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Abstract

Background: Globally, toxic metal exposures are a well-recognized risk factor for many adverse 

health outcomes. DNA methylation-based measures of biological aging are predictive of disease, 

but have poorly understood relationships with metal exposures.
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Objective: We performed a pilot study examining the relationships of 24-hour urine metal 

concentrations with three novel DNA methylation-based measures of biological aging: 

DNAmAge, GrimAge, and PhenoAge.

Methods: We utilized a previously established urine panel of five common metals [arsenic (As), 

cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg)] found in a subset of the elderly US 

Veterans Affairs Normative Aging Study cohort (N = 48). The measures of DNA methylation-

based biological age were calculated using CpG sites on the Illumina HumanMethylation450 

BeadChip. Bayesian Kernel Machine Regression (BKMR) was used to determine metals most 

important to the aging outcomes and the relationship of the cumulative metal mixture with the 

outcomes. Individual relationships of important metals with the biological aging outcomes were 

modeled using fully-adjusted linear models controlling for chronological age, renal function, and 

lifestyle/environmental factors.

Results: Mn was selected as important to PhenoAge. A 1 ng/mL increase in urine Mn was 

associated with a 9.93-year increase in PhenoAge (95%CI: 1.24, 18.61, p=0.03). The cumulative 

urine metal mixture was associated with increases in PhenoAge. Compared to a model where each 

metal in the mixture is set to its 50th percentile value, every one-unit increase of the cumulative 

mixture with each metal at its 70th percentile was associated with a 2.53-year increase in 

PhenoAge (95%CI: 0.10, 4.96, P<0.05).

Conclusion: Our results add novel evidence that metals detected in urine are associated with 

increases in biological aging and suggest that these DNA methylation-based measures may be 

useful for identifying individuals at-risk for diseases related to toxic metal exposures. Further 

research is necessary to confirm these findings more broadly.
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1 | Introduction

Across developed and developing communities worldwide, toxic metal exposures have 

become a well-recognized risk factor for many adverse health outcomes. It is estimated that 

in 2017, worldwide lead exposures were responsible for 1.06 million deaths and 24.4 million 

years of healthy life lost – particularly due to developmental intellectual disability1. Often, 

low- and middle-income countries bear a disproportionate burden of such exposures2, but 

toxic metal exposures are also prevalent in developed nations. An estimated 2.1 million 

people residing in the United States may be obtaining drinking water from wells with high 

concentrations of arsenic – a known neurotoxin and multi-system carcinogen3,4. Given the 

pervasiveness of toxic metal exposures and the gravity of their associated health 

consequences, methods of assessing the impact of these exposures on human health before 

the onset of clinical disease remain an area of active research5–7. Such tools would be 

particularly useful in cases of chronic insidious metal exposures that may wreak havoc on 

the human body for decades before coming to clinical attention. DNA methylation-based 

predictors of biological aging are a unique set of novel tools that offer some promise in 

addressing this important public health gap.
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Measures of DNA methylation age are novel metrics of biological aging that can be 

calculated using DNA methylation values from specific combinations of age-correlated CpG 

dinucleotides. Presently, there are three leading DNA methylation age measures that are 

notable for demonstrating tissue independence and/or very robust disease relationships. The 

oldest of the three is DNAmAge and it is calculated using 353 CpGs8. DNAmAge maintains 

a very high predictive accuracy and has been associated with a host of disease processes9,10. 

The second of the three metrics, DNA Phenotypic Age (PhenoAge), was built using nine 

clinical variables (i.e. albumin, creatinine, glucose, C-reactive protein, lymphocyte percent, 

mean cell volume, red cell distribution width, alkaline phosphatase, and white blood cell 

count) and can be calculated using 513 CpGs (41 of which are shared with DNAmAge)11. 

PhenoAge is an even better predictor of lifespan and healthspan12–14. The final metric, DNA 

GrimAge, outperforms both DNAmAge and PhenoAge with respect to lifespan and 

healthspan15–17. In particular, GrimAge is unparalleled in its ability to predict all-cause 

time-to-death (Cox regression p=2.0 × 10−75)18. GrimAge was calculated from 1030 unique 

CpGs as well as DNA methylation surrogates of cigarette pack-years and 7 plasma protein 

markers [adrenomedullin (ADM), beta-2-microglobulim (B2M), cystatin C, GDF-15, leptin, 

plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor metalloproteinases 1 

(TIMP-1)]18.

