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Abstract

As we listen to everyday sounds, auditory perception is heavily shaped by interactions between 

acoustic attributes such as pitch, timbre and intensity; though it is not clear how such interactions 

affect judgments of acoustic salience in dynamic soundscapes. Salience perception is believed to 

rely on an internal brain model that tracks the evolution of acoustic characteristics of a scene and 

flags events that do not fit this model as salient. The current study explores how the 

interdependency between attributes of dynamic scenes affects the neural representation of this 

internal model and shapes encoding of salient events. Specifically, the study examines how 

deviations along combinations of acoustic attributes interact to modulate brain responses, and 

subsequently guide perception of certain sound events as salient given their context. Human 

volunteers have their attention focused on a visual task and ignore acoustic melodies playing in the 

background while their brain activity using electroencephalography is recorded. Ambient sounds 

consist of musical melodies with probabilistically-varying acoustic attributes. Salient notes 

embedded in these scenes deviate from the melody’s statistical distribution along pitch, timbre 

and/or intensity. Recordings of brain responses to salient notes reveal that neural power in 

response to the melodic rhythm as well as cross-trial phase alignment in the theta band are 

modulated by degree of salience of the notes, estimated across all acoustic attributes given their 

probabilistic context. These neural nonlinear effects across attributes strongly parallel behavioral 

nonlinear interactions observed in perceptual judgments of auditory salience using similar 

dynamic melodies; suggesting a neural underpinning of nonlinear interactions that underlie 

salience perception.
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Introduction

As everyday acoustic environments challenge the auditory system with a deluge of sensory 

information, the brain has to selectively focus its limited resources on the most relevant 

events that are crucial both for survival and awareness of our changing surrounds. Salience is 

an attribute of events that inherently reflects their perceptual relevance and as such guides 

exogenous attention to important information in the stimulus (Itti and Koch, 2001). The siren 

of an emergency vehicle or an offbeat segment in an orchestral piece are events that 

undoubtedly stand out perceptually and attract our attention to unique moments in the 

acoustic scene. What makes these events salient is the fact that they differ relative from other 

sounds in the scene, hence deviating from an internal model of the sensory world. This 

interpretation posits that the brain maintains an internal representation of the stimulus which 

is used to reconcile with incoming information causing any deviation to pop-out (Friston, 

2010). This contrast principle is at the core of current theories of how salience computation 

operates in the brain, and appears to apply with a great deal of accuracy across different 

sensory modalities (Moskowitz and Gerbers, 1974; Wolfe and Horowitz, 2004; Kayser et al., 

2005; Walsh et al., 2016).

In audition, the contrast theory incorporates the dynamic nature of sound as an inherent 

component of salience (Kaya and Elhilali, 2014). Specifically, the auditory system builds on 

its deviance detection mechanisms to flag presence of oddball elements in the stimulus 

hence guiding the brain’s response to unexpected events. When listening to our acoustic 

environment, the auditory system infers patterns in sound sources that help build an internal 

model of the world (Winkler et al., 2009; Huang and Elhilali, 2017). This model extracts 

coherent regularities in the sensory space by leveraging Gestalt structures in the stimulus 

that shape internal representations of putative sound objects in the scene (Bregman, 1990). 

These primitive regularities are encoded in the auditory system with increasingly adaptive 

representations wherein faithful encoding of acoustic features at the peripheral level evolve 

to progressively become more sensitive to deviant patterns (Ulanovsky, 2004; Antunes and 

Malmierca, 2014; Nelken, 2014).

Understanding underpinnings of auditory salience is intimately tied to defining the structure 

of the acoustic space over which this internal model of regularities is developed. Building on 

our understanding of sensory processing along the auditory pathway, we know that sounds 

undergo a series of transformation from the periphery to the central auditory system, 

wherein features such as spectral content, spectral shape profile (e.g. bandwidth) and 

temporal dynamics are extracted along separate feature maps (Schreiner, 1992, 1995; 

Versnel et al., 1995; Kowalski et al., 1996). The rich tuning of cortical neurons suggests that 

acoustic stimuli are mapped onto a high-dimensional space over which the structures 

guiding our internal model can be built (Chakrabarty and Elhilali, 2019). Cortical 

representations reflect not only the underlying feature characteristics of the stimulus, but 

also complex interactions that guide coherent perception of integrated objects. Nonlinear 

interactions across acoustic features are abound in cortical data and suggest synergistic 

integration across features (Atencio et al., 2008; Bizley et al., 2009; Sloas et al., 2016). How 

these nonlinear interactions manifest themselves to shape our perception of salient events is 
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unclear, especially that salience is guided both by attributes of a sound event as well as its 

context (Huang and Elhilali, 2017).

In a previous behavioral report, manipulating deviance of sound tokens along multiple 

acoustic attributes revealed strong nonlinear interactions that guide judgments of salience 

elicited with dynamic scenes (Kaya and Elhilali, 2014). In this Kaya study, listeners were 

presented with different complex stimuli including speech, musical melodies or nature 

sounds where deviance of an embedded token was manipulated along a collective space 

spanning pitch, timbre and intensity. Regardless of sound category, an interaction effect was 

reported across these acoustic attributes consistently for speech, music and nature sounds 

suggesting an underlying interdependent representation of auditory feature maps that not 

only guides their encoding in the brain, but also modulates their contrast against an internal 

model of the scenes to guide judgments of salience of specific events.

Interdependent effects of acoustic attributes guide our perception in a variety of tasks. 

Earlier reports of interaction between attributes such as pitch, timbre and intensity have 

revealed profound nonlinear inter-dependencies that shape judgments of detection, 

discrimination or even sound classification (Moore, 1995; Allen and Oxenham, 2013). 

Melara and Marks have argued of an interpretation based on an “interactive multichannel 

model” of auditory processing (Melara and Marks, 1990); though functional imaging data 

suggests no clear anatomical distinctions between cortical networks engaged in building 

internal models of the stimulus along different acoustic channels (Allen et al., 2017).

