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RESEARCH NOTE

A note on the impact of late diagnosis 
on HIV/AIDS dynamics: a mathematical 
modelling approach
J. Mushanyu*

Abstract 

Objectives::  The global incidence of HIV infection is not significantly decreasing, especially in sub-Saharan African 
countries. Though there is availability and accessibility of free HIV services, people are not being diagnosed early for 
HIV, and hence HIV-related mortality remains significantly high. We formulate a mathematical model for the spread of 
HIV using non linear ordinary differential equations in order to investigate the impact of late diagnosis of HIV on the 
spread of HIV.

Results::  The results suggest the need to encourage early initiation into HIV treatment as well as promoting HIV 
self-testing programs that enable more undiagnosed people to know their HIV status in order to curtail the continued 
spread of HIV.
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Introduction
Antiretroviral therapy (ART) has successfully trans-
formed human immunodeficiency virus (HIV) infection 
from a fatal to a manageable chronic disease[1]. None-
theless, there remains critical factors to be addressed 
along with the roll out of effective ART regimens in order 
to eradicate HIV. We seek to investigate the impact of late 
diagnosis on the transmission dynamics of HIV. Mathe-
matical modeling of HIV dynamics is quite advanced, see 
for instance the following works on HIV and the refer-
ences therein[2–9].

We extend a more recent HIV/AIDS mathemati-
cal model developed by Omondi et  al.[8] to investigate 
the impact of late diagnosis on the spread and control 
of HIV. In their work, Omondi et  al.[8] proposed a five 
state deterministic compartmental model for the time 
evolution of population states to study the trend of HIV 

infection in Kenya. The model was premised on dividing 
the infected classes according to CD4+ T cell counts in 
the blood. For more information about the description 
of parameters and model analysis, readers are referred to 
Omondi et al.[8].

The paper is arranged as follows; in "Main text" section, 
we formulate and establish the basic properties of the 
model. The model is analysed for stability in this section. 
In "Results and discussion" section, we carry out some 
numerical simulations. Parameter estimation and numer-
ical results are also presented in this section. The paper is 
concluded in "Conclusions" section.

Main text
The model
We propose a five state compartmental model for HIV 
that takes into account untimely initiation of HIV posi-
tive individuals into ART. The human population com-
prises classes; S(t), I1(t) , I2(t) , IA1(t) and IA2(t) . The 
class S(t) represents the population at high risk of HIV 
infection. Upon acquiring HIV infection, susceptible 
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individuals move to infection class which is divided into 
two stages according to CD4+ T cell count in the blood. 
The infectives class I1 comprise of individuals with CD4+ 
T cell count ≥ 350/μL. Individuals in class I1 are assumed 
to be having a lower viral load and hence are considered 
to be the new infections. Individuals in class I1 progress 
to the second stage of infection I2 at a rate given by δ . This 
class consists of individuals with CD4+ T cell count in the 
range 200− 350/μL. Individuals in this stage are assumed 
to be having high viral load. Individuals in class I1 are ini-
tiated into ART treatment at a rate given by σ1 . In this 
paper, we develop a mathematical model that takes into 
account the effect of late initiation into ART treatment 
of HIV positive patients. We define initiation of HIV 
positive individuals in stage I2 into ART treatment by the 
expression

Here, σ2 represent the maximum treatment uptake per 
unit of time for individuals in class I2 and r measures the 
extent of the effect of late initiation into ART treatment. 
Firstly, observe that for small I2 , H(I2) ≈ σ2I2 . Secondly, 
observe that for large I2 , H(I2) ≈ σ2/r . Finally, when 
r = 0 , we obtain H(I2) = σ2I2 , which is the case consid-
ered in Omondi et  al.[8]. Individuals in class IA1 move 
to the class IA2 through a deteriorative process at a rate 
given by γ1 whereas individuals in class IA2 move to the 
class IA1 through an ameliorative process at a rate given 
by γ2 . In this model, we exclude the class of full blown 
AIDS patients as these are usually hospitalised and/or 
sexually inactive and hence their contribution to new 
HIV infections is negligible[8]. The total human popula-
tion is thus given by

Susceptible humans are recruited into the system 
through births or immigration at a constant rate � . Sus-
ceptible individuals acquire new HIV infections at a rate 
given by

where β1 , β2 , β3 and β4 denote the HIV transmission rates 
between susceptible individuals and infectious individu-
als. We assume that individuals in each compartment 
are indistinguishable and there is homogeneous mix-
ing. Individuals in classes I2 and IA2 experience disease 
related death at rates given respectively by ω1 and ω2 . 
The natural death rate of the general population is repre-
sented by µ . The differential equations for the model are 
given as follows;

(1)H(I2) =
σ2I2

1+ rI2
.