A growing body of literature has examined the relationships between DNA methylation age 

measures and toxic exposures19–23. Unfortunately, very little of this work has focused on 

metals. Of the two existing studies, the first examined the relationship of urinary cadmium 

with DNAmAge in 40 non-smoking women in Thailand24. The second examined the 

relationship of chronic serum cobalt/chromium levels from metal on metal hip replacements 

with DNAmAge25. Both found no associations between the metals and DNAmAge. In the 

present study, we reexamine some of these previously described relationships and investigate 

additional relationships of metals with DNA methylation age measures. Specifically, we 

examine the independent and cumulative relationships of 24-hour urine concentrations of 

five metals [arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg)] 

with DNAmAge, PhenoAge, and GrimAge. This five metal urinary panel was previously 

established in the VA Normative Aging Study (NAS) and we utilize the NAS cohort for the 

present analysis26,27. Our analyses also utilize Bayesian Kernel Machine Regression 

(BKMR), a Bayesian variable selection framework that also allows for the assessment of 

both individual and cumulative exposure relationships28.

2 | Methods

2.1 Study Population

Individuals in the present analysis were active participants in the VA Normative Aging Study 

(NAS). The NAS is a longitudinal cohort study of aging, which recruited healthy male 

participants from the Greater Boston area beginning in 196329. The NAS is now a closed 

cohort of elderly community-dwelling men. Every 3–5 years since recruitment participants 

have returned for in-person, follow-up study visits. During these onsite follow-up visits, 

participants receive comprehensive outpatient medical evaluations, give detailed information 

about their diets/lifestyle factors that may affect their health, and provide bio-specimens 
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including blood. In the NAS, dropout has been less than 1% per year and predominantly 

occurs when participants move out of the study area30. Our study sample consisted of 

participants who had all available exposure, outcome, and clinical data (N = 48). Each 

participant contributed one study visit for a total of 48 observations. All participants 

provided written informed consent to the VA Institutional Review Board (IRB), and human 

subjects approval was granted by the VA and Harvard T.H. Chan School of Public Health 

IRBs (protocol 14027–102).

2.2 Urinary Metal Concentration Assessment

Concentrations for all five metals (As, Cd, Pb, Mn, and Hg) in urine were determined using 

methods previously described26. In short, a week before their scheduled study visit, 

participants received a 4-liter container for at-home 24-hour urine collection. Instructions 

and a questionnaire addressing sample collection time, missed collections, spillage, and 

medication regimens were also included with the container. Participants were instructed to 

collect urine after their first void in the morning through the first void of the next morning. 

Samples were returned during NAS study visits and stored at −20°C. Before the assay, they 

were thawed at room temperature, aliquoted, and digested with HNO3. Samples were then 

analyzed by plasma mass spectrometry (Sciex Elan 5000, Perkin-Elmer, Norwalk, CT) using 

standard operating and data processing procedures31. An average of five replicates were 

used to establish the final metal concentrations for each subject.

2.3 Measuring DNA Methylation and Calculating Measures of DNA Methylation Age

Processing of DNA methylation data has been previously described32. In brief, at each NAS 

follow-up visit, whole blood samples were collected from each participant. Bisulfite 

conversion (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, USA) was 

performed on extracted DNA from the buffy coat of whole blood. Then, the Illumina 

Infinium HumanMethylation450 BeadChip was used to measure the DNA methylation of 

CpG probes. In an effort to minimize batch effects and achieve a similar age distribution 

across chips and plates, chips were randomized across plates. We then used a two-stage age-

stratified algorithm to randomize samples. To achieve quality control, we removed samples 

where >5% of probes had a beadcount < 3 or > 1% of probes had a detection p-value >0.05. 

Probes mapping to single nucleotide polymorphisms, non-autosomal chromosomes, and 

cross-hybridizing probes were excluded32,33. After quality control, the remaining samples 

were preprocessed using the Illumina-type background correction34, dye-bias adjustment35, 

and BMIQ normalization36 to generate methylation beta values. Beta values represent the 

percentage of methylation for each of the ~480,000 CpG sites in the BeadChip array. 