In order to further probe the underpinnings of these interactions in the context of a salience 

paradigm, we record electrophysiological responses from human listeners presented with 

dynamic musical melodies whose acoustic structure is controlled by a statistical distribution 

along various dimensions spanning pitch, timbre and sound intensity. Occasional salient 

notes violate the statistical distribution of the melody along one or many of these 

dimensions, hence diverging from the internal model elicited by the melody itself. Theories 

based on deviance detection suggests that shifts of the statistical structure of the input will 

likely elicit changes in neural responses. One of the questions explored in the current work is 

how the joint manipulation of multiple acoustic dimensions manifests itself in these cortical 

responses, and to what extent do observed inter-dependencies in behavioral judgments arise 

from such underlying neural responses (Kaya and Elhilali, 2014)? The current work also 

examines what aspects of neural responses are most modulated by such interactions in 

response to salient sounds. Given the tight link between salience perception and exogenous 

attention, it is an open question how such form of attention manifests itself and how its 

markers relate to well-known effects of endogenous or top-down attention on brain 

responses to complex sounds.

Recent work on top-down attention using natural speech, animal vocalizations, and ambient 

sounds demonstrates that neural activity fluctuates in a pattern matching that of the attended 

stimulus, driving the power of oscillations at the stimulus rate or low-frequency oscillations 

and modulating this power by attention (Lakatos et al., 2008; Besle et al., 2011; Zion 

Golumbic et al., 2013; Jaeger et al., 2018). This enhanced representation of the attended 

stimulus has been used to track auditory attention using envelope decoding paradigms 
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(O’Sullivan et al., 2015; Fuglsang et al., 2017), also see review (Wong et al., 2018; 

Alickovic et al., 2019). While these studies have successfully extracted stimulus-specific 

information from neural recordings to natural continuous sound environments, they have all 

employed experimental paradigms under the influence of top-down attention. In the current 

study, we explore whether exogenous attention reveals parallel responses in terms of 

changes in fidelity of encoding or oscillatory activity in response to salient sound tokens. By 

employing dynamic scenes that manipulate salience along different attributes, we can 

specifically probe how neural markers of salience are influenced by specific acoustic 

dimensions. Subjects attention is directed away from the sounds and engaged in a 

demanding visual task, hence controlling their attentional focus away from the acoustic 

scene except for occasional salient tokens that attract their attention exogenously.

Experimental Procedures

Participants

Thirteen subjects (7 female) with normal vision and hearing and no history of neurological 

disorders participated in the experiment in a soundproof booth after giving informed consent 

and were compensated for their participation. All procedures were approved by the Johns 

Hopkins Institutional Review Board.

Stimuli and experimental paradigm

Subjects performed an active visual task while auditory stimuli were concurrently presented, 

and subjects were instructed to ignore the sounds. Auditory stimuli closely followed the 

design used in (Kaya and Elhilali, 2014). Each sound stimulus was 5 seconds long and 

consisted of regularly spaced, temporally overlapping musical notes each 1.2 seconds long, 

with a new note starting every 300 ms. Individual notes were extracted from the RWC 

Musical Instrument Sound Database (Goto et al., 2003) for 3 instruments: Pianoforte 

(Normal, Mezzo), Acoustic Guitar (Al Aire, Mezzo) and Clavichord (Normal, Forte) at 44.1 

kHz; and were amplitude normalized relative to their peak with 0.1 second onset and offset 

sinusoidal ramps. The repetition rate and instruments were specifically selected to sound 

pleasing and flow naturally in order to resemble musical melodies. The 3 instruments were 

chosen to balance a number of considerations: high contrast in timbre along factors such as 

spectral flux, irregularity and temporal attack, as reported in earlier timbre studies 

(McAdams et al., 1995). The temporal envelope of these 3 instruments allowed a better 

control of intensity relative to amplitude peak because the instruments contained a 

sufficiently prominent steady-state activity.

Notes in each 5 second sequence were played by the same instrument (denoted Timbre-bg or 

Tb, i.e. timbre of the background scene), controlled an average intensity at a comfortable 

hearing level, and maintained a pitch within ±2 semitones of a nominal pitch value around 

A3 (220Hz). In “test” trials, one note (selected at random in the middle of the melody 

anywhere between 2.4 s and 3.8 s from onset of the melody) was chosen as “salient”, and 

had acoustic attributes that differed from the melody in that trial: different timbre (new 

instrument, denoted Timbre-sal or Ts), higher pitch P (2 or 6 semitones higher) and higher 

intensity I (2 or 6 dB higher) relative to the background scene. Salient notes were 
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manipulated in a factorial design to test all combination of variations along all 3 acoustic 

dimensions (pitch, timbre and intensity). Due to the difficulty of defining timbre on a scale, 

we characterized timbre differences categorically by testing all 9 combinations of the 3 

instruments for melody notes (Timbre-bg) and salient notes (Timbre-sal). This resulted in 3 

* 3 * 2 * 2 = 36 trials to test every possible feature deviation (i.e. 3 background timbres or 

instruments Tb, 3 salient note instruments Ts, 2 pitch deviations P and 2 intensity deviations 

I). Each feature deviation was repeated 10 times with different dynamic backgrounds and 

salient onset times, for a total of 360 salient trials.

In addition, “control” trials were constructed in a similar fashion, but without any salient 

notes. The attributes (pitch, timbre, intensity) of notes in control trials were carefully chosen 

to embed each of the salient notes without making it salient given its context. For example, if 

a clavichord note was previously presented as salient in a melody of guitar notes, that same 

clavichord note with the same intensity and pitch was now embedded in a clavichord 

“control” melody with overlapping range of intensity and pitch values making this same note 

non-salient in the context of control trials. In each control trial, this specific note was 

controlled to appear at two randomly selected positions no earlier than 2.4 s from the start of 

the trial, with a minimum of 900 ms between the two occurrences. Five control trials were 

constructed for each of the 12 salient notes, resulting in 60 control trials and 420 experiment 

trials in total. The order of trials was randomized for each subject.

Visual stimuli consisted of digits and capital letters presented on a black screen where 

subjects were instructed to report digits. Each target was uniformly chosen at random from 

the numbers 0–9, while each non-target was uniformly chosen at random from the letters A-

Z. Subjects were instructed to enter any numbers they observed after each trial in the order 

of appearance, using a numeric keypad. The next trial was initiated by the subject after 

entering their response up. Within each trial, 56 characters were presented in sequence, with 

one presented every 90 ms. The visual task was divided into two difficulty conditions. The 

low-load condition consisted of white numbers in contrast to gray letters, with all characters 

remaining on-screen for 90 ms. In the high-load condition, both targets and non-targets were 

the same shade of gray, and all characters were presented for only 20 ms. Trials were 

presented in 12 blocks, with blocks alternating between the two load conditions. 