N (t) = S(t)+ I1(t)+ I2(t)+ IA1(t)+ IA2(t).

(2)� =
β1I1 + β2I2 + β3IA1 + β4IA2

N

with the initial conditions:

where we assume that all the model parameters are 
positive.

Analysis of the model
Positivity of solutions
The following theorem (Theorem  1) entails that all the 
state variables remain non-negative and the solutions 
of system (3) with positive initial conditions will remain 
positive for all t > 0.

Theorem  1  Given that the initial condi-
tions of system (3) are S(0) > 0 , I1(0) > 0 , 
I2(0) > 0 , IA1(0) > 0 and IA2(0) > 0 . There exists 
(S(t), I1(t), I2(t), IA1(t), IA2(t)) : (0,∞) → (0,∞) which 
solve system (3).

For more details on the proof of Theorem  1, we refer 
the reader to[8].

Invariant region
The feasible region for system (3) is given by

Results to verify that the region � is positively invariant 
with respect to system (3) can be obtained as given in[8].

Disease‑free equilibrium and the basic reproduction number
The model has a disease-free equilibrium given by

a scenario depicting a disease-free state in the commu-
nity or society. The basic reproduction number R0 of the 
model, is defined herein as the average number of people 
infected by each HIV infected individual during his/her 
infectious period in a population of completely suscepti-
ble individuals. The determination of R0 is done using the 
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dS

dt
= �− �S − µS,

dI1

dt
= �S − (µ+ δ + σ1)I1,

dI2

dt
= δI1 − (µ+ ω1)I2 −H(I2),

dIA1

dt
= σ1I1 − (µ+ γ1)IA1 + γ2IA2,

dIA2

dt
= H(I2)− (µ+ γ2 + ω2)IA2 + γ1IA1,

S(0) = S0 > 0, I1(0) = I10 ≥ 0, I2(0) = I20

≥ 0, IA1(0) = IA10 ≥ 0, IA2(0) = IA20 ≥ 0,

(4)� =
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next generation matrix approach[10]. It works out that, 
the basic reproduction number of system (3) is given by:

Here, the four sub-reproduction numbers RI1 , RI2 , RIA1
 

and RIA2
 represent the contributions of individuals in 

compartments I1 , I2 , IA1
 and IA2

 on the spread of HIV 
infection respectively. We can clearly note that R0 is non-
negative as h3h4 > γ1γ2 which implies that � < 1.

Local stability of the disease‑free steady state
The following theorem follows from van den Driessche 
and Watmough[10] (Theorem 2).

Theorem  2  The disease-free equilibrium point Df  of 
model system equations (3) is locally asymptotically sta-
ble if R0 < 1 and is unstable if R0 > 1.

Endemic equilibrium
The endemic equilibrium denoted by 
D

∗ =

(

S∗, I∗1 , I
∗
2 , I

∗
A1
, I∗A2

)

 satisfies

From the first, third, fourth and fifth equation of (6), we 
have S∗, I∗1 , I

∗
A1
, I∗A2

 expressed in terms of I∗2 as follows

(5)
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R0 = RI1 +RI2 +RIA1 +RIA2 where

RI1 =
β1

h1
, RI2 =

β2δ

h1h2
, RIA1 =

β3(γ2δσ2 + h2h4σ1)

h1h2h3h4(1−�)
and

RIA2 =
β4(γ1h2σ1 + δh3σ2)

h1h2h3h4(1−�)
with � =

γ1γ2

h3h4
, h1 = µ+ δ + σ1,

h2 = µ+ σ2 + ω1, h3 = µ+ γ1 and h4 = µ+ γ2 + ω2.

(6)
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0 = �− �∗S∗ − µS∗,
0 = �

∗S∗ − h1I
∗
1 ,

0 = δI∗1 − (µ+ ω1)I
∗
2 −H(I∗2 ),

0 = σ1I
∗
1 − (µ+ γ1)I

∗
A1 + γ2I

∗
A2,

0 = H(I∗2 )− (µ+ γ2 + ω2)I
∗
A2 + γ1I

∗
A1.
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δ�(I∗2 r + 1)− h1I

∗
2

�

h2 + I∗2 r(µ+ ω1)
�

δµ(I∗2 r + 1)
, I∗1 =

I∗2
�

h2 + I∗2 r(µ+ ω1)
�

δ + δI∗2 r
,

I∗A1 =
I∗2
�

γ2δσ2 + h4σ1
�

h2 + I∗2 r(µ+ ω1)
��

δ(h3h4 − γ1γ2)(I
∗
2 r + 1)

and I∗A2 =
I∗2
�

δh3σ2 + γ1σ1
�

h2 + I∗2 r(µ+ ω1)
��

δ(h3h4 − γ1γ2)(I
∗
2 r + 1)

.