Specifically, beta = intensity of the methylated signal (M)/[intensity of the unmethylated 

signal (U) + intensity of the methylated signal (M) + 100]. DNA methylation beta values 

range from 0 (completely unmethylated) to 1 (completely methylated). Previous analyses of 

this data demonstrated no evidence of batch effects after pre-processing37.

Measures of DNA Methylation Age were calculated using Horvath’s publicly available 

online calculator (http://dnamage.genetics.ucla.edu). Horvath’s initial DNAmAge was 

derived from an elastic net penalized regression run on multiple data sets of different cell 

and tissue types. After 21,369 CpG probes – shared by both the Illumina 
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HumanMethylation27 and HumanMethylation450 BeadChip platforms – were regressed on 

a calibrated version of chronological age, the elastic net selected 353 CpGs that correlated 

with age (193 positively and 160 negatively). The model coefficients from these 353 CpGs 

were used by the calculator to predict the age of each DNA sample (i.e. DNAmAge). The 

calculator maintains predictive accuracy (age correlation 0.97, error = 3.6 years) across 

almost all body tissues including blood and brain8.

DNA phenotypic age (PhenoAge) was created by employing a Cox penalized model where 

the hazard of mortality was regressed on 42 clinical markers and chronological age11. From 

this penalized regression model, nine clinical variables (i.e. albumin, creatinine, glucose, C-

reactive protein, lymphocyte percent, mean cell volume, red cell distribution width, alkaline 

phosphatase, and white blood cell count) and chronological age were selected to create a 

phenotypic age score. In test data, this score was highly correlated with chronological age 

(r=0.94) and every one-year increase in age score was associated with a 9% increase in all-

cause mortality. The authors then used a different data set and elastic net penalized 

regression to determine methylation CpG sites related to their phenotypic score. Again they 

restricted their analyses to 20,169 CpGs shared across all three Illumina BeadChip platforms 

(27k, 450k, EPIC). In the end, they identified 513 CpGs to create the DNAm Phenotypic 

Age (PhenoAge) measure. 41 of these CpGs are shared with DNAmAge.

The final DNA methylation age metric used in our study is GrimAge. These authors wanted 

to first determine DNA methylation values that could be used to estimate plasm protein 

levels. They first regressed 88 plasma protein variables on chronological age, sex, and 

~450,000 CpGs (shared between the 450K and EPIC platforms) in elastic net regression 

models. Only 12 out of the 88 plasma proteins demonstrated moderately high (r>0.35) 

correlations between their measured plasma levels and DNAm surrogate markers determined 

from the elastic net models. The authors also used 172 CpGs to establish a DNAm surrogate 

of cigarette smoking pack-years. They next regressed all-cause mortality time-to-death on: 

chronological age, sex, the pack-years DNAm surrogate marker, and the 12 plasma protein 

DNAm surrogate markers. The elastic net Cox regression model selected age, DNAm pack-

years, sex, and 7 DNAm protein markers [adrenomedullin (ADM), beta-2-microglobulim 

(B2M), cystatin C, GDF-15, leptin, plasminogen activator inhibitor-1 (PAI-1), and tissue 

inhibitor metalloproteinases 1 (TIMP-1)]. After a linear transformation, the combination of 

these covariates was used to create DNAm GrimAge. Importantly, the CpGs used to create 

all DNAm surrogate markers are made up of 1030 unique CpGs. Out of all existing DNAm 

metrics, GrimAge is unparalleled in its ability to predict all-cause time-to-death (Cox 

regression p=2.0 × 10−75)18.

2.4 Statistical Analysis

Given that we had five metal exposures and three aging variables of interest, we sought a 

robust methodology for identifying biologically and statistically significant relationships. 

We were also cognizant that each metal as well as the entire exposure metal mixture could 

have unique relationships with the aging markers. Thus, we employed Bayesian Kernel 

Machine Regression (BKMR). BKMR functions as a Bayesian variable selection framework 
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while also allowing for the assessment of both individual and cumulative metal 

relationships28.