Presentation order of low and high-load conditions was counter-balanced across subjects.

In most visual trials, two targets were presented at random points in the trial. To avoid 

confounds with salient events in the sound stream, one target (“early”) occurred within the 

first 2.4 seconds of the trial, while the other (“late”) occurred after 4.2 seconds. The first and 

last two characters were always non-targets. Target positions were uniformly chosen at 

random within their respective ranges. In 20% of trials, only one target was presented, with 

an equal chance of it being either early or late. Finally, for 30 trials, one of the visual targets 

was positioned between 2.4 and 4.2 seconds from the start of the trial, while still being at 

least 1.3 seconds away from any salient auditory stimuli. This adjustment ensured that 

subjects paid attention to the visual stimulus throughout each trial.
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Neural data acquisition

Electroencephalography (EEG) recordings were performed with a Biosemi Active Two 

system with 128 electrodes, plus left and right mastoids acquired at 2048 Hz. Four 

additional electrodes recorded eye and facial artifacts from EOG (electrooculography) 

locations, and a final electrode was placed on the nose to serve as reference. The nose 

electrode was used only to examine ERP components, particularly mismatch negativity at 

mastoids (Mahajan et al., 2017). The average mastoid reference was used for all further 

analyses.

Initial processing of signals was performed with the Fieldtrip software package for 

MATLAB (Oostenveld et al., 2011). Trials were epoched with 0.5 s of buffer time before 

and after each trial capturing fixation segments, referenced to the average of the left and 

right mastoids, downsampled to 256 Hz, and filtered between 0.5–100 Hz. To remove 

muscle and eye artifacts from the signals, we used independent component analysis (ICA) as 

implemented by FieldTrip. ICA components were removed if their amplitude was greater 

than the mean plus 4 standard deviations for more than 5 trials. The resulting filtered signals 

were visually confirmed to be free of prominent eye blinks and large amplitude deviants.

Neural data analysis

The stimulus paradigm presented the same physical note as salient (in the context of “test” 

trials) or as control (in the context of “control” trials). All neural data analyses compared 

salient notes to control notes (same note when non-salient), and analyses were divided by 

salience level for each feature tested (pitch, timbre, intensity).

Neural power analysis: Time-frequency power analysis of each experimental trial was 

computed with the matching pursuit algorithm using a discrete cosine transform dictionary 

(Mallat and Zhang, 1993). For precise spectral resolution, neural responses from salient 

notes and matching control notes were extracted in segments spanning two notes (i.e. 0.6 sec 

post note onset). Extracted segments were concatenated across trials, and the power of the 

Discrete Fourier Transform (DFT) was obtained at each frequency bin of interest. 

Concatenating the signals was necessary to increase the spectral resolution of the frequency 

analysis. While this process could create an edge effect at exactly 1.67 Hz (1/0.6 s) and 

possibly its integer multiples, post-hoc analyses and visual inspection confirmed that no 

significant artifacts resulted from the concatenation procedure. Furthermore, the same 

potential effects would affect salient and control trials equally.

The power of the Discrete Fourier Transform (DFT) of the signal at the sample closest to 

3.33 Hz (1/0.3 s) was divided by the average power at 2.33–4.33 Hz, with the power at 3.33 

Hz excluded. The neural power of salient notes at the stimulus rhythm was defined as the 

normalized power at3.33Hz averaged over the top 15 channels with the strongest response. 

The power at other adjacent and further frequencies (3.2, 3.4, 6, 12, 20, 30, 38, 40) was also 

obtained from the same spectrum. Channels were allowed to vary between subjects to allow 

for inter-participant variability, following the procedure used in (Elhilali et al., 2009). The 

same analysis was performed for salient notes as well as identical control notes. 
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Qualitatively similar results were obtained by including a larger number of channels, though 

the noise floor increased as well.

Phase-coherence: The neural response to each test and control trial was decomposed into 

multiple narrowband signals by spectrally filtering responses of each channel individually 

along the following bands ‘B’: Delta 1–3 Hz, Theta 4–8 Hz, Alpha 9–15 Hz, Beta 16–30 Hz, 

Gamma 31–100 Hz. The instantaneous phase of the Hilbert transform was then obtained for 

each B-narrowband signal at trial i, yielding the quantity θi
B t  (King, 2009). Signal 

segments corresponding to salient notes (note onset-300ms) and reciprocal control notes 

were obtained, and any segments near melody onset (0 – 2.4sec) and offset (0.8 - end) were 

excluded to avoid narrowband filter boundary effects. The phase-coherence across trials cθ
B

was computed for frequency band and each segment separately. This inter-trial coherence 

quantity is a measure of alignment in phase across responses to the same note across many 

repetitions (trials), for a given spectral band B, integrated over time t. It is defined as:

cB = ∑
i = 1

N ∫ ej * θiB t dt

which quantifies the magnitude of the average instantaneous phase, integrated over time and 

averaged across all trials.

ERP analysis: EEG trials were bandpass filtered between 0.7 and 25 Hz. Responses from 

frontal electrodes (Fz and 21 surrounding electrodes) and central electrodes (Cz and 23 

surrounding electrodes) were analyzed(Shuai and Elhilali, 2014). Segments corresponding to 

salient notes and corresponding control notes were extracted separately for each channel. 

First, difference waveforms at the left mastoid, right mastoid, and Fz channels were 

analyzed. These channels were selected based on the MMN literature to confirm maximum 

MMN amplitude at Fz and polarity reversal at the mastoids (Schroger, 1998). Significant 

negative peaks were confirmed for all subjects at Fz by paired t-tests comparing the MMN 

time window point-by-point to 0, polarity reversals at the mastoids were confirmed visually. 

Next, trials were re-referenced to the average mastoids, and baseline corrected using the 

100msec prior to each trial. Difference waveforms were re-computed for all subjects across 

central and frontal electrodes (though qualitatively similar results were obtained for 

individual subjects, albeit at a lower SNR). For each average waveform, peaks were 

extracted over various windows of interest: P1 (positive peak) at 25–75 ms, N1 (negative 

peak) at 75–120 ms, MMN (negative peak) at 120–180 ms, P3a (positive peak) at 225–275 

ms.

Spectrotemporal receptive fields: The cortical activity giving rise to EEG signals was 

modeled by spectro-temporal receptive fields (STRF). This function infers a processing filter 

that acts on a transformation of the auditory stimulus along time and frequency. Specifically, 

the neural response r(t) is modeled as a result of processing the time-frequency spectrogram 

of the stimulus S(f, t) by this kernel STRF then integrated across time lags and frequencies, 
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plus any additional background cortical activity and noise denoted by ϵ(t). The STRF model 

is then described as:

r t = ∑
f

∫ STRF f, τ s f, t − τ dτ + ∈ t .

Estimation of the STRF was performed by boosting (David et al., 2007), implemented by a 

simple iterative algorithm that converges to an unbiased estimate. A brief description of the 

algorithm is as follows. The STRF (size F × T) was initialized to zero, and a small step size 

was defined as δ. For each time-frequency point in the STRF (every element in the matrix), 

the STRF was incremented by δ and −δ giving a pool of F * T * 2 possible STRF 
increments. The increment that provided the smallest mean-squared error was selected for 

the current iteration. This process was repeated until none of the STRFs in the possible 

increment pool improve the mean-squared error. Next the step size was reduced to δ/2 and 

continuing the same process, with 4 step size reductions in total.

STRFs were estimated for salient and control segments separately and were defined for a 

300 ms window, reflecting the frequency of new notes. Two-fold cross validation was used 

to validate STRFs during estimation: Trials were divided into two groups with equal number 

of factorial repetitions in each group. A STRF was estimated for one group, and used to 

obtain an estimated neural response for the other group which is then correlated with the 

actual response. STRFs with a correlation of less than 0.05 were eliminated to remove 

estimates with low predictive power, and the remaining STRFs were averaged as the final 

STRF estimate for that condition. Using higher fold estimates did not give significantly 

different results for the overall case across all salient notes. The number of folds was limited 

to two given the limited number of trials that allowed an analysis of STRFs for each salient 

feature category (pitch, intensity, timbre). Feature STRFs were analyzed by using the salient 

segments that corresponded to each level of the feature at hand in separate estimations. All 

STRFs were averaged over data in channel Fz (C21 on the Biosemi map) and 4 surrounding 

channels (C22, C20, C12, C25).

Statistical analysis

The cross-factorial experimental design allowed an analysis of individual features (Pitch, 

Intensity, Timbre-sal, and Timbre-bg) as well as combined features using within-subject 

ANOVAs. All results were corrected for multiple comparisons using Holm-Bonferroni 

correction to confirm statistical significance (Snedecor and Cochran, 1989). Results post 

correction are reported here. Residuals were checked for normality using the Shapiro-Wilk 

test (p¡0.05), as well as visual inspection of QQ plots) and Mauchlys test of Sphericity was 

used to check for sphericity (p¿0.05).

Results

Subjects performed a rapid serial visual presentation (RSVP) task by identifying numbers 

within a sequence of characters (Haroush et al., 2010) (Fig. 1A-top). Participants were 

closely engaged in this task (overall target detection accuracy 70.3 ± 6.9%, and their 
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performance was modulated by task difficulty (accuracy 75.2% for the low-load and 65.4% 

for the high-load task).

Concurrently, sound melodies were played diotically in the background and subjects were 

asked to completely ignore them. Acoustic stimuli consisted of sequences of musical notes 

with temporal regularity. Fig. 1A shows a schematic of such melody composed of violin 

notes with varying intensities and pitches and an unexpected salient piano note. This 

depiction is an example of a “test” trial, which included an occasional salient note that did 

not fit the statistical structure of the melody (e.g. piano among violins). Salient notes varied 

along pitch, timbre and intensity in a crossed-factorial design (Fisher, 1935). In contrast, 

“control” trials were melodies from the same instrument whose notes also statistically varied 

along pitch and intensity but did not deviate from a constrained distribution, hence 

containing no pop-out notes. The same musical notes that were salient in “test” trials were 

also embedded in “control” trials; but the statistical distribution of these “control” trials was 

manipulated to make these notes non-salient. The same piano note in Fig. 1A would be 

salient in a “test” trial among violins; but would not be salient in “control” trial among other 

piano notes of similar pitch and intensity. Employing the exact physical note when salient 

vs. control allows to factor out any effects of the exact acoustic attributes of the note itself. 

All acoustic stimuli (test and control trials) consisted of melodies with temporally 

overlapping notes, though the entire tune had an temporal regularity with a period of 300 ms 

(Fig. 1B).

While visual targets and auditory salient notes were not aligned in the experimental design, 

we probed distraction effects due to the presence of occasional salient notes in the ignored 

melodies. Visual trials coinciding with “test” trials contained a subset of targets that 

occurred prior to salient notes while others occurred after the salient note. When comparing 

effect of salient and control melodies on visual target detection, there was no notable 

difference in detection accuracy for targets occurring prior to salient notes (unpaired t-test, 

t(13) = 0.86, p = 0.41); while detection was significantly reduced for targets occurring after 

salient notes relative to control trials (unpaired t-test, t(13) = 3.27, p = 0.006).

Though ignored, the auditory melody induced a strong neural response with a clear 

activation around 3.33 Hz, likely driven by the rhythmic pattern in the melody. A time-

frequency profile of neural responses shows energy around 3.33Hz is particularly prominent 

after onset of the salient note (Fig. 1C). To quantify the observed change in neural power, the 

spectral energy averaged over the region [3–3.5] Hz was compared before and after the onset 

of salient notes and confirmed to be statistically significant (paired t-test, t(13) = 11.3, p < 

10−7). Part of this increase in neural power is likely due to acoustic changes in the physical 

nature of the salient note when compared to notes in the melody before the change. It is also 

not spectrally precise because of the broad frequency resolution of the matching pursuit 

algorithm used to derive the time-frequency profile shown in Fig. 1C. We therefore focused 

subsequent analyses on comparing the identical note when salient in “test” trials and when 

non-salient in “control” trials, hence eliminating any effects due to the acoustic attributes of 

the note itself (see Methods for details).
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Using the discrete Fourier transform (DFT), we looked closely at entrainment of cortical 

responses exactly to 3.33Hz, as well as other frequencies. Comparing the same note when 

salient versus not (identical note, test vs. control trials), the neural power in response to the 

stimulus rhythm significantly increased only at the melody rate (paired t-test, p < 10−4. Fig. 

