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Abstract

Purpose To compare the operating modes of the Holmium: YAG laser and Thulium fiber laser. Additionally, currently avail-
able literature on Thulium fiber laser lithotripsy is reviewed.

Materials and methods Medline, Scopus, Embase, and Web of Science databases were searched for articles relating to the
operating modes of Holmium:YAG and Thulium fiber lasers, including systematic review of articles on Thulium fiber laser
lithotripsy.

Results The laser beam emerging from the Holmium:YAG laser involves fundamental architectural design constraints
compared to the Thulium fiber laser. These differences translate into multiple potential advantages in favor of the Thulium
fiber laser: four-fold higher absorption coefficient in water, smaller operating laser fibers (50-150 um core diameter), lower
energy per pulse (as low as 0.025 J), and higher maximal pulse repetition rate (up to 2000 Hz). Multiple comparative in vitro
studies suggest a 1.5—4 times faster stone ablation rate in favor of the Thulium fiber laser.

Conclusions The Thulium fiber laser overcomes the main limitations reported with the Holmium:YAG laser relating to
lithotripsy, based on preliminary in vitro studies. This innovative laser technology seems particularly advantageous for
ureteroscopy and may become an important milestone for kidney stone treatment.
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Introduction lithotripsy [2]. Compared to other lithotripsy techniques, the

Holmium:YAG laser presents several important advantages:

The first use of Holmium:YAG laser in Urology was
described more than two decades ago [1]. After having
been evaluated as an innovative tool for tissue ablation with
favorable hemostatic characteristics, the Holmium: YAG
laser was eventually applied to urinary stones for
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(1) suitability for fragmentation of all known urinary stone
types into small stone particles [3, 4]; (2) ability to operate
with thin and flexible delivery fibers with limited energy
losses and with core diameters as small as 200 um [5, 6];
(3) favorable safety profile with minimal tissue penetration
depth and low risk of undesirable tissue damage due to the
relatively high absorption coefficient of the Holmium: YAG
laser wavelength in water [7]; (4) versatility which allows a
Holmium:YAG laser system to be used for soft tissue appli-
cations additionally to stones, which partially offsets the
costs of high-power systems [8, 9].

Holmium:YAG laser has proved itself particularly benefi-
cial for flexible ureteroscopy, where it has become the cur-
rent gold standard for laser lithotripsy [6]. Laser generator
parameters such as pulse energy and pulse frequency can be
adapted by the operator [10, 11]. Urologists have shown a
particular interest for low-pulse energy Holmium: YAG litho-
tripsy in recent years [12]. This setting seems to achieve
particularly fine fragmentation of stones (‘“stone dust”) able
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to spontaneously evacuate, obviating the need for time-
consuming retrieval of larger stone fragments [13-15].
To keep up with sufficient ablation rate, high-frequency
Holmium:YAG generators have been developed for faster
stone fragmentation with low-pulse energy settings [16].
Despite these innovations, the Holmium:YAG laser tech-
nology currently still faces limitations with regards to size of
stones amenable to ureteroscopic laser lithotripsy [17-19].

Recently, another technology has been explored for next-
generation laser lithotripsy: the Thulium fiber laser [20].
This promising technology offers several advantages over
Holmium:YAG laser that may expand the boundaries of
laser lithotripsy. The operating modes of both lasers are
presented and compared in this article. Additionally, cur-
rently available literature on Thulium fiber laser is reviewed.

Materials and methods

Literature on the operating modes of the Holmium: YAG and
Thulium fiber lasers was reviewed. For systematic review
of currently available evidence on Thulium fiber laser litho-
tripsy, a bibliographic search on Medline, Scopus, Embase,
and Web of Science databases was conducted in October
2018. The search terms ‘Thulium fiber laser’ and ‘litho-
tripsy’ were used and the filters ‘English’ and ‘humans’ were
applied. Only original articles were considered eligible. Sup-
plementary Figure 1 shows a flow diagram summarizing the
selection process. Owing to the heterogeneity of study out-
comes, a narrative synthesis rather than a quantified meta-
analysis of data was performed.