All metals were log transformed to achieve uniformity/normal distributions before beginning 

any analyses. Subsequent Rosner’s tests did not reveal any outliers in the metal 

concentration levels. Metal exposures were also standardized using Z scores before running 

BKMR models. Using the R “bkmr” package, we first created BKMR selection models for 

each of the three aging metrics28. In previously published works, 10,000 iterations by 

Markov Chain Monte Carlo algorithm per BKMR model were deemed appropriate for 

selection38. However, because of our smaller sample, we ran 100,000 iterations per selection 

model. Specifically, each of the five metals and the covariates were modeled as predictors of 

DNAmAge, PhenoAge, and GrimAge respectively. We also examined traceplots from each 

model to ensure that each model demonstrated good convergence. Important covariates were 

determined a priori from the relevant literature20,24,26,27. Covariates included chronological 

age (continuous), season of visit (spring [March-May], Summer [June-August], Fall 

[September-November], and Winter [December-February]), body mass index (BMI) (lean 

[<25], overweight [25–30], obese [>30]), alcohol intake (yes/no ≥ 2 drinks daily), 

cumulative cigarette pack-years (continuous), smoking status (never, former, or current), 

education (<12 years, 12–16 years, >16 years), glomerular filtration rate (GFR) 

(continuous), white blood cell proportions (continuous), diabetes (yes/no), hypertension 

(yes/no), and ischemic heart disease (yes/no). The BKMR model was as follows:

Aging Outcomei = h As, Cd, Pb, Mn, Hg + βTZi + ei

,where the function h() is a dose-response function containing nonlinear and/or interactions 

between exposure metals, and Z = Z1, …, Zk are k potential confounders. Each model 

produced posterior inclusion probabilities (PIPs), which are a measure of how important 

each metal was for each of the aging outcomes. Although a PIP >0.50 threshold has been 

utilized in previously published studies39,40; given our small sample size, we decided to 

employ a more rigorous threshold (PIP >0.60) for determining important predictor metals. 

We then used linear regression models (using the lm function from the “stats” R package) to 

determine the independent association of selected metal exposures with their respective 

DNA methylation aging metrics. From the same BKMR models, we were able to plot the 

cumulative effects of the five urine metals by comparing the estimate value of the exposure-

response function when all exposures are at a particular quantile. We considered the 

hypothesis that disease diagnoses may actually diminish the relationship between our 

exposures and outcomes. Hence, both our independent and cumulative association analyses 

were first run without the age-related disease covariates of diabetes, hypertension, and 

ischemic heart disease. We then repeated the models in sensitivity analyses adjusting for 

diabetes, hypertension, and ischemic heart disease. As an additional sensitivity analysis, all 

models were replicated using DNA methylation age acceleration (AgeAccel) as an outcome. 

AgeAccel values are the residuals from models where each methylation age variable was 

regressed on chronological age.
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All statistical analyses were performed using R Version 3.6.3 (R Core Team, Vienna, 

Austria). We considered a p-value < 0.05 to be statistically significant. To improve the 

interpretability of the results, the logarithmic transformations of metals, where applicable, 

were reversed when conveying the results and creating the final tables.

3| Results

3.1 Study Sample Characteristics and Descriptive Statistics

The demographic, biomarker, and clinical descriptive statistics for the study participants are 

presented in Table 1. The mean (SD) chronological age of the participants was 76.9 (5.3) 

years. Participants had a mean (SD) GrimAge, DNAmAge, and PhenoAge of 74.2 (6.4), 

78.5 (7.3), and 71.6 (9.2) years respectively. The mean (SD) glomerular filtration rate (GFR) 

was 69.5 (13.4) mL/min/1.73 m2. 75% of participants consumed less than two alcoholic 

beverages a day. The majority of participants had study visits in the summer months (33%), 

were former smokers (67%), had a lean BMI (38%), and had an education of at least 12 

years (69%). In this study sample, the prevalence of diabetes, hypertension, and ischemic 

heart disease were 29%, 67%, and 31%. Table 2 presents the descriptive statistics for the 

urine metal concentrations across study subjects. Mean (SD) levels for As, Cd, Hg, Mn, and 

Pb were 40.9 (57.2), 0.8 (0.4), 1.6 (1.5), 1.4 (0.4), and 1.7 (1.0) ng/mL respectively. Table 2 

also lists the urine quintile values for each metal as well as the current EPA safe drinking 

water levels for each metal. 75% of urine samples exceeded the As drinking water standards, 

and 25% of urine samples exceeded the Hg standards. Urine samples for all other metals 

were within the safe drinking water standard levels.