2A, top row), even though both test and control trials have the same underlying 3.33Hz 

rhythm. No such increase was found for neural responses at close frequencies (exactly 3.2, 

3.4Hz), nor in higher frequencies. Looking closely at effects of acoustic attributes of the 

salient note, stronger salience in a particular feature resulted in stronger neural power 

relative to a weaker salience (Fig. 2A, second and third rows). Specifically, both pitch (F (1, 

13) = 37.0, p = 3.9×10−5) and intensity (F (1, 13) = 35.58, p = 4.7×10−5) resulted in greater 

modulation of neural power only at the melodic rhythm. Deviance along timbre also 

revealed significant differential neural power enhancement only at the stimulus rate (Fig. 

2A, fourth row); with guitar deviants driving a larger increase in neural power compared to 

piano and clavichord notes (Timbre-bg: F (2, 26) = 6.13, p = 0.0065, Timbre-sal F (2, 26) = 

15.5, p = 3.7×10−5). These effects are in line with reported variations of acoustic profiles of 

clavichord, piano, and guitar, indicating stronger differences in the guitar spectral flux, 

spectral irregularity as well as temporal attack time relative to the other two instruments 

(McAdams et al., 1995).

Given the factorial design of the paradigm concurrently probing combinations of features, 

changes in neural power in response to the rhythm can be examined across acoustic 

dimensions. Results of a within-subjects ANOVA are given in Table 1 (Neural power 

column). The analysis shows a sweeping range of strong effects and significant interactions 

across features. Worth noting are main effects of pitch, intensity and timbre (all with 

significance levels p < 10−4). In addition, we note numerous nonlinear interactions across 

many features including 3-way and 4-way interactions. Specifically, pitch appears to interact 

strongly with intensity and timbre (both salient and background) in addition to a 3-way 

interaction between pitch, salient and background timbres. The results also reveal a 

statistically significant 4-way interaction between all 4 factors (pitch x intensity x salient-

timbre x background-timbre). Many effects reported in Table 1 are in line with similar 

interactions previously reported in behavioral experiments using the same acoustic stimuli 

(Kaya and Elhilali, 2014); while other interactions are only observed here in neural power 

responses (e.g. 4-way interaction between pitch * intensity * salient-timbre * background-

Timbre).

The precision of neural power effects is striking and reminiscent of effects reported with top-

down attentional engagement (Bidet-Caulet et al., 2007; Elhilali et al., 2009; Ding and 

Simon, 2014). However, it is important to examine how much of this modulation can be 

explained from expected peaks in evoked response potentials (ERP), such as the mismatch 

negativity (MMN). As depicted in Fig. 3A, comparing the response of salient and control 

trials revealed MMN and P3a evoked components with significant amplitude effects around 

these two time windows (paired t-test: t(13) = −1.4, p = 3.1×10−6 for MMN and t(13) = 2.2, 

p = 1.0×10−6 for P3a at fronto-central sites), but no significant latency effects. No notable 

differences in the P50 (paired t-test: t(13) = 0.3, p = 0.23) or N1 (t(13) = 0.3, p = 0.17) time 

windows at any channel were noted (Fig. 3B top). Both MMN and P3a components were 

further modulated by the increase of salience along pitch or intensity (paired t-test: p < 10−3 
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for both components and both features; Fig. 3B, second and third row). The timbre of salient 

notes showed a significant change in the magnitude of the P3a component (one-way 

repeated-subjects ANOVA: p < 10−2) but no significant modulation of the MMN component.

Next, the dynamic and continuous nature of the experimental stimulus allowed the 

estimation of spectrotemporal neural filters that process sensory input that are modeled after 

spectro-temporal receptive fields (STRFs) that have been used to characterize the tuning 

properties of neurons in auditory cortex (Elhilali et al., 2013). Unlike time-locked ERP 

analysis, the STRF approach reveals how energy patterns at any point in the stimulus affect 

the neural response with a delay of t, without necessarily aligning to the trial “onset”. This 

STRF profile could be interpreted as an extension of the ERP analysis that reveals additional 

spectral details about the brain’s response to the stimulus melodies. Our derivation of STRFs 

contrasted neural tuning during control notes against changes in the neural filter due to 

presence of salient notes (Fig. 4A). The tuning profile showed more pronounced response 

patterns in salient filters, likely in line with stronger overall responses as reported earlier. Of 

particular interest were filter characteristics in areas corresponding to time windows of 

neural responses that showed significant changes in the evoked ERP: the 120–170ms MMN 

time window which revealed a deeper negative response, and the 220–270ms P3a time 

window which showed a stronger positive response. Looking closely at specific acoustic 

features, an increase in pitch (Fig. 4B) and intensity (Fig. 4C) salience levels also resulted in 

a similar stronger response; though pitch salience also induced a broader spectral spread 

than intensity. Different instruments also gave rise to varying spectro-temporal patterns, 

possibly indicating different neural processing for each instrument (Fig. 4D). These 

variations are consistent with greater conspicuity of guitar spectrotemporal structure relative 

to piano and clavichord notes, particularly in terms of irregularity of spectral spread and 

sharp temporal dynamics caused by the plucking of guitar strings (Giordano and McAdams, 

2010; Peeters et al., 2011; Patil et al., 2012).

To complement the neural power analysis, we investigated effects of salient notes on phase-

profiles of neural responses. A measure of inter-trial phase-coherence was used to quantify 

similarity of neural phase patterns across trial repetitions. Again when comparing salient 

notes with the same notes in control context, phase-coherence was overall strongest in the 

theta band, where salient notes evoked significantly higher phase-coherence (Fig. 2B, top 

row). Phase-coherence across salient notes also increased based on salience strength. No 

significant phase effects were observed in the delta or beta ranges. A higher pitch or 

intensity resulted in stronger coherence compared to a low pitch or intensity difference 

(Pitch: F (1, 13) = 81.28, p = 5.9×10−7, Intensity: F (1, 13) = 23.23, p = 3.3×10−4, Fig. 2B, 

second and third rows). Different salient note timbres also elicited significantly different 

amounts of phase-coherence (Timbre-bg: F (2, 26) = 9.85, p = 6.5×10−4, Timbre-sal: F (2, 

