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We read with interest the paper by Perosa et al. (2020) enti-

tled ‘Hippocampal vascular reserve associated with cognitive

performance and hippocampal volume’. The author reported

that a mixed blood supply of the hippocampus by the

posterior cerebral artery (PCA) and anterior choroidal

artery (AChA) may provide vascular reserve and protect

against cognitive impairment. The work is novel and criti-

cally important, given the relevance of hippocampal injury

in Alzheimer’s dementia and other cognitive disorders. It is

unclear, however, how the authors accounted for the hetero-

geneous configuration of the circle of Willis in their meth-

ods. There is no mention of the role that another anterior

circulation artery, the posterior communicating artery

(Pcomm), may play in hippocampal injury in certain

circumstances.

Animal models exist that support a role of the Pcomm in

causing hippocampal injury. The arterial supply of the

hippocampus has general similarities across different species

of large mammals, especially as it refers to the PCA and

AChA supply. Interestingly, the PCA in cats and sheep is

mostly supplied by the carotid arteries with various degrees

of basilar artery-derived flow contributions (Goetzen and

Sztamska, 1992). In mice, there is an even greater propor-

tion of hippocampal flow derived from the anterior circula-

tion (Özdemir et al., 1999). This predominant anterior

circulation blood supply of the hippocampus in smaller

mammals is likely the result of smaller frontal lobes com-

pared to humans. The large volume of the human frontal

lobes increases the flow demand via the carotids. The pro-

gressive shift of the source of PCA supply towards the verte-

brobasilar system in humans represents an adaptive

hydrodynamic solution to the competing flow demands

(Menshawi et al., 2015). Because of the dominant anterior

circulation blood supply to the hippocampus in smaller

mammals, occlusion of the middle cerebral artery (MCA)

causes hippocampal ischaemia in mice with a hypoplastic

Pcomm or an incomplete circle of Willis (Kitagawa et al.,

1998; Özdemir et al., 1999). Mongolian gerbils are often

used to study ischaemic injury to the forebrain and hippo-

campus because they have a rudimentary basilar-Pcomm

connection and often lack anteroposterior anastomoses

(Yoshimine and Yanagihara, 1983; Laidley et al., 2005).

Consequently, in Mongolian gerbils, occlusion of the

Pcomm or bilateral internal carotid arteries (ICAs) causes

hippocampal ischaemia (Yoshimine and Yanagihara, 1983),

especially in gerbils with an absent or hypoplastic Pcomm

(Laidley et al., 2005; Seal et al., 2006; Ahn et al., 2019).

The shift towards a dominant basilar artery supply of the

hippocampus via PCA in humans is not universal. In fact,

�20% of the population lacks one or both PCA P1 segment

(i.e. a foetal PCA, branch of the ICA) (Van Overbeeke et al.,

1991; Gutierrez et al., 2013) and 10% have at least one

hypoplastic P1 segment (Gutierrez et al., 2013; Vrselja et al.,

2014). In other words, a third of the population has an an-

terior circulation dominant blood supply to the distal PCA.

A more detailed description of the blood supply to the

hippocampus and medial temporal lobe regions reveals a

complexity not easily captured by the PCA or the AChA. In

humans, the ambien gyrus is supplied by the anterosuperior

parahippocampal arteries (also known as uncal arteries),

which are branches of the MCA in the anterior aspect,

and branches of the ICA, AChA, and PCA in the posterior

aspect. The ventrolateral region of the entorhinal cortex (an-

terior parahippocampal gyrus) is supplied by the anteroinfe-

rior parahippocampal arteries, which may originate in either

the MCA (specifically as branches from the MCA anterior

temporal artery) or the PCA, and less often from the AChA

(Huther et al., 1998). The anterior hippocampal formation

is supplied by the medial uncal arteries, branches most often

of the AChA and less often of the PCA. Occasionally, medial
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uncal arteries may arise from anastomoses of the anterosu-

perior parahippocampal arteries. The lateral aspect of the

hippocampus and its digitations are supplied by the lateral

uncal arteries, branches of the AChA or the PCA, less often

as branches of the PCA-derived anterior temporal artery or

segmental branches of medial uncal arteries (Huther et al.,

1998). The lateral and medial uncal arteries together supply

the anterior and medial hippocampus and therefore are also

known as anterior and medial hippocampal arteries typically

described as branches of the PCA and less commonly of the

AChA (Marinkovi�c et al., 1992). The areas TF/TH and the

caudal part of the parahippocampal gyrus are supplied by

the posterior parahippocampal arteries, branches of the PCA

(most commonly) or the AChA. The posterior hippocampal

arteries supply the posterior aspects of the hippocampus and

are derived from the PCA in all cases (Huther et al., 1998).