We also present the Pearson correlation matrices and data distributions of age variables 

(Figure 1A) and urine metal concentrations (Figure 1B) across all participants in the study 

sample (N = 48). GrimAge and PhenoAge shared the weakest correlation (r=0.53). GrimAge 

and DNAmAge shared the strongest correlation (r=0.71). Correlation coefficients between 

urine metal concentrations ranged from 0.12 to 0.48. The weakest correlation was between 

Hg and Pb while the strongest was between Hg and As.

3.2 Bayesian Kernel Machine Regression (BKMR) Selection

Table 3 details the posterior inclusion probabilities (PIPs) derived from BKMR selection 

models. PIPs operate as a selection tool by representing the degree to which data supports 

each metal being included in the final regression model. PIPs for DNAmAge ranged from 

0.35 (Hg) to 0.47 (As). No metals in the DNAmAge BKMR models met the 0.60 PIP 

threshold to be included in the final model. PIPs for GrimAge ranged from 0.36 (Pb) to 0.55 

(Cd). Again, no metals met the threshold to be included in the final GrimAge regression 

model. PIPs for PhenoAge ranged from 0.39 (Pb) to 0.61 (Mn). Mn met the threshold for 

inclusion in the final PhenoAge regression model. BKMR selection results for all AgeAccel 

measures mirrored the results of their respective DNA methylation age BKMR selection 

models.
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3.3 Associations of BKMR Individual Selected Urinary Metals and DNA Methylation-
Based Measures of Biological Age

Table 4 summarizes the results of linear models where BKMR selected urinary metals were 

modeled as predictors of DNA methylation-based measures of biological age. No metals 

achieved selection criteria for a final DNAmAge or GrimAge model. A 1 ng/mL increase in 

urinary Mn was associated with a 9.93-year increase in PhenoAge (95%CI: 1.24, 18.61, 

P=0.03). This finding was similar to the results of a sensitivity analysis model including the 

covariates diabetes, hypertension, and ischemic heart disease; however, these results did not 

meet statistical significance (β = 10.20, 95%CI: −0.07, 20.47, P=0.05). A 1 ng/mL increase 

in urinary Mn was also significantly associated with a 9.93-year increase in Pheno Age 

Accel (95%CI: 1.24, 18.61, P=0.03). Urine Mn findings from the AgeAccel sensitivity 

analysis model, including the covariates diabetes, hypertension, and ischemic heart disease, 

were again. not statistically significant (β = 10.20, 95%CI: −0.07, 20.47, P=0.05).

3.4 Associations of Cumulative Metal Mixtures with DNA Methylation-Based Measures of 
Biological Age

Figure 2 demonstrates the results of analyses where cumulative metal exposures are modeled 

as a predictor of DNAmAge, GrimAge, PhenoAge, and their AgeAccel measures 

respectively. All models are compared to a model where each urine metal in the mixture is 

set to its 50th percentile value. For DNAmAge, PhenoAge, and their AgeAccel measures, we 

observe a trend of increasing methylation age as each metal in the mixture increases from its 

10th to 90th percentile. These results were consistently statistically significant for PhenoAge 

and Pheno AgeAccel when each metal in the mixture is at its 70th percentile (Figure 2A). 

Here, every one-unit increase of the cumulative mixture with each metal at its 70th percentile 

was associated with a 2.53-year increase in PhenoAge (95%CI: 0.10, 4.96, P<0.05) and a 

2.47-year increase in Pheno AgeAccel (95%CI: 0.18, 4.76, P<0.05). In cumulative mixture 

sensitivity analysis models including the covariates diabetes, hypertension, and ischemic 

heart disease, we observe trends similar to our main analyses (Figure 2B). Again, results 

were statistically significant for PhenoAge. However, this time, significance was met when 

each metal in the mixture was at its 90th percentile. Every one-unit increase of the 

cumulative mixture with each metal at its 90th percentile was associated with a 6.10-year 

increase in PhenoAge (95% CI: 0.59, 11.61, P<0.05) and a 6.18-year increase in Pheno 

AgeAccel (95% CI: 0.77, 11.59, P<0.05). For comparison, every one-unit increase of the 

cumulative mixture with each metal at its 90th percentile in the main analysis was associated 

with a 5.50-year increase in PhenoAge (95%CI: 0.09, 10.91, P<0.05) and a 5.68-year 

increase in PhenoAge (95%CI: 0.17, 11.19, P<0.05).

