gives the likelihood function

	​ ℒ = ​ Π​ 
i
​ ​ ​​[​​ ​Y​ ​x​ i​​​​ ​  ∑ 

k=​x​ i​​+1
​ 

∞
 ​​ ​ G​ k​​​]​​​​ 

​​   y ​​ i​​

​ ​​[​​ ​G​ ​x​ i​​​​ ​ ∑ 
k=​x​ i​​

​ 
∞

 ​​ ​ Y​ k​​​]​​​​ 
1−​​   y ​​ i​​

​​	 (1)

Taking logs and simplifying gives the log-likelihood function

	​​ 
​logℒ  = ​ [​​​∑ 

i
​ ​​ ​​    y ​​ i​​ log ​Y​ ​x​ i​​​​ + (1 − ​​   y ​​ i​​ ) log​(​​​ ∑ 

k=​x​ i​​
​ 

∞
 ​​ ​ Y​ k​​​)​​​]​​+​

​    
​                  ​[​​​∑ 

i
​ ​​ (1 − ​​   y ​​ i​​ ) log ​G​ ​x​ i​​​​ + ​​   y ​​ i​​ log​(​​​  ∑ 

k=​x​ i​​+1
​ 

∞
 ​​ ​ G​ k​​​)​​​]​​​

​​	 (2)

Notice that the only distribution in the left sum is Yk, while the 
right sum only includes Gk. So, we can maximize the log-likelihood 
by maximizing each term separately. The distribution {Yk} that best 
fits student capital does so regardless of distribution of success 
point {Gk}.

We tested the three different parametric models for {Yk}: the discrete 

normal distribution ​​Y​ k​​(,  ) = ​  1 _ A(, )​ ​ e​​ ​
−​(k−)​​ 2​ _ 

2​​​ 2​
 ​ ​​ where A(, ) is a normaliz-

ing constant calculated numerically, the geometric distribution 
Yk(q) = (1 − q)qk − 1, and the zeta distribution ​​Y​ k​​( ) = ​  1 _ 

()​ ​k​​ −​​ where 
() is the Riemann zeta function. To validate the model, we had to 
create simulated students, which meant inferring {Gk} as well. Un-
like {Yk}, where we were trying to find a simple parametric form 
with few parameters, we were only interested in {Gk} as a valida-
tion tool. Since {Gk} definitely is dependent on college policies 
and transfer options, we did not expect a parametric form for it. 
So, for each value of k, we inferred Gk as its own parameter.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/29/eaaz5954/DC1
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