Substituting expressions (7) into the second equation of (6) 
leads to the following fourth order polynomial equation

Solving (8) gives I∗2 = 0 which corresponds to the dis-
ease-free equilibrium or

where the coefficients ξi , 0 ≤ i ≤ 3 are given in (10).

We can clearly note that, ξ0 > 0 ⇔ R0 < 1 and 
ξ0 < 0 ⇔ R0 > 1 . We now determine the number of 
possible positive real zeros of the polynomial (10) using 
the Descartes Rule of Signs. The possibilities can be pre-
sented as shown below. Here, the number of possible 
positive real zeros is denoted by i∗.

ξ3 > 0

ξ2 > 0 ξ2 < 0

ξ1 > 0 ξ1 < 0 ξ1 > 0 ξ1 < 0

ξ0 > 0 ξ0 < 0 ξ0 > 0 ξ0 < 0 ξ0 > 0 ξ0 < 0 ξ0 > 0 ξ0 < 0

i
∗ 0 1 2 1 2 3 2 1

(8)I∗2

(

ξ3I
∗3
2 + ξ2I

∗2
2 + ξ1I

∗
2 + ξ0

)

= 0.

(9)ξ3I
∗3
2 + ξ2I

∗2
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∗
2 + ξ0 = 0,
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ξ0 = µδh1h2h3h4(1−�)(1−R0),

ξ1 = h1(β3h2(γ2δσ2 + h2h4σ1)− γ1(γ2(β1h
2
2 + δh2(β2 + µr)+ δµr(µ+ ω1))

−β4h
2
2σ1)+ h3(β4δh2σ2 + h4(β1h

2
2 + δh2(β2 + µr)+ δµr(µ+ ω1))))

−δ�r(β3γ2δσ2 − 2β2γ1γ2δ + β4γ1µσ1 − β1γ1γ2(h2 + µ+ ω1)+ σ1ω1(β4γ1 + β3h4)
+β4γ1h2σ1 + h3(β4δσ2 + h4(2β2δ + β1(h2 + µ+ ω1)))+ β3h4σ1(h2 + µ)),

ξ2 = r(h1(β3(µ+ ω1)(γ2δσ2 + 2h2h4σ1)+ γ1(2β4h2σ1(µ+ ω1)− γ2(h2(β2δ + 2β1(µ+ ω1))

+δ(µ+ ω1)(β2 + µr)))+ h3(β4δσ2(µ+ ω1)+ h4(h2(β2δ + 2β1(µ+ ω1))+ δ(µ+ ω1)

×(β2 + µ))))− δ�r(γ1(β4µσ1 − β2γ2δ)− β1γ1γ2(µ+ ω1)+ σ1ω1(β4γ1 + β3h4)
+h3h4(β2δ + β1(µ+ ω1))+ β3h4µσ1)),

ξ3 = r2(µ+ ω1)h1(β2δ(ω2h3 + µ(γ1 + γ2 + µ))+ σ1(µ+ ω1)(β3h4 + β4γ1)

+β1(µ+ ω1)(γ1(µ+ ω2)+ µh4)).
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Backward bifurcation
Theorem 4.1 proven in Castillo-Chavez and Song[11] will 
be useful. We show that system (3) undergoes a back-
ward bifurcation. Let us make the following change of 
variables:
S = x1, I1 = x2, I2 = x3, IA1 = x4, IA2 = x5 , so that 

N =

5
∑

n=1

xn . We now use the vector notation 

X = (x1, x2, x3, x4, x5)
T . Then, system (3) can be written 

in the form
dX

dt
= F(t, x(t)) =

(

f1, f2, f3, f4, f5
)T , where

We now define

with θi = 1 signifying that the chance of acquiring HIV 
infection upon contact with individuals in class x2 or 
upon contact with individuals in classes x3 , x4 and x5 
is the same, θi ∈ (0, 1) signifying a reduced chance of 
acquiring HIV infection upon contact with individuals in 
classes x3 , x4 and x5 as compared to individuals in class 
x2 , θi > 1 signifies an increased rate of acquiring HIV 
infection upon contact with individuals in classes x3 , x4 
and x5 as compared to individuals in class x2.

Let β1 be the bifurcation parameter, R0 = 1 corre-
sponds to

(11)
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dx1

dt
= �−

(β1x2 + β2x3 + β3x4 + β4x5)x1

N
− µx1 = f1,

dx2

dt
=

(β1x2 + β2x3 + β3x4 + β4x5)x1

N
− h1x2 = f2,

dx3

dt
= δx2 − (µ+ ω1)x3 −

σ2x3

1+ rx3
= f3,

dx4

dt
= σ1x2 − h3x4 + γ2x5 = f4,

dx5

dt
=

σ2x3

1+ rx3
− h4x5 + γ1x4 = f5.

(12)βi+1 = θiβ1, i = 1, 2, 3

The Jacobian matrix of model system (3) at Df  when 
β1 = β∗

1 is given by

where h1 , h2 , h3 and h4 are defined as before.
Model system (11), with β1 = β∗

1 has a simple eigen-
value, hence the center manifold theory can be used to 
analyse the dynamics of model system (3) near β1 = β∗

1 . 
It can be shown that J∗(Df ) , has a right eigenvector given 
by w = (w1,w2,w3,w4,w5)

T , where

Here, we note that w1 < 0 and wi > 0, i = 2, 3, 4, 5 . 
Further, the left eigenvector of J∗(Df ) , associ-
ated with the zero eigenvalue at β1 = β∗

1 is given by 
v = (v1, v2, v3, v4, v5)

T , where

Here, take note that v2 > 0 , v3 > 0 accordingly 
as σ2θ2 > γ1θ1 and v2 < 0 , v3 < 0 accordingly as 
σ2θ2 < γ1θ1 . Also, v4 > 0 and v5 > 0.

The computations of a and b are necessary in order to 
apply Theorem 4.1 in Castillo-Chavez and Song[11]. For 
system (11), the associated non-zero partial derivatives of 
F at the disease-free equilibrium are given in (14).

(13)β1 = β∗
1 =

h1h2(h3h4 − γ1γ2)

γ2δθ2σ2 − γ1γ2δθ1 + γ1h2θ3σ1 − γ1γ2h2 + δh3θ3σ2 + δh3θ1h4 + h2θ2h4σ1 + h2h3h4
.

J∗(Df ) =


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



−µ − β∗
1 − β∗

1 θ1 − β∗
1 θ2 − β∗

1 θ3
0 β∗

1 − h1 β∗
1 θ1 β∗

1 θ2 β∗
1 θ3

0 δ − h2 0 0

0 σ1 0 − h3 γ2
0 0 σ2 γ1 − h4











w1 =− h1h2h3h4(1−�), w2 = µh2h3h4(1−�),

w3 =µδh3h4(1−�),

w4 =µ(γ2δσ2 + h2h4σ1), w5 = µ(γ1h2σ1 + δh3σ2).

v1 = 0,

v2 =γ2δ(θ2σ2 − γ1θ1)+ h2(−γ1γ2 + σ1(γ1θ3 + h4θ2)+ h3h4)+ δh3(h4θ1 + θ3σ2),

v3 = h1(γ2(θ2σ2 − γ1θ1)+ h3(h4θ1 + θ3σ2)),

v4 = h1h2(γ1θ3 + h4θ2), v5 = h1h2(γ2θ2 + h3θ3).
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Fig. 1  The figure showing a backward bifurcation. The solid lines 
denote stable states and the dotted lines denote unstable states

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Effect of "r" on prevalence

Time (months)

P
re

va
le

n
ce
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It thus follows that

where

Note that if � > 1 , then a > 0 and if � < 1 then a < 0 . 
Lastly,
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+

3
∑

i=2

v2w4wi
∂2f2

∂x4∂xi

+ v2w
2
5

∂2f2

∂x25
+ v3w

2
3

∂2f2

∂x23
+ v5w

2
3

∂2f2

∂x23

=
β1µv2(−(2(w2 + w3 + w4)+ w5)(θ1w3 + θ2w4 + w2)− θ3w5(w2 + w3 + w4 + 2w5))

�

+ 2rσ2(v3 − v5)w
2
3

= �1 −�2 = �2(�− 1)

(

�1

�2

= �

)

,

�1 = 2rσ2v3w
2
3,

�2 =
β1µv2

�
((2(w2 + w3 + w4)+ w5)(θ1w3 + θ2w4 + w2)+ θ3w5(w2 + w3 + w4 + 2w5))

+ 2rσ2v5w
2
3.

b =

5
∑

i=2

v2wi
∂2f2

∂xi∂β
∗
1

= µ(δh3h4(θ1 + θ2)(1−�)

+ h2(γ1θ3σ1 + h3h4(1−�))+ δh3θ3σ2)(δ(θ1(γ1(µ+ ω2)+ h4µ)

+ σ2(γ2θ2 + h3θ3))+ h2(h3h4(1−�)+ σ1(γ1θ3 + h4θ2))) > 0.

We thus have the following result

Theorem  3  If � > 1 , then system (3) has a backward 

bifurcation at R0 = 1 . Otherwise, if � < 1 the endemic 

Table 1  Parameter values used in numerical simulations

Parameter Definition Range Value Source

β1 Contact for individuals in S with those in I1 0-1 0.912 [8]

β2 Contact for individuals in S with those in I2 0-1 0.894 [8]

β3 Contact for individuals in S with those in IA1 0−1 0.095 [8]

β4 Contact for individuals in S with those in IA2 0−1 0.091 [8]

σ1 Progression from I1 to IA1 0.01−1 0.084 [8]

σ2 Progression from I2 to IA2 0−1 0.1 Assumed

δ Progression from I1 to I2 0.01−1 1.0 [8]

γ1 Progression from IA1 to IA2 0.01−1 0.096 [8]

γ2 Progression from IA2 to IA1 0.1−1 0.112 [8]

r Effect of late initiation into ART​ 0−1 0.45 Assumed

ω1 Disease related death of individuals in I2 0−1 0.089 [7]

ω2 Disease related death of individuals in IA2 0−1 0.095 [7]

� Recruitment rate into S 0−1 0.0239 [12–14]

µ Natural death rate 0−1 0.0172 [14]
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equilibrium is locally asymptotically stable for R0 > 1 
but close to one.

We show the existence of a backward bifurca-
tion through numerical example by creating bifur-
cation diagram around R0 = 1 (Fig.  1). To draw a 
bifurcation curve (the graph of I∗2 as a function of R0 ), 
we fix the following parameters for illustrative purposes: 
� = 0.25, µ = 0.03, β1 = 0.5, β2 = 0.4, β3 = 0.4, β4 =

0.2, δ = 0.7, σ1 = 0.009, σ2 = 0.04, r = 0.5, ω1 = 0.09,

ω2 = 0.06, γ1 = 0.009, γ2 = 0.09.

Remark  Epidemiologically, when a model exhibits 
backward bifurcation, this entails that it is not enough to 
only reduce the basic reproductive number to less than 
one in order to eliminate the disease.

Results and discussion
Numerical simulations
We carry out numerical simulations to support our theo-
retical findings.

Estimation of parameters
Parameter values used for numerical simulations are 
given in Table 1.

Numerical results
Figure  2 illustrates the effect of varying the parameter 
r on the prevalence of HIV. We note that increasing 
the parameter r results in an increase in the preva-
lence of HIV. In particular, increasing r from 0.1 up to 
1.0 increases the prevalence rate of HIV with a level of 
approximately 28% . This is a reflection that late diagno-
sis of HIV contributes to an increase in HIV infections. 
Thus, more effort should be directed towards encour-
aging individuals to get tested for HIV and ensuring 
those who are positive are timely initiated into ART 
treatment.

Conclusions
A mathematical model that describes the dynamics of 
HIV/AIDS has been formulated using nonlinear ordi-
nary differential equations. The model takes into account 
the impact of late diagnosis on HIV/AIDS transmission 
dynamics. Initiation into ART treatment of individuals 
with a CD4+ T cell count in the range 200–350\μ L has 
been described by the function (1). The model developed 
in this paper fits well with settings in most underdevel-
oped countries where stigma of HIV remains prevalent. 
Inclusion of the treatment function (1) increases the 
realism of the model developed by[8] and leads to some 

interesting dynamical aspects such as the occurrence of 
backward bifurcation.

In this study, it has been shown that the classical R0

—threshold is not the key to control the spread of HIV 
infection within a population. In fact HIV infection may 
persist in the population even with subthreshold val-
ues of R0 . Our results suggest that considerable effort 
should be directed towards encouraging early initia-
tion into ART in order to reduce HIV prevalence. For 
instance, strategies such as the implementation of HIV 
self-testing programs would be of great help in the fight 
against HIV.

Limitations
Like in any model development, the model is not with-
out limitations. The model can be extended to include 
the contribution of pre-exposure prophylaxis (PrEP) and 
other control measures not considered in the work.
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AIDS: Acquired immune deficiency syndrome; HIV: Human immunodeficiency 
virus; ART​: Antiretroviral therapy.
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