4 | Discussion

In this study conducted in a cohort of community-dwelling older men, we demonstrate a 

novel positive association of urine metal concentrations with a DNA methylation-based 

measure of biological age. Using BKMR selection models, we identified 24-hour urine Mn 

concentrations as an important predictor of PhenoAge and Pheno AgeAccel. In further 

analyses using linear regression models adjusted for chronological age and lifestyle factors, 

we demonstrate that 24-hour urine Mn levels are significantly associated with higher 

Nwanaji-Enwerem et al. Page 8

Environ Res. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PhenoAges and higher Pheno AgeAccel. Additionally, returning to BKMR models, we 

demonstrate that our cumulative 5-metal exposure mixture (As, Cd, Hg, Pb, and Mn) was 

also significantly associated with increases in PhenoAge and Pheno AgeAccel.

We hypothesized that measures of DNA methylation age could be biomarkers of subclinical 

toxic metal exposures. A critical component to testing this hypothesis was to use a cohort 

with subclinical toxic metal exposures. 24-hour urine analysis allows for the immediate 

detection of short-term exposures, and in our cohort, average urine concentrations with the 

exception of 75% of As samples and 25% of Hg levels were within drinking water standards 

permitted by the US Environmental Protection Agency (EPA)41–45. Given this descriptive 

data, we further hypothesized that As and Hg would be metals with important associations 

with our DNA methylation age metrics.

Arsenic (As) exposure can occur via inhalation, skin absorption, and ingestion (e.g. drinking 

water and food). Importantly, As intake is usually higher in food than in liquids like drinking 

water46. Seafood is the richest source of As, but As in food often exists as non-toxic organic 

compounds like (arsenobentaine and arsenocholine). Although these compounds may result 

in raised serum concentrations of As, they are rapidly excreted in urine. Studies have 

demonstrated that individuals who consumed seafood in the last 24-hours had higher total 

urine As levels than individuals who abstained for seafood in the prior day47. Seafood 

consumption may partially explain the elevated concentrations of As in the samples from our 

New England-based cohort48. Acute As toxicity manifests itself as abdominal pain, nausea, 

profuse vomiting, and diarrhea. Chronic toxicity can manifest as peripheral neuropathy, 

encephalopathy, and multisystem malignancy4. Existing research has demonstrated 

significant associations between As and aging processes including telomere shortening49 

and cellular senescence50. Similar to As, a substantial proportion of Hg exposure occurs 

through the ingestion of seafood. Nonetheless, inhalation of Hg vapors is also a source of 

exposure. Depending on the route of exposure, acute Hg toxicity can present as shortness of 

breath, pleuritic chest pain, abdominal pain, vomiting, and bloody stools. Chronic toxicity is 

usually characterized by neurological, renal, and cutaneous symptoms51. The literature 

examining relationships of Hg with aging biomarkers is very limited and reaches mixed 

conclusions52,53

Despite these hypotheses, Mn was selected by our BKMR models as important to PhenoAge 

and Pheno AgeAccel respectively. Arriving at similar – if not identical – results in our 

PhenoAge and AgeAceel models gave us additional confidence in our findings. Mn 

exposure primarily occurs through inhalation and oral routes. Both natural processes (e.g. 
rock erosion and plant decomposition) and human activities (e.g. gasoline combustion) 

contribute to environmental Mn levels. Acute exposures can result in respiratory and 

neurobehavioral changes54, while chronic exposures result in neurotoxic symptoms that 

mimic Parkinson’s disease55. Very little evidence directly supports relationships of Mn with 

biological aging markers. A number of studies have, however, described links between Mn 

levels and aging-related neurological diseases56,57. A previous study in the NAS described 

relationships between high dietary Mn consumption and DNA methylation of inflammatory 

biomarker producing genes58. In our study sample, the relationship of Mn with PhenoAge 

and Pheno AgeAccel was statistically significant in the main analysis linear models, but the 
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effect sizes were much larger than anything observed in previous DNA methylation age 

studies in the NAS20,59. One hypothesis explaining why the sensitivity analysis model loses 

statistical significance is that some of the effect of Mn on PhenoAge and Pheno AgeAccel 

could be mediated by age-related disease processes like diabetes or heart disease. Given that 

there is evidence for this60,61, models without these variables likely reveal the true 

relationship of Mn with PhenoAge and Pheno AgeAccel. Future work beyond this pilot will 

be important for better elucidating this relationship.

Ultimately, we expected to observe relationships with more metals and more DNA 

methylation biomarkers. Reasons for this lack of evidence may include our small pilot study 

sample and our exposure matrix. With the exception of Cd62, 24-hour urine metal levels give 

a short-term snapshot of an individual’s exposures. Much of the existing environmental 

exposure studies where robust relationships have been demonstrated in this area use long-

term exposures of air pollution19,59. We assumed that in cases of ongoing environmental 

exposures, these short-term urine samples would be reflective of participant’s long-term 

metal exposures, but this may not be the case. Another explanation is that most of the 

individual metals truly do not have independent relationships with measures of DNA 

methylation age. The entire mixture, however, could have a statistically and biologically 

significant relationship with our outcomes. Unique relationships of metal mixtures with 

other outcomes have previously been reported in the literature63,64. Still, we only observed a 

significant relationship of the entire mixture with PhenoAge and Pheno AgeAccel in our 

study sample. Additional work exploring long-term metal relationships in urine and other 

exposure matrices will be useful for clarifying if many of these relationships are indeed null. 

We were also hoping to observe some trends across the three biomarkers of aging. Our study 

sample and others demonstrate that these markers are highly correlated; however, there are 

some notable differences11,18. These differences include largely unique component CpGs to 

calculate each metric as well as distinct abilities to predict mortality and other diseases. 

Hence, it is plausible to observe different metal-biomarker relationships, especially if the 

metrics have distinct physiological pathways of toxicity.

Our study possesses a number of strengths including the incorporation of three novel 

biomarkers of aging, the application of a robust selection/modeling technique, and the 

utilization of participant data from a well-established longitudinal cohort. Despite these 

strengths, we still have a few notable limitations. First, we utilized a panel of urine metals 

that was collected for other purposes. This practice is not unique for major longitudinal 

cohort studies, and helps make pilot studies feasible. Nevertheless, it does limit the number 

of metals that were considered in our analysis. Despite this limitation, we still were able to 

explore relationships of As, Pb, Hg, Cd, and Mn which are among the leading toxic metal 

exposures worldwide65. Secondly, this is a relatively small cross-sectional analysis 

conducted in a cohort of elderly Caucasian males who now reside in the United States. As 

we noted previously, much of the developing world bears the burden of toxic environment 

exposures2. Hence, additional studies with a larger number of participants, in other 

environments, and involving other demographic groups are needed to broadly confirm our 

findings. Lastly, even though our study sample is taken from a longitudinal cohort with a 

breadth of data on participant demographic/lifestyle factors and we determined important 
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covariates a priori from the relevant literature20,24,26,27, we cannot rule out the possibility of 

unknown or residual confounding in our analyses.

In conclusion, our study offers some evidence that DNA methylation aging biomarkers have 

important relationships with toxic metal exposures. Our data specifically suggests that 

PhenoAge may capture some of the physiological impacts of Mn exposures in individuals 

not explicitly presenting with clinical signs of Mn poisoning. Future research aimed at 

broadening the understanding of Mn and other metals with DNA methylation age measures 

will be crucial for defining the public health utility of these methylation-based tools as 

biomarkers of subclinical metal toxicity.
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Highlights:

• We examined relationships of five urine metals with three markers of DNA 

methylation age.

• Urine Mn was identified as important to PhenoAge..

• The cumulative urine metal mixture (As, Cd, Hg, Mn, and Pb) was associated 

with increases in PhenoAge.

• Our results add novel evidence that metals detected in urine are associated 

with increases in biological aging.
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Figure 1 |. orrelation Matrices of Age and Metal Variables.
Pearson correlation matrices of [A] age variables and [B] urine metal concentrations across 

participants in the study sample. All correlations are based on the full cohort (N = 48). For 

the correlation matrix, all metals with the exception of Mn were log transformed to achieve 

distributions closer to normal. For uniformity, all metals were log transformed in the BKMR 

analyses. Subsequent Rosner’s tests did not reveal any outliers in the metal concentration 

levels. Asterisks denote statistical significance of correlations:

* = P < 0.05, ** = P < 0.01, *** = P < 0.001.
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Figure 2 |. Relationships between Cumulative Metal Mixtures and DNA Methylation Age 
Variables.
Difference in DNA methylation age variables (95% CI) of cumulative urine metal mixture 

exposure in the [A] main analysis models, and [B] sensitivity analysis models including the 

diseases diabetes, hypertension, and ischemic heart disease. In each BKMR model, all urine 

metals at the specified percentiles (x-axis) were compared to a model with all urine metals at 

their 50th percentile.
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Table 1.