26) = 12.98, p = 1.2×10−4, Fig. 2B, bottom row). An assessment of interaction effects of 

phase-coherence in the Theta band also revealed sweeping effects, with many interactions 

consistent with those observed in neural power, notably an interaction between pitch and 

intensity, pitch and salient-timbre as well as intensity and salient-timbre (Table 1, right 

column). Also of note are systematic 3-way interaction between pitch and all other factors 

(intensity, salient-timbre and background-timbre).
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Figure 5(A) summarizes the nonlinear interactions across acoustic features observed in both 
response power and phase-coherence detailed in Table 1. Effects that are common across 

both neural measures are shown in black, revealing consistent nonlinear synergy across 

acoustic features. Pitch appears to interact strongly with all other attributes used in this 

paradigm, but all other attributes interdependently modulate brain responses of other 

attributes either in a 2-way, 3-way or even 4-way interaction. Interestingly, these 

interdependencies are closely aligned with nonlinear interactions obtained from the previous 

behavioral experiments using the same stimuli (Kaya and Elhilali, 2014) (Fig. 5(B) 

replicates the published effects for comparison).

Because the experimental design manipulates multiple acoustic features simultaneously, we 

probed the neural correlates of salience as a function of overall acoustic salience. The 

greater the number of salient features, the greater the effect on the neural response in neural 

power and theta phase-coherence (Fig. 6). The figure varies a systematic increase in the 

number of salient features (x-axis), with change in the neural response (y-axis). A slope 

quantifying the linear fit of this increase confirms significantly positive increases for neural 

power (95% bootstrap intervals [0,4.34]) and theta-band phase-coherence (95% bootstrap 

intervals 3.42, 7.18]). No significant increases are noted for delta-band and beta-band phase-

coherence (95% bootstrap intervals [−1.92, 5.57] and [−3.53, 5.79] respectively).

Discussion

This study examines neural markers of auditory salience using complex natural melodies. 

Specifically, the results show that the long-term statistical structure of sounds shapes the 

neural and perceptual salience of each note in the melody, much like spatial context dictates 

salience of visual items beyond their local visual properties (Wolfe and Horowitz, 2004; 

Nothdurft, 2005; Itti and Koch, 2001). In this work, brain responses are shown to be 

sensitive to the acoustic context of sounds by tracking the dynamic changes in pitch, timbre 

and intensity of musical sequences. The presence of salient notes that stand out from their 

context significantly enhances the rhythm’s neural power and cross-trial theta phase 

alignment of salient events; and causes them to distract subjects from the task at hand, even 

in another modality (visual task). The degree of modulation of neural responses is closely 

linked to the acoustic structure of salient notes given their context (Fig. 6); and reflects a 

nonlinear integration of variability across a high-dimensional acoustic feature space. For 

instance, a deviance in the melodic pitch line induces neural changes that are closely 

influenced by the musical timbre and overall intensity of the melody. While such 

interactions have been previously reported in behavioral studies (Melara and Marks, 1990; 

Kaya and Elhilali, 2014), the close alignment between these perceptual effects and neural 

responses in the context of salience suggests the presence of interdependent encoding of 

these attributes in the auditory system and provides a neural constraint on such nonlinear 

interactions that explain perception of salient sound objects. Neurophysiological studies 

have provided support for such nonlinear integration of acoustic features in overlapping 

neural circuits (Bizley et al., 2009; Allen et al., 2017); a concept which lays the groundwork 

for an integrated encoding of auditory objects in terms of their high-order attributes (Nelken 

and Bar-Yosef, 2008). Here, we show that such integrated encoding is itself shaped by the 

long-term statistical structure of the context of the acoustic scene, in line with a wide-range 
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of contextual feedback effects that shape nonlinear neural responses in auditory cortex 

(Bartlett and Wang, 2005; Asari and Zador, 2009; Mesgarani et al., 2009; Angeloni and 

Geffen, 2018).

Changes in the neural response to salient notes are specifically observed in neural power and 

phase-alignment to the auditory rhythm, even with subjects’ attention directed away from 

the auditory stimulus. The enhancement of neural power complements previously reported 

“gain” effects that have mostly been attributed to top-down attention (Hillyard et al., 1998) 

and interpreted as facilitating the readout of attended sensory information, effectively 

modulating the signal-to-noise ratio of sensory encoding in favor of the attended target. A 

large body of work has shown that directing attention towards a target of interest does induce 

clear neural entrainment to the rate or envelope of the attended auditory streams, hence 

enhancing its representation (Elhilali et al., 2009; Kerlin et al., 2010). In fact, studies 

simulating the “cocktail party effect” with multiple competing speakers reveal that neural 

oscillations entrain to the envelope of the attended speaker (Ding and Simon, 2012; 

Mesgarani and Chang, 2012; O’Sullivan et al., 2015; Fuglsang et al., 2017). Of particular 

interest to the present work is the observation that representations of unattended acoustic 

objects are nonetheless maintained in early sensory areas even if in an unsegregated fashion 

(Ding and Simon, 2012; Puvvada and Simon, 2017). Here, we observe that even ignored 

sounds can induce similar gain changes when these events are con spicuous enough relative 

to their context, effectively engaging attentional processes in a bottom-up fashion. The 

melodic rhythm used in the current study falls within the slow modulation range typical for 

natural sounds (e.g. speech) and is commensurate with rates that single-neurons and local 

field potentials in early auditory cortex are known to phase-lock to (Wang et al., 2008; 

Kayser et al., 2009; Chandrasekaran et al., 2010). While it is unclear whether the observed 

enhancement in neural power is a direct result of contextual modulations of these local 

neural computations or whether it reflects cognitive networks typically engaged in top-down 

attentional tasks, the nature of the stimulus and observed behavioral effects suggest an 

engagement of both: the complex nature of salient stimuli likely evokes large neural circuits 

or multiple neural centers spanning multiple acoustic feature maps, and the observed 

distraction effects on a visual task also posit an engagement of association or cognitive areas 

likely spanning parietal and frontal networks in agreement with broad circuits reported to be 

engaged during involuntary attention (Watkins et al., 2007; Salmi et al., 2009; Ahveninen et 

al., 2013). The reported presence of a P3a evoked component that is itself modulated by note 

salience further supports the engagement of involuntary attentional mechanisms that likely 

extends to neural circuits beyond sensory cortex (Escera and Corral, 2007; Soltani and 

Knight, 2000).

Complementing the steady-state “gain” effects, the study also reports an enhancement of 

inter-trial phase-coherence in the theta range whose effect size is strongly regulated by the 

degree of salience. Enhanced entrainment to low-frequency cortical oscillations has been 

posited as a mechanism that boosts or stabilizes the neural representation of attended objects 

relative to distractors in the environment (Henry and Obleser, 2012; Ng et al., 2012). As a 

correlate of temporal consistency of brain responses across trials, inter-trial phase coherence 

measures temporal fidelity in specific oscillation ranges. Modulations in the theta band 

specifically have been tied to shared attentional paradigms whereby a theta rhythmic 
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sampling operation allows less target-relevant stimuli to be sampled, resulting in a more 

ecologically essential examination of the environment; thus, these modulations can be a 

marker of divided attention (Landau et al., 2015; Keller et al., 2017; Spyropoulos et al., 

2018; Teng et al., 2018). In the present study, not only does the strength of phase-coherence 

follow closely the salience of the conspicuous note, but the strong parallels between neural 

and behavioral nonlinear interactions (Fig. 5) proffer a link between perceptual detection and 

temporal fidelity of the underlying neural representation of salient events in a dynamic 

ambient scene.

It is important to note that all changes in neural responses due to presence of salient notes 

cannot be explained by the absolute values of acoustic features of the deviant instances in 

the melody. Firstly, the entire melodic piece is highly dynamic, exhibiting a great deal of 

acoustic variability (e.g. a typical pitch interval of a sequence spans the range [G3-B3]); 

these changes induce temporal variability in the neural response. Changes reported here are 

beyond this inherent variability. Secondly, all analyses in the current study compare neural 

responses to the same note when salient vs. not. It is important to emphasize that the global 

acoustic profile of a melody (rather than local acoustics) is what dictates the salience of a 

particular sound event. A piano note is not surprising among pianos, but would be among 

violins. As such, neural responses are clearly being modulated by the longer-term acoustic 

profile of the melody and the conspicuous acoustic change of certain notes given their 
preceding context. Such salient changes induce profound effects on brain responses that can 

be interpreted as markers of auditory salience in the context of complex dynamic scenes.

The use of complex melodic structures in this work is crucial in shedding light on strong 

nonlinear interactions in neural processing of salient sound events. While effects reported 

here are heavily tied to acoustic changes in the stimulus, the presence of a mismatch 

component followed by an early P3a component provides further support that entrainment 

effects are indeed associated with engagement of attentional networks. The emergence of a 

deviance MMN component despite the dynamic nature of the background strongly suggests 

that the auditory system collects statistics about the ongoing environment, thereby forming 

internal representations about the regularity in the melody. Violation of these regularities is 

clearly marked by a mismatch component and further engages attentional processes as 

reflected by the P3a component (Escera and Corral, 2007; Muller-Gass et al., 2007). The 

presence of both components in this paradigm is in line with existing hypotheses positing a 

distributed architecture spanning the pre-attentive and attentional cerebral generators and 

reflecting that the complex nature of salient notes in the melody indeed engages listeners’ 

attention in a stimulus-driven fashion (Escera et al., 2000; Garrido et al., 2009). An 

interesting question remains regarding the link between these ERP components and neural 

oscillations. Generally, ERP components, including MMN and P3a, are hypothesized to be a 

result of either transient bursts of activity across neurons or neural groups time-locked to the 

stimulus superimposed on “irrelevant” background neural oscillations, or realignment of the 

phase of ongoing oscillations (phase-resetting) (David et al., 2005; Sauseng et al., 2007). 

Previous work has observed MMN responses with increased phase-coherence in the theta 

band with no increase in power, and suggested that MMN is at least partially brought forth 

by phase-resetting (Klimesch et al., 2004; Fuentemilla et al., 2008; Hsiao et al., 2009). Our 

study presents similar coherence and ERP results; though it remains an open question 
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whether the two markers reflect different processes. We can speculate of a distinction 

between these effects by noting that significant ERP amplitude increases are limited to time 

ranges of the negative and positive components around 150ms and 250ms, and that time-

frequency analysis by matching pursuit reveals increased effect of target rhythm on a trial-

by-trial basis, making evoked responses an unlikely mechanism for the observed entrainment 

effects.

In a similar vein, it is interesting to consider the distinction between ERP and STRF results. 

ERPs are obtained by time-locked averages of neural signals, thus extracting the positive or 

negative signal deflections that occur at the same time across epochs. The STRF, on the 

other hand, finds a sparse set of filter coefficients that best explain every instance in the 

epoch as a function of the past 300 ms of input sound (Ding and Simon, 2012; Elhilali et al., 

2013). Given the rhythmic nature of the stimulus, the temporal profile derived the STRFs 

appear to reflect slow temporal dynamics in the acoustic input prominently and reveal strong 

inhibition and excitation corresponding to time windows of significant ERP components 

(MMN and P3a, respectively). Crucially, the STRFs reveal that the spectral span of the 

neural transfer function are also heavily modulated by degree of salience.

Overall, the findings of this study open new avenues to investigate bottom-up auditory 

attention without relying on active subject responses in the auditory domain, thus 

eliminating top-down confounds. Results suggest a unified framework where both bottom-

up and top-down auditory attention modulate the phase of the ongoing neural activity to 

organize scene perception. The entrainment measures employed in this study can further be 

used for natural scenes to decode salience responses from EEG or MEG recordings, 

allowing the construction of a ground-truth salience dataset for the auditory domain as an 

analog to eye-tracking data in vision. Naturally, the use of musical melodies offers a great 

springboard to explore the role of contextual statistics in shaping salience perception and its 

manifestation in brain responses. Statistical properties of music not only guide encoding of 

expectations of musical scales (Choi et al., 2014), but also modulate expectations of melodic 

components that extend beyond local acoustic attributes of the notes (Di Liberto et al., 

2020).
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Significance Statement

In everyday sounds, information entering our ears varies along multiple attributes such as 

sound intensity, timbre and pitch. The current study uses dynamic musical melodies to 

examine how the interdependency between these attributes affects the neural encoding 

and perception of notes in the melody that stand out as salient, or attention-grabbing. 

Recordings of brain responses from human volunteers reveal that acoustic dimensions 

interact nonlinearly to change the brain response to salient notes, in a manner that 

parallels nonlinear interactions observed in behavioral judgments of salience. These 

results offer a neural marker of auditory salience in dynamic scenes without engagement 

of subjects’ attention hence paving the way to development of more comprehensive 

accounts of auditory salience with complex sounds.

Kaya et al. Page 20

Neuroscience. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic of experimental paradigm. A Participants are asked to attend to a screen and 

perform a rapid serial visual presentation (RSVP) task (top panel). Concurrently, a melody 

plays in the background and subjects are asked to ignore it (bottom panel). In “test” trials 

(shown), the melody has an occasional salient note that did not fit the statistical structure of 

the melody. In “control” trials (not shown), no salient note was present. B Power spectral 

density of a sample melody. Notes forming the rich melodic scene overlap temporally but 

still form a regular rhythm at 3.33Hz. Only one note in the melody deviates from the 

statistical structure of the surround. C Grand average EEG power shows a significant 

enhancement upon the presentation of the salient note. The enhancement is particularly 

pronounced around 3–3.5 Hz, a range including the stimulus rate 3.33 Hz (1/0.3 s).
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Figure 2. 
A Analysis of neral power at different frequency bins for the salient notes versus identical 

notes in control trials. Top panel shows power across all notes, while next 3 rows compare 

power at various degree of salience in pitch, intensity and different instruments (timbre). B 
Analysis of cross-trial phase coherence of Hilbert envelopes at different frequency bands of 

overall salient notes (top) as well as different levels of salience in pitch, intensity and timbre.

Kaya et al. Page 22

Neuroscience. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A Profile of evoked responses relative to note onset. Each plot shows the difference in 

response (ΔERP) between a salient note and the identical note in control trials. The top plot 

also shows original neural waveform of salient note (thin solid line line) and control note 

(dashed line) before subtraction, as well as difference response (thick solid line). Top plot 

shows the ΔERP for all salient notes, while the next rows show a breakdown of neural 

responses for different attributes of salient notes (pitch, intensity and timbre) at different 

levels for pitch and intensity (high salience -solid lines-or low salience -dashed lines). The 

timbre response contrasts the response of 3 instruments. Shaded areas in all plots correspond 

to 5-th and 95-th percentile confidence intervals. Horizontal arrows in top plot show 

windows of interest for statistical analysis of ERP effects: 25–75 ms (for P50), 75–120 ms 

(for N1), 120–180 ms (for MMN), 225–275 ms (for P3a). B comparison of absolute value of 

ERP peaks over 4 windows of interest contrasting salient notes vs. control notes with 

different acoustic attributes.
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Figure 4. 
Estimated STRF averaged across subjects, computed for overall control vs. salient notes (A) 

as well as specific levels of tested features (B pitch, C intensity, and D timbres).
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Figure 5. 
A Summary of interaction weights based on neural power to stimulus rhythm and phase 

coherence results as outlined in Table 1. Solid lines indicate 2-way, dashed lines 3-way and 

dotted lines 4-way interactions. Effects that emerge for both measures are shown black, and 

those that are found for at least one measure are shown gray. B Reproduction of figure 4 

from (Kaya and Elhilali, 2014) (with permission) which summarizes interaction effects 

observed in human behavioral responses. Solid lines indicate 2-way, dashed lines 3-way and 

dotted lines 4-way interactions. Black lines indicate effects that emerge from the behavioral 

results for the stimulus in this work. Gray lines indicate effects that emerge from behavioral 

results for speech and nature stimuli tested with the same experimental design as music 

stimuli.
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Figure 6. 
Distribution of neural effects as a function of overall salience. Both neural power and cross-

trial coherence increase with greater stimulus salience. The x-axis denotes the number of 

features in which the salient note has a high level of difference from control notes, with 

controls having 0 level of salience. Salience level 1 corresponds to notes with lowest change 

in acoustic attributes and no change in timbre (i.e., no difference in timbre, 2 dB difference 

in intensity, and 2 semitones difference in pitch). Changes in in timbre (different instrument 

for salient note) are labeled as higher salience level, with level 4 corresponding to all salient 

notes with highest change in acoustic attributes and a change between clavichord and piano.
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Table 1:

Feature effects on EEG measures of salience. P refers to Pitch, I refers to intensity, Ts refers to the timbre 

(instrument) of the salient note and Tb refers to the instrument of scene preceding the salient note. The table 

shows the F-statistic of within-subject ANOVA along with p (the significance value) and effect size η2p . 

Bolded values indicate significant interactions (p < 0.01) after Holm-Bonferroni correction for multiple tests.

Effects F (p) η2p
Neural power Theta Coherence

Pitch (P) 37.00 (3.9x10−5) [0.026] 81.28 (5.9x10−7) [0.080]

Intensity (I) 35.58 (4.7x10−5) [0.022] 23.23 (3.3x10−4) [0.073]

Timbre-bg (Tb) 6.13 (6.5x10−3) [0.016] 9.85 (6.5x10−4) [0.029]

Timbre-sal (Ts) 15.50 (3.7x10−5) [0.018] 12.98 (1.2x10−4) [0.045]

P, I 28.08 (1.4x10−4) [0.014] 29.63 (1.1x10−4) [0.020]

P, Tb 8.04 (1.9x10−3) [0.006] 1.17 (0.32) [0.005]

P, Ts 6.37 (5.5x10−3) [0.010] 9.29 (9.0x10−4) [0.015]

I, Tb 2.72 (0.08) [0.002] 0.72 (0.49) [0.006]

I, Ts 8.97 (1.0x10−3) [0.014] 6.27 (5.9x10−3) [0.015]

Tb, Ts 3.96 (7.0x10−3) [0.012] 28.99 (1.1x10−12) [0.060]

P, I, Tb 0.57 (0.57) [0.002] 10.42 (4.7x10−4) [0.007]

P, I, Ts 3.94 (0.03) [0.004] 8.65 (1.3x10−3) [0.009]

P, Tb, Ts 4.91 (1.9x10−3) [0.012] 4.05 (6.2x10−3) [0.010]

I, Tb, Ts 3.30 (.02) [0.004] 0.66 (0.63) [0.002]

P, I, Tb, Ts 4.14 (5.4x10−3) [0.018] 4.31 (4.3x10−3) [0.011]
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