Physical characteristics of Holmium
and Thulium

Holmium and Thulium ions

Holmium and Thulium are two distinct chemical elements
with 67 and 69 protons in their nucleus, respectively, and
have been classified as rare-earth elements in the periodic
table. Holmium was first discovered by the Swiss chemists
Marc Delafontaine and Jacques-Louis Soret in 1878 and
was first named “Element X [21, 22]. In 1879, the Swedish
chemist Per Theodor Cleve observed a brown and a green
substance while working on a sample of Erbium oxide. He
named the brown substance Holmium (Holmia being the
Latin name for Stockholm) and the green substance Thu-
lium (after Thule, the place located furthest north in ancient
Greek and Roman literature and cartography, thus referring
to Scandinavia) [23]. Both Holmium and Thulium are pre-
dominantly found as trivalent ions in nature and in indus-
trial applications such as lasers. Similar to other rare-earth
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ions, trivalent Holmium and Thulium ions have a unique set
of emission wavelengths, particularly in the near-infrared
range.

Water absorption peak

The near-infrared absorption peak of liquid water has been
shown to be of particular relevance for laser—tissue inter-
action of Holmium- and Thulium-doped lasers (Fig. 1)
[24]. The Holmium: YAG laser operates at 2120 nm and is
highly absorbed in liquid water, leading to a rapid forma-
tion of a vapor bubble after emission in pulsed mode [25].
This interaction with water also adds to the safety profile
of Holmium: YAG lasers, as the optical penetration depth
is limited to 400 um and coagulation of tissue beyond this
distance only occurs in the high pulse energy range [7, 26].
Evidence of stone composition phase changes supports a
photothermal interaction of Holmium: YAG laser with the
stone matrix [4, 27, 28].

Multiple publications in the more general field of laser
medicine also suggest other ablation mechanisms of hard
tissue with predominant water absorption. Thermal expan-
sion and vaporization of water are main mechanisms of hard
tissue ablation for lasers with wavelengths close to infrared
water absorption peaks such as 1940 and 2940 nm, where
water is a primer laser chromophore [29-31] Although kid-
ney stones are primarily of crystalline structure, these stones
grow in a biological environment inside the body and have a
complex microcrystalline composition, with intercrystalline
spaces filled by water, often including a small but signifi-
cant biological protein component in their structure as well
[32]. Furthermore, multiple recent studies have reported on
the porous structure of kidney stones, with intercrystalline
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Fig. 1 Absorption coefficient of liquid water at room temperature
(22 °C) in the near-infrared range (red line). The Thulium fiber laser
has been adapted to operate at 1940 nm, a wavelength close to a water
absorption peak (approximatively 14 mm™!). Comparatively, the
wavelength of the Holmium: YAG laser (2120 nm) has a much lower
absorption coefficient in liquid water (approximatively 3 mm™')
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spaces and pores observed at the small (nanometer) scale
[33] up to the large scale (hundreds of micrometers) [34],
sufficiently large for small water molecules to fill these inter-
crystalline spaces and pores. It is, therefore, also postulated
that water present in intercrystalline spaces, pores, cracks,
and fissures of human kidney stones undergo thermal expan-
sion and vaporization during laser lithotripsy, thus contribut-
ing to the fragmentation of stones [35]. The thermal expan-
sion coefficient of water is an order of magnitude higher
than that for kidney stones with high pressure due to water
vaporization contributing to this mechanism [36]. Recent
scanning electron microscopy studies also show evidence of
crack formation in kidney stones and partly unaltered crys-
talline composition of stone dust after laser lithotripsy, pro-
viding further evidence supporting this mechanism [4, 37].

For laser lithotripsy, the Thulium fiber laser has been
optimized to emit at a wavelength of 1940 nm, thus closely
matching the near-infrared absorption peak of liquid water at
22 °C (Fig. 1) [24]. Because the absorption coefficient of the
Thulium fiber laser (approximately 14 mm™') is more than
four-fold higher than Holmium:YAG laser (approximately
3 mm™'), a lower threshold and higher ablation efficiency
can be expected in favor of the Thulium fiber laser at equiva-
lent pulse energies. A lower tissue and water penetration

depth may potentially also add to the safety profile of the
Thulium fiber laser.

Another advantage that is valid for both Holmium:YAG
and Thulium fiber lasers is the possibility to transmit the
laser beam through thin silica fibers. Silica fibers have
favorable proprieties for their use in flexible ureteroscopy,
allowing the transmission of the laser beam in fully deflected
scopes [38].

Characteristics of laser generators

Holmium:YAG laser: an optical cavity
with a solid-state crystal

The Holmium: YAG laser beam originates from an optical
cavity (Fig. 2). The central element of this cavity is a YAG
crystal that has been chemically doped with Holmium ions.
This architecture is referred to as a solid-state laser. For
each laser pulse, the light emitted by a flashlamp (typically
Xenon or Krypton) interacts with the Holmium ions and
results in the emission of new photons with a characteristic
wavelength of 2120 nm. These photons then travel freely
within the optical cavity and are reflected by mirrors at each

Holmium YAG laser cavity
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Fig.2 Schematic representation of the operating mode of a
Holmium:YAG laser cavity. a Broad-spectrum white light is emit-
ted from a flashlamp (typically Xenon or Krypton). b The white
light interacts with the Holmium ions that are chemically bound to
the YAG crystal and excites Holmium-electrons into higher-energy
quantum states. b This interaction results in the emission of new pho-
tons with a characteristic wavelength of 2120 nm. Additional white
light emitted from the flashlamp adds to Holmium ions excitation, a

process referred to as “laser pumping”. ¢ The radiation is reflected
between the mirrors of the laser cavity. d, e: Because prior laser
pumping excited numerous Holmium ions to higher-energy states,
the reflected radiation will interact with the excited Holmium ions
and stimulate emission of multiple additional photons at 2120 nm.
This phenomenon is referred to as “light amplification by stimulated
emission of radiation (LASER)”. f A transient opening of the cavity
releases the radiation in the form of a pulsed laser beam
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end of the cavity. Depending on the desired pulse energy,
additional pump cycles can add to the energy of each single
pulse. Finally, a small cavity opening allows the pulsed laser
energy to exit the cavity when needed.

Most of the energy emitted by the flashlamp is wasted
and causes the laser cavity to heat. This is caused by the
fact that the flashlamp emits energy in a broad spectrum,
whereas the Holmium:YAG system absorbs energy in
a narrow spectral line, with overlap between the two not
exceeding 7-8%. Therefore, Holmium: YAG laser generators
require an adequate water-cooling system, contributing sig-
nificantly to the large size of these generators. Of particular
relevance, the maximal temperature range within the laser
crystal sets a limit to the power and frequency at which a
single Holmium: YAG cavity can operate (<30 W, <30 Hz).
To palliate this limitation, Holmium:YAG generators with
multiple cavities have been developed, allowing the advent
of high-power (> 50 W) generators in recent years (Fig. 3).

Another limitation of the Holmium:YAG laser archi-
tecture is that the spatial beam profile of the output beam
is multimodal, or non-uniform, with hotspots [39, 40].
This beam profile is more difficult to tightly focus down
into a small spot, therefore typically limiting the use of the
Holmium: YAG laser to optical fibers of 200 um core diam-
eter or larger [39].

Finally, the Holmium:YAG architecture is limited by
its vulnerability to external shocks, which may result in a
misalignment of the mirrors within the cavity and cause
irreversible damage to the laser generator. Great care and
attention are, therefore, required whenever manipulating or
transporting a Holmium:YAG laser system.

Fig.3 Schematic representa-
tion of Holmium:YAG laser
generators. Low-power genera-

Thulium fiber laser: a chemically doped fiber

As its name implies, the Thulium fiber laser consists of a
very thin and long silica fiber (10-20 pm core diameter,
10-30 m long) which has been chemically doped with Thu-
lium ions (Fig. 4). For laser pumping, multiple diode lasers
are used to excite the Thulium ions. The emitted laser beam
has a wavelength of 1940 nm and can operate either in a
continuous mode or adopt a pulsed mode within a large
range of various energy, frequency, and pulse shape settings
(Table 1).

Efficiency of the fiber laser design is significantly higher
than that of the flashlamp-pumped solid state Holmium: YAG
laser, because the emission spectrum of the diode laser used
for laser pumping precisely matches Thulium ions’ absorp-
tion line. Hence, the Thulium fiber laser requires less heat
dissipation and can potentially operate at high-power ranges
(>50 W) and high-frequency ranges (up to 2000 Hz) with
forced air (e.g., simple fan ventilation) inside the generator,
compared to water-cooled Holmium: YAG lasers [41]. Also,
the architecture of fiber lasers is insensitive to shock-related
damages, unlike Holmium: YAG generators, because no mir-
ror is involved in the fiber laser design.

The spatial beam profile of the laser beam emitted from
a Thulium fiber laser, due to the small fiber core size in
which the light originates, consists of only a few modes, and
appears Gaussian in shape [40]. This more uniform spatial
beam profile enables simpler focusing of the beam down
to a very small spot for efficient coupling and transmission
of high power through ultra-small fibers (e.g., 50-100 um)
[42].

Finally, it is important not to confuse the Thulium fiber
laser with the Thulium:YAG laser. The former has a fiber
laser construction and operates at 1940 nm, as opposed to
the solid-state design of the Thulium:YAG laser (similar
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Fig.4 Schematic representation of a Thulium fiber laser. Laser
pumping is achieved by electronically modulating diode lasers (pink
boxes). A Thulium-doped, 10-20 pm core diameter, 10-30 m long

silica fiber (red tube with green spots) is used as a gain medium for
the generation of a laser beam. The uniform laser beam at the output
connector allows for the use of laser fibers as small as 50 um (blue)

Table 1 Characteristics of two
generators: Holmium: YAG laser
and Thulium fiber laser

Parameter

Holmium: YAG laser (Lumenis Pulse 120H)

Thulium fiber laser IPG
Medical, Superpulse)

Wavelength

Pulse energy range

Pulse duration range

Pulse shape

Maximum pulse frequency
Maximum average power

Lowest proximal laser fiber
core diameter

Cooling system

Resistance to external shocks

2120 nm 1940 nm
0.2-6.0J 0.025-6.07J
0.05-1 ms 0.05-12 ms
Dictated by the pumping pulse Electronically modulated
120 Hz 2000 Hz
120 W 60 W
> 200 pm > 150 pm
Low-power generators: self-contained water- ~ Fan
cooling system with fan
High-power generators: vapor-compression
refrigeration system
Low High

architecture to Holmium: YAG) which operates at 2010 nm.
Therefore, any prior observations or clinical evaluations
made with Thulium:YAG lasers cannot be directly applied
to Thulium fiber lasers.

Next-generation laser lithotripsy: what
do we need?

From a historical point of view, it should be recalled that
high-power, multiple-cavity Holmium:YAG laser generators
have been primarily developed to meet the needs for abla-
tive tissue applications such as Holmium enucleation of the
prostate [8, 43]. It is only recently that the high-frequency
range—and not the high-power range—of multiple-cavity
Holmium:YAG generators has been proposed to offer advan-
tages for laser lithotripsy. This is because stone dusting tech-
niques for ureteroscopy—which require low-pulse energy
and high frequency—have been gaining popularity in recent
years [13—16, 44, 45]. Nevertheless, no study to date has

been able to provide evidence for a substantial advantage of
high-power Holmium generators over low-power generators
for lithotripsy.

We herein present requirements that next-generation laser
generators should meet to offer a real advantage for uretero-
scopic laser lithotripsy.

Smaller fibers

Prior studies on ureteroscopic Holmium laser lithotripsy
have shown multiple advantages in favor of smaller laser
fibers: better irrigation flow, better instrument deflection,
and less stone retropulsion [46—49]. Another major potential
advantage in favor of smaller fibers would be the possibility
to reduce the working channel diameter of ureteroscopes,
thus allowing for a major overall instrument miniaturization
[50]. This would increase the space available between the
ureteroscope and the ureter or access sheath, thus increas-
ing irrigation outflow. The net result would be an overall
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increase of irrigation flow, higher irrigation turnover within
renal cavities and most importantly better visibility.

One additional observation from an in vitro study on
Holmium:YAG lithotripsy deserves particular attention:
at equal laser settings, the smallest size of stone fragments
was achieved by the smallest available fiber (272 pum core
diameter) [49]. This observation was valid for both calcium
oxalate monohydrate (COM) and uric acid (UA) stones and
was found for all evaluated pulse energy levels (0.5, 1.0, and
1.5J). An explanation may be that smaller fibers enable laser
irradiation of a smaller area on stone surface, thus decreas-
ing the probability for large fragments to detach from the
initial stones.

Considering the above observation, a fiber size as small
as possible would be desirable for laser lithotripsy. This
is precisely a limitation of Holmium:YAG lasers; these
generators can only safely accept fibers with a core diam-
eter >200 um. This is explained by the poorly focused mul-
timode laser beam profile at the coupling interface between
the laser generator and the proximal end of the delivery
fiber, which increases the probability of generator and fiber
damage by heat generation [39]. Comparatively, the Thu-
lium fiber laser generates a much more uniform and focused
laser beam, which can be transmitted to laser fibers with
smaller core diameters (50-150) um [40, 42]. Consequently,
the Thulium fiber laser offers the potential for miniaturized
next-generation ureteroscopy that may integrate remarkably
thin fibers [51].

Lower pulse energy

A known limitation during the use of smaller fibers is the
risk of fiber tip degradation at high pulse energy levels [52].
When the core diameter is divided by two, the energy den-
sity is increased by four (Fig. 5). Therefore, as a rule of
thumb, pulse energy should be divided by four when the
fiber core diameter is divided by two. Longer pulse dura-
tion may also add to the prevention of fiber tip degradation
[53]. A third parameter that may arguably impact fiber tip

degradation may be the temporal pulse profile (pulse shape
in time), although this was not evaluated in any study yet.

In that respect, the Thulium fiber laser offers several
potential advantages over Holmium:YAG laser. Notably, it
can provide energy per pulse as low as 0.025 J, is capable
of long-pulse duration (up to 12 ms) and emits a more uni-
formly shaped temporal beam profile (e.g., top-hat or flat-
top) such that energy is more uniformly distributed across
the duration of the pulse than the Holmium:YAG laser
(Table 1) [54].

Higher frequency

As detailed above, any decrease in laser fiber core diam-
eter also requires a proportionate decrease in pulse energy.
To keep up with stone ablation efficacy (amount of stone
ablated over time), a compensatory increase in pulse repeti-
tion rate (frequency) is necessary.

Here again, the construct architecture of the Thulium fiber
laser outperforms the Holmium:YAG laser, as pulse repeti-
tion rate can reach up to 2000 Hz, compared to the maxi-
mum of 80 Hz for current multiple-cavity Holmium: YAG
laser generators (Table 1).

Literature review

Table 2 summarizes findings of prior experimental studies
comparing Holmium: YAG laser and Thulium fiber laser for
lithotripsy. Multiple studies reported about a 1.5—4 times
faster stone ablation rate in favor of the Thulium fiber laser,
when lithotripsy was performed on COM or UA stones
[55-57]. Of importance, limited rise of irrigation tempera-
ture up to 39 °C was found at high repetition rate (500 Hz)
and low-pulse energy (0.035 J) in an in vitro ureter model
[57]. As for coupling of the fiber to the laser generator, no
damages to the proximal fiber end was found after Thulium
fiber laser energy delivery (105 pm core diameter fibers),

Fig.5 Relationship between
fiber core diameter, cross-sec- A
tional area and energy density.
a When the core diameter

is divided by two, the cross-
sectional area is divided by
four. b When the core diameter
is divided by two, the energy
density is increased by four

Protective jacket core diameter B

Cladding

Energy density

()
&
2

® Photon
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while all proximal fiber ends were damaged after Holmium
lithotripsy (270 um core diameter fibers) [58].

Table 3 summarizes findings of more general prior
experimental studies exploring operating characteristics of
the Thulium fiber laser. In 2005, the first report on Thulium
fiber laser lithotripsy adapted a continuous-wave generator
to operate in a pulsed mode and demonstrated the feasibility
of lithotripsy on COM and UA stones [59]. Thereafter, fibers
with a core diameter as small as 50-150 um were repeatedly
reported to efficiently deliver Thulium fiber laser beam on
urinary stones [40, 42, 54, 60-68]. Also, cumulative evi-
dence from a series of studies on distal fiber tip design sug-
gests the muzzle tip design for prevention of stone retropul-
sion during Thulium fiber laser delivery [60, 62, 63, 67, 68].

An analysis of Thulium fiber laser bubble formation at
the distal fiber tip revealed the formation of a bubble stream
with multiple bubble expansions and collapses [54]. This
phenomenon is reminiscent of the Moses effect, which has
been first described in 1988 as a vapor channel resulting
from water irradiation by laser and which leaves an open
path with low absorption coefficient between the fiber tip
and the stone surface [69]. Notably, a stone-suctioning effect
of Thulium fiber laser has been demonstrated to be achiev-
able under certain circumstances [70]. How this bubble
stream may impact on lithotripsy remains to be detailed in
future studies.

A limitation to this literature review is that all currently
available evidence on Thulium fiber laser originates from
in vitro studies performed in a single study center. Future
studies on the clinical application of the Thulium fiber laser
are needed.

Conclusions

The innovative operating characteristics of the Thulium
fiber laser suggest that this new technology has a signifi-
cant potential for urinary stone treatment. Based on pre-
liminary in vitro studies, the Thulium fiber laser surpasses
Holmium:YAG laser in many aspects: (1) integration of
smaller fibers with a core diameter as small as 50 pm; (2)
pulse energy as low as 0.025 J; (3) super-high pulse repeti-
tion rate range up to 2000 Hz. These new standards may
become particularly advantageous for ureteroscopy and open
paths that were not been amenable to Holmium:YAG laser.
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