
MRI signatures of brain age and disease over
the lifespan based on a deep brain network
and 14 468 individuals worldwide

Vishnu M. Bashyam,1 Guray Erus,1 Jimit Doshi,1 Mohamad Habes,1,2 Ilya M. Nasrallah,3

Monica Truelove-Hill,1 Dhivya Srinivasan,1 Liz Mamourian,1 Raymond Pomponio,1

Yong Fan,1 Lenore J. Launer,4 Colin L. Masters,5 Paul Maruff,5 Chuanjun Zhuo,6,7

Henry V€olzke,8,9 Sterling C. Johnson,10 Jurgen Fripp,11 Nikolaos Koutsouleris,12

Theodore D. Satterthwaite,1,13 Daniel Wolf,13 Raquel E. Gur,3,13 Ruben C. Gur,3,13

John Morris,14 Marilyn S. Albert,15 Hans J. Grabe,16 Susan Resnick,17 R. Nick Bryan,18

David A. Wolk,2 Haochang Shou19 and Christos Davatzikos1 on behalf of the ISTAGING
Consortium, the Preclinical Alzheimer’s disease Consortium, ADNI, and CARDIA studies

Deep learning has emerged as a powerful approach to constructing imaging signatures of normal brain ageing as well as of various

neuropathological processes associated with brain diseases. In particular, MRI-derived brain age has been used as a comprehensive

biomarker of brain health that can identify both advanced and resilient ageing individuals via deviations from typical brain ageing.

Imaging signatures of various brain diseases, including schizophrenia and Alzheimer’s disease, have also been identified using ma-

chine learning. Prior efforts to derive these indices have been hampered by the need for sophisticated and not easily reproducible

processing steps, by insufficiently powered or diversified samples from which typical brain ageing trajectories were derived, and by

limited reproducibility across populations and MRI scanners. Herein, we develop and test a sophisticated deep brain network

(DeepBrainNet) using a large (n = 11 729) set of MRI scans from a highly diversified cohort spanning different studies, scanners,

ages and geographic locations around the world. Tests using both cross-validation and a separate replication cohort of 2739 indi-

viduals indicate that DeepBrainNet obtains robust brain-age estimates from these diverse datasets without the need for specialized

image data preparation and processing. Furthermore, we show evidence that moderately fit brain ageing models may provide brain

age estimates that are most discriminant of individuals with pathologies. This is not unexpected as tightly-fitting brain age models

naturally produce brain-age estimates that offer little information beyond age, and loosely fitting models may contain a lot of noise.

Our results offer some experimental evidence against commonly pursued tightly-fitting models. We show that the moderately fitting

brain age models obtain significantly higher differentiation compared to tightly-fitting models in two of the four disease groups

tested. Critically, we demonstrate that leveraging DeepBrainNet, along with transfer learning, allows us to construct more accurate

classifiers of several brain diseases, compared to directly training classifiers on patient versus healthy control datasets or using com-

mon imaging databases such as ImageNet. We, therefore, derive a domain-specific deep network likely to reduce the need for appli-

cation-specific adaptation and tuning of generic deep learning networks. We made the DeepBrainNet model freely available to the

community for MRI-based evaluation of brain health in the general population and over the lifespan.
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Introduction
Normal brain development and ageing are accompanied by

patterns of neuroanatomical change that can be captured by

machine learning methods applied to imaging data. The con-

struct of MRI-derived brain age has been widely adopted by

the neuroscience community as an informative biomarker of

brain health at the individual level (Franke et al., 2010; Cole

and Franke, 2017; Cole et al., 2017a, 2019). Individuals dis-

playing pathological or atypical brain development and age-

ing patterns can be identified through positive or negative

deviations from typical brain age trajectories. For example,

schizophrenia, mild cognitive impairment (MCI),

Alzheimer’s disease, type 2 diabetes and mortality have all

been linked to accelerated brain ageing at respective age

ranges (Franke et al., 2013; Gaser et al., 2013; Habes et al.,
2016; Cole et al., 2017b; Hajek et al., 2019).

Machine learning has offered numerous other MRI-based

biomarkers of neuroanatomical change in various patholo-

gies, including Alzheimer’s disease, MCI, schizophrenia,

major depression, and autism (Arbabshirani et al., 2017;

Mateos-P�erez et al., 2018). By virtue of their high sensitivity,

these indices capture brain changes at very early preclinical

stages (Davatzikos et al., 2009). These machine learning-

based biomarkers are therefore poised to transform precision

and early diagnostics by offering individualized indices of

brain health.

Prior efforts to apply machine learning methods to neuro-

imaging have been successful in the laboratory; however,

they are not generally applicable or easily adopted in prac-

tice. Traditionally, these methods require several specialized

and often sophisticated preprocessing steps, such as careful

bias correction, segmentation, deformable registration, and

harmonization across scanners, among others. These prepro-

cessing steps require expertise, time, effort, and are not easily

reproducible especially across different scanners, populations

and MRI acquisition protocols. Such complexity renders

these methods impractical for use broadly in clinical settings

and thus they have not been widely adopted by clinicians.

The emergence of deep learning as a powerful machine

learning method offers great promise for transcending these

limitations (Vieira et al., 2017). Convolutional neural net-

works have rapidly become the state-of-the-art in most

image recognition tasks and are gaining acceptance in neuro-

imaging (Kamnitsas et al., 2017; Akkus et al., 2017; Anwar

et al., 2018). These methods allow for complex non-linear

relationships to be modelled without need for the manual

feature engineering traditionally required. These models are

often limited by the need to carefully adapt and fine-tune the

network’s architecture to a specific problem, e.g. MRI-based

classification of a specific disease.

An important requirement for deep learning applications

is the availability of large and diverse samples for training

the complex deep network. Although MRI data availability

has rapidly increased with expