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Abstract

Selenoprotein I (SELENOI) is an ethanolamine phosphotransferase that catalyzes the third 

reaction of the Kennedy pathway for the synthesis of phosphatidylethanolamine. Since the role of 

SELENOI in murine embryogenesis has not been investigated, SELENOI−/+ mating pairs were 

used to generate global KO offspring. Of 323 weanling pups, no homozygous KO genotypes were 

found. E6.5-E18.5 embryos (165 total) were genotyped, and only two E18.5 KO embryos were 

detected with no discernable anatomical defects. To screen embryos prior to uterine implantation 

that occurs ~ E6, blastocyst embryos (E3.5-E4.4) were flushed from uteruses of pregnant females 

and analyzed for morphology and genotype. KO embryos were detected in 5 of 6 pregnant 

females, and 7 of the 32 genotyped embryos were found to be SELENOI KO that exhibited no 

overt pathological features. Overall, these results demonstrate that, except for rare cases (2/490 = 

0.4%), global SELENOI deletion leads to early embryonic lethality.
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Introduction

Phosphatidylethanolamine (PE) comprises 15–25% of cellular phospholipids, combining 

with other phospholipids, glycolipids, and cholesterol to constitute cellular membranes [1]. 

In addition to its role in membranes, PE serves as a precursor for the synthesis of other 

factors involved in cellular signaling and metabolism. For example, PE serves as a precursor 

for the synthesis of glycophosphatidylinositol (GPI) anchors that tether ~ 150 proteins to the 

surface of cells and play a wide variety of functions [2]. PE may also be converted into ether 

linked PEs, plasmenyl PE (a.k.a. plasmalogens), which function in synaptic vesicles and 
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secretory granules as well as other less defined cellular processes [3]. In mammals, PE is 

synthesized via the Kennedy pathway in the endoplasmic reticulum, the phosphatidylserine 

(PS) decarboxylation pathway in the mitochondria [4], and perhaps yet to be identified 

pathways. While the PS decarboxylase pathway mainly synthesizes PE for the mitochondria, 

the Kennedy pathway in the ER supplies plasma and organelle membranes as well as other 

synthesis pathways with PE [5].

The Kennedy pathway is a three-step process in which ethanolamine is first phosphorylated 

by ethanolamine kinase 1 (ETNK1) in the cytosol to generate phosphoethanolamine. The 

second reaction is the rate-limiting step catalyzed by CTP-phosphoethanolamine 

cytidyltransferase (ECT) also located in the cytosol, which converts phosphoethanolamine to 

CDP-ethanolamine. The third step involves the reaction of the CDP-ethanolamine with 1,2-

diacylglycerol catalyzed by selenoprotein I (SELENOI; ethanolamine phosphotransferase 1) 

to generate PE. SELENOI spans the ER membrane multiple times with its catalytic domain 

embedded in this pocket of the ER membrane [6]. This enzyme is a member of the 

selenoprotein family, in which all 25 members in humans (24 in mice) contain the signature 

selenocysteine amino acid. Recombinant SELENOI exhibits CDP ethanolamine-specific 

phosphatidyltransferase activity, and its expression has been detected in a wide variety of 

tissues [7].

The selenoprotein family of genes, including the SELENOI gene, was initially identified in 

2003 as part of an in silico analyses of the human genome [8]. To date, 4 of the 24 mouse 

selenoproteins have been shown to be essential for life based on homozygous knockout (KO) 

models [9]. These include glutathione peroxidase-4, thioredoxin reductase-1 and −2, and 

selenoprotein T. While an essential role for SELENOI in mice has not yet been described, a 

rare case study described one patient with a mutation leading to nonfunctional SELENOI 

who exhibited severe neurodevelopmental defects, and fibroblasts derived from this patient 

had impaired ethanolamine phosphotransferase activity and reduced levels of PE species 

[10]. The patient was born to first cousin parents, presenting with severe complications 2 h 

post-partum and onward that required early and repeated intervention with medication (e.g. 

phenylbarbital) and surgery. These results support a critical role for SELENOI in early 

stages of human development, although it has been noted that the tolerance to loss of 

expression of individual selenoproteins may differ between human and mouse [11]. The 

latter study used bioinformatic approaches to estimate the impact of individual 

selenoproteins on human health and this group found that loss of functional SELENOI was 

strongly selected against, suggesting it may represent one of the most important 

selenoproteins for human health.

PE derived from the Kennedy pathway as well as the PS decarboxylase pathway have been 

shown to be essential in developing mice. In particular, the global knockout of ECT is 

embryonic lethal [12] as is the knockout of PS decarboxylase [13]. The ECT KO embryos 

die after uterine implantation (~E6), prior to embryonic day 8.5, which raises the question 

whether global deletion of SELENOI that catalyzes step 3 of the Kennedy pathway is also 

embryonic lethal in mice. To investigate this possibility, SELENO+/− mice were used to 

generate a global deletion of SELENOI in offspring. Results showed that homozygous 
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deletion of SELENOI led to embryonic lethality prior to uterine implantation (~E6), with a 

rare detection of KO embryos at the E18.5 stage.

Materials and Methods

Cre/loxp-based generation of SELENOI KO mice.

Mice were housed in specific germ free conditions and fed a standard mouse chow 

containing 0.25 parts per million (ppm) selenium. Animal protocols were approved by the 

University of Hawaii Institutional Animal Care and Use Committee. A conditional 

SELENOI knockout mouse model was generated on a C57BL/6J background strain (Jackson 

Laboratories, Bar Harbor, ME, USA) using CRISPR/Cas9 technology to insert loxp 
sequences into intronic regions surrounding exons 2 and 3 of SELENOI (Applied Stem Cell, 

Inc., Milpitas, CA, USA). Founder mice with loxp flanked, or floxed (fl), SELENOI alleles 

were used to generate a SELENOIfl/fl a colony. The cmv-Cre and lck-Cre (distal promoter) 

mice were purchased from Jackson Laboratories and bred with SELENOIfl/fl mice. Timed 

pregnancies were carried out by inspecting for vaginal plugs and staging of embryos was 

confirmed using established criteria [14]. To genotype and detect the floxed SELENOI 

alleles in DNA extracted from mouse tails or embryos, PCR was carried out for 3’ loxp site 

using: fwd 5’- GTC TGT GTG AGG TTG TTG GAT CTC C −3’ and rev 5’- GCA TAT 

AGG TGT AGA GAA AAT AGG TAT GCA AAC C −3’. For the 5’ loxp site, the following 

primers were used: fwd 5’- GCA CTA GAG AGC CTA TAA ACC AAG ACT GC −3’ and 

rev 5’- CCA GAG GAT GTG AGC TTG GCG −3’. PCR products exhibit a 34 nucleotide 

difference with and without loxp sites. For the detection of nonexcised and excised alleles, 

respectively, the following PCR primers were used: fwd 5’- TTC CAG GGG TGC TTA 

GGT CT-3’ and rev 5’- AGA TCT GCC TGC CTA TGT GC-3’ (544 bp product); fwd 5’- 

TGT GAG TGT GCT GGG TTA GG-3’ and rev 5’- GGG TGG CAG ATG GGT ACA 

TAA-3’ (450 bp product). The PCR conditions were as follows: 94°C for 2 min; 10 cycles: 

94°C for 20 s, 65°C for 15 sec, 68°C for 10 sec; 28 cycles: 94°C for 15 s, 60°C for 15 sec, 

72°C for 20 s; 72°C for 2 min. For genotyping offspring, we analyzed all embryos and pups, 

including unhealthy or partially developed embryos and neonatal pups that died before 

reaching 3 wks of age.

Genotyping blastocyst embryos

Embryos were flushed from excised oviducts/uteruses and separated into PCR tubes. 

Individual embryos were for isolated as previously described [15] for cDNA synthesis using 

a SuperScript III Cells Direct cDNA synthesis kit (Invitrogen). PCR was conducted to detect 

the presence or absence of the floxed region (exons 2 and 3) using the following primers: 

fwd1 5’-CTT TGG ATA CCA ACC CAC TCT C-3’ and rev1 5’- CCA GTC AGG CAC 

ATG CTT AT −3’; fwd2 5’- CAT ACT TCG ACC CTG ACT TCT ATG-3’ and rev2 5’-CAC 

AAC CGC AGT CAC TAT GTA-3’. Primers for the cDNA region outside of the floxed 

regions: fwd3 5’- CTA GAT GGA GTG GAT GGA AAG C-3’ and rev3 5’- GAG CAA 

ACA CGG AGA GAA GAA-3’. PCR conditions were the same as described above.
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Histology

Day 18.5 embryos were fixed with 10% buffered formalin and transferred to 70% ethanol, 

followed by stepwise increases in higher % ethanol to dehydrate the tissue. The embryos 

were embedded in paraffin, and 5 μm sections mounted onto slides and stained using 

standard haematoxylin and eosin (H&E) techniques. Dorsal, ventral, and axial sagital 

sectioning was carried out for each fixed embryo for H&E staining. Images were captured 

for serial sections using a using a Zeiss Axiovert 200M attached to a Zeiss LSM 5 Pascal 

imaging system.

Results

No SELENOI−/− weanling pups were detected

To study the effects SELENOI gene deletion on development, a cre-Lox recombination 

system was used. First, SELENOIfl/fl mice were generated with loxp sequences inserted into 

intronic regions surrounding exons 2 and 3, which upon excision by Cre recombinase would 

lead to a truncated mRNA with a frameshift downstream of this site to ensure that functional 

protein would be deleted (Figure 1A). Whole-body SELENOI deletion utilized cmv-driven 

expression of Cre, which excises the target region throughout tissues including germ cells 

[16]. Male and female SELENOI+/− mice were generated that were healthy and fertile, 

which allowed us to cross these mice for the generation of SELENOI−/− mice with an 

expected Mendelian frequency of 25%. However, with 323 pups produced and genotyped at 

3 wks of age, no SELENOI−/− weanling mice were detected.

Analyses of E6.5-E18.5 embryos for SELENOI genotype

To examine pre-term embryos for SELENOI−/− genotypes, pregnant females were sacrificed 

and embryos collected from E6.5-E18.5 stages. Results revealed the presence of only 

SELENOI+/+ and SELENOI+/− genotypes, with the exception of one E18.5 litter that 

exhibited all three genotypes, including two SELENOI−/− embryos (Figure 1B–D). The pups 

from each genotype in this particular litter were analyzed by sagittal sectioning and 

histology for pathological features or malformed organ systems, and no discernable 

differences were found between genotypes (Figure 2). These data suggest that homozygous 

KO of SELENOI terminates development at a stage prior to E6.5, but there may be a rare 

escape of this termination with embryonic development proceeding to the perinatal stage 

(Table 1).

Genotyping of E3.5-E4.5 blastocysts reveals the presence of SELENOI−/− embryos

To analyze development prior to uterine implantation that occurs ~E6, blastocyst embryos 

were flushed from uteruses of pregnant females between E3.5 and E4.5 stages and 

genotyped (Figure 3A–C). Results from genotyping these early stage embryos showed the 

detection of SELENOI−/− in all but one pregnant female, with a total of 7 KO and 25 non-

KO blastocyst embryos identified (Figure 3D). Altogether, these data reveal that whole 

animal SELENOI KO in mice leads to early-stage embryonic lethality with no detectable 

KO weanling pups with the exception of a very rare occurrence of KO embryos (1.2% of 

embryos; 0.4% of all genotyped offspring) surviving to a perinatal stage of development.
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Discussion

The 2018 case report of a young patient with a homozygous SELENOI mutation leading to 

nonfunctional enzyme demonstrated that this phosphoethanolamine transferase catalyzing 

the final step of the Kennedy pathway of PE synthesis was crucial for human health [7]. A 

lack of functional SELENOI in this patient led to multiple pathologies including reduced 

myelination and neurodevelopment, and cellular impairments in the maintenance of normal 

homeostasis of ether-linked phospholipids. Given that this isolated report of one child born 

to first cousin parents described his major complications 2 h post-birth and the patient 

required long-term medical intervention, there remain questions regarding the effects of 

SELENOI homozygous deletion on fetal development and post-birth survival. The data 

presented herein show that SELENOI homozygous deletion in mice leads to early 

embryonic lethality in mice. The data show that a lack of SELENOI expression terminates 

development prior to uterine implantation of embryos on E6. Since PE in cellular 

membranes is important for balanced membrane fluidity/rigidity and curvature [1, 17], 

SELENOI-dependent generation of adequate levels of PE may be required to facilitate 

membrane interactions between the embryo and uterus during implantation. Alternatively, 

cellular division may reach a point that SELENOI deficiency impedes cell cycle progression 

past the blastocyst stage. Our data also found rare perinatal homozygous SELENOI KO of 

E18.5 embryos (1.2% frequency) and this suggests that, in some cases, murine embryonic 

development in the absence of SELENOI expression can proceed to the perinatal stage 

development.

While homozygous embryos did not develop, our results show that SELENOI heterozygotes 

were not phenotypically different from WT mice. This differs with heterozygosity for the 

rate-limiting enzyme in the Kennedy pathway, ECT, which in mice resulted in hallmark 

symptoms of metabolic syndrome such as insulin resistance, obesity, dyslipidaemia and liver 

steatosis [18]. There also have been some tissue-specific KO studies of ECT in mice, 

including the skeletal muscle-specific knockout of ECT, which led to a build up of the 

substrate 1,2-diacylglycerol [19]. As other tissue-specific SELENOI KO mouse models are 

developed, it will be of interest to compare their phenotypes with the results from 

corresponding models of tissue-specific ECT KO. Interestingly, it has been noted that the 

tolerance to loss of expression of individual selenoproteins differs between human and 

mouse [11]. This same study used bioinformatic approaches to estimate the impact of 

individual selenoproteins on human health and this group found that loss of functional 

SELENOI was strongly selected against, suggesting it may represent one of the most 

important selenoproteins for human health. These findings along with our data suggest that 

SELENOI homozygous deletion in humans likely causes embryonic lethality with rare cases 

in which perinatal lethality may be observed that require severe therapeutic intervention for 

survival.

Selenium is an essential micronutrient, and selenoprotein expression is essential for life as 

demonstrated by the generation of mice lacking Sec-tRNA Sec required for translation of all 

selenoproteins, which selenoprotein family for which heterozygous deletion in mice leads to 

embryonic lethality [20]. In this previous report, the homozygous mutants died shortly after 

implantation, with embryos being resorbed before 6.5 days post coitum. The timing of the 
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homozygous KO of SELENOI on embryonic lethality was similar (<E6.5), but one 

difference was the rare escape of KO to later stages of embryonic development. It is 

interesting to note that selenium supplementation for pregnant mice has been shown to 

improve the health of selenoprotein P KO offspring due to its role in distributing selenium 

throughout the body [21]. It may be possible that increased dietary selenium may mitigate 

the detrimental effects of SELENOI KO, but given that our chow had levels of selenium 

(0.25 ppm) far above the minimum required (0.1 ppm) [22] and the enzymatic role of 

SELENOI in cells, it is unlikely that this would lead to viable KO offspring. Our study is the 

first to publish results on homozygous KO of SELENOI in mice and the list of embryonic 

lethal selenoproteins now stands at 5 out of 25 family members.
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Abbreviations

ECT ETP-phosphoethanolamine cytidyltransferase

ETNK1 ethanolamine kinase 1

fl floxed

GPI glycophosphatidylinositol

H&E haematoxylin and eosin

KO knockout

ppm parts per million

PE phosphatidylethanolamine

PS phosphatidylserine

SELENOI selenoprotein I

WT wild-type
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Figure 1. 
Strategy for generating and screening mice with SELENOI KO in all tissues. (A) A floxed 

mouse cell line was created on a C57BL/6 background using CRISPR/Cas9 to insert loxp 
sites flanking exons 2 and 3 in the SELENOI gene. PCR primer pairs were designed for 

genotyping the DNA of mouse tissues. (B) Results from one litter of E18.5 embryos show 

PCR results for primer pairs designed to detect the excised (top panel) and intact (bottom 

panel) SELENOI gene allele. (C) PCR results from the same litter show confirmation of 

intact SELENOI gene allele with two different primer pairs. (D) The combined PCR results 

allowed genotypes to be identified of all embryos from the E18.5 litter.
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Figure 2. 
The rare E18.5 SELENOI KO embryo does not exhibit any pathological features. 

Representative sagittal sections from all three genotypes of E18.5 from the same litter are 

shown. No distinct features were found in SELENOI−/− embryos compared to SELENOI−/− 

and SELENOI−/− littermates.
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Figure 3. 
Genotyping blastocyst embryos prior to uterine implantation reveals the presence of 

SELENOI−/− embryos. (A) Pregnant female mice were euthanized and ovaries/ovaducts/

uteruses removed. Blastocyste embryos were flushed from ovaducts and visualized for stage 

of development (E3.5–4.5). The morphology of the blastocyst embryos at this ~100 cell 

stage for SELENOI KO did not show any pathological features. (B) Primers were designed 

for distinguishing between KO (SELENOI−/−) and non-KO (SELENOI−/+ or +/+) using PCR 

analyses of cDNA. (C) PCR results showed the presence of 1 KO embryo out of 8 embryos 

from one pregnant female. (D) Cumulative results from 6 pregnant females shows the 

presence of 7 KO blastocysts.
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