Characteristics of Study Subjects (N = 48)

Age Variables

Chronological Age (years), mean (SD) 76.9 (5.3)

DNAmAge (years), mean (SD) 78.5 (7.3)

GrimAge (years), mean (SD) 74.2 (6.4)

PhenoAge (years), mean (SD) 71.6 (9.2)

Health and Lifestyle Variables

Glomerular Filtration Rate (mL/min/1.73 m2), mean (SD) 69.5 (13.4)

Pack-years, mean (SD) 17.5 (21.7)

Alcohol Consumption, N (%)

< 2 drinks/day 36 (75)

≥ 2 drinks/day 12 (25)

BMI, N (%)

Healthy/Lean 18 (38)

Overweight 17 (35)

Obese 13 (27)

Diabetes, N (%)

Yes 14 (29)

No 34 (71)

Education, N (%)

≤ 12 years 15 (31)

12 – 16 years 20 (42)

> 16 years 13 (27)

Hypertension, N (%)

Yes 32 (67)

No 16 (33)

Ischemic Heart Disease, N (%)

Yes 15 (31)

No 33 (69)

Season, N (%)

Spring 8 (17)

Summer 16 (33)

Fall 13 (27)

Winter 11 (23)

Smoking Status, N (%)

Current 1 (02)

Former 32 (67)

Never 15 (31)
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Table 2.

24-Hour Urine Metal Concentrations Across Study Subjects (N = 48) and EPA Drinking Water Guidelines

Metal
Measures (ng/mL)

mean ± SD 0% 25% Quantiles 50% 75% 100% EPA Drinking Water Standards

As 40.9 ± 57.2 4.35 13.61 20.69 39.53 303.16 10

Cd 0.8 ± 0.4 0.23 0.52 0.66 0.88 2.05 5

Hg 1.6 ± 1.5 0.30 0.58 1.21 1.97 8.47 2

Mn 1.4 ± 0.4 0.45 1.22 1.41 1.64 2.20 50

Pb 1.7 ± 1.0 0.39 1.06 1.43 1.99 6.19 15
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Table 3.

Posterior Inclusion Probabilities (PIPs) for Bayesian Kernel Machine Regression (BKMR) Fully-Adjusted 

Models

Metal DNAmAge DNAm AgeAccel GrimAge Grim AgeAccel PhenoAge Pheno AgeAccel

As 0.47 0.48 0.44 0.43 0.47 0.44

Cd 0.46 0.45 0.55 0.53 0.46 0.46

Hg 0.35 0.35 0.41 0.40 0.45 0.43

Mn 0.40 0.42 0.49 0.47 0.61ϕ 0.62 ϕ

Pb 0.37 0.40 0.36 0.34 0.39 0.36

In these analyses, metal PIPs 0.60 are marked with a “ϕ” and represent those selected as the important predictors of the outcome in the fully-
adjusted BKMR model.
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Table 4.

Bayesian Kernel Machine Regression (BKMR) Selected 24-Hour Urinary Metal Concentrations as Predictors 

of DNA Methylation Age

Models Difference in DNA Methylation Age (95% CI) P

PhenoAge

Mn
a
 (ng/mL)

9.93 (1.24, 18.61) 0.03

Mn
b
 (ng/mL) with Diseases

10.20 (−0.07, 20.47) 0.05

Pheno AgeAccel

Mn
a
 (ng/mL)

9.93 (1.24, 18.61) 0.03

Mn
b
 (ng/mL) with Diseases

10.20 (−0.07, 20.47) 0.05

a
Main model adjusted for chronological age, year of visit, pack years, smoking status, season, alcohol consumption, education, GFR, BMI, and 

white blood cell proportions.

b
Sensitivity analysis model adjusted for Model “a” covariates and diabetes, hypertension, and ischemic heart disease.

All metals with the exception of Mn were log transformed to achieve normal distributions for the analyses. P values < 0.05 are italicized and 
considered statistically significant in these analyses.
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