The terminal arterial branches to the hippocampus are also

known as straight or fork arteries (branches of the medial or

posterior temporal arteries). These arteries penetrate the den-

tate gyrus, the subiculum and the body and fimbria of the

hippocampus (Marinkovi�c et al., 1992). The intraparenchy-

mal course of the internal hippocampal arteries is divided in

two; the dorsal arteries and their respective subregional

branches (CA1, CA2, etc.) that pierce the surface of the den-

tate gyrus and the sector arteries that run within the medul-

lary septum (Marinkovi�c et al., 1992; Huang and Okudera,

1997). More often than not there exist anastomoses between

intrahippocampal, parahippocampal, subicular and uncal

arteries (Marinkovi�c et al., 1992; Huang and Okudera,

1997) effectively communicating the ICA and MCA indirect-

ly to the hippocampal arteries and creating a strong network

favouring collateral flow (Goetzen and Sztamska, 1992).

The internal hippocampal arteries do not from anastomoses,

however, and therefore are terminal arteries (Goetzen and

Sztamska, 1992). The average luminal diameter of arteries

supplying the medial temporal lobe including the hippocam-

pus ranges from 215–335 mm with up to 800 mm described

in some cases (Marinkovi�c et al., 1992; Huther et al., 1998).

These small arteries are susceptible to siphon-like geometric

deformation in the form of knot-loops and vascular glomer-

uli in the setting of ageing or brain large artery disease

(Goetzen and Sztamska, 1992).

The relative neglect of the circle of Willis configuration

and the Pcomm is a problem with most of the data discussed

in the previous paragraph. Often, the Pcomm is rarely men-

tioned other than as an anatomical referent. Some authors

imply that the PCA (foetal or not) supplies the hippocampus

regardless of whether it originates as a branch of the basilar

artery or of the carotid artery (Goetzen and Sztamska, 1992;

Erdem et al., 1993). We believe that this proposal may be

reasonable. For example, presurgical epileptic patients who

receive an ICA injection (distal to the origin of the AChA) of

amobarbital show amobarbital distribution in the entire

hippocampus if they have a foetal PCA (Urbach et al.,

1999). Unfortunately, this study did not investigate the de-

gree of amobarbital distribution as a function of inverse re-

ciprocal relationship noted by us between the calibre of the

PCA and the Pcomm (Gutierrez et al., 2013). Other data

suggest that patients with strokes due to a carotid dissection,

who have an ipsilateral foetal PCA, present with medial hip-

pocampal ischaemia (Walha et al., 2013). In a large popula-

tion-based study, we found that a larger left Pcomm/PCA

average luminal diameter related to episodic memory and

predicted greater cognitive decline (Gutierrez et al., 2018). In

this context, it would stand to reason to hypothesize that in

individuals with a foetal PCA or a hypoplastic PCA P1 seg-

ment, the ICA provides most of the flow to the P2 and P3

segments of the PCA, from which the hippocampal arteries

originate (Erdem et al., 1993). We surmise then that the ana-

tomical, functional, epidemiological and clinical data pre-

sented above reveal the need to integrate the anatomy of the

circle of Willis in the study of hippocampal blood supply

and the proposed model of hippocampal vascular reserve.

With this in mind, it would prudent for Perosa et al.

(2020) to disclose further details regarding how they inte-

grated the above-described heterogeneity of the circle Willis

in their results, and whether their results would remain the

same by incorporating the contribution of the ipsilateral

Pcomm and/or foetal PCA to the hippocampus blood

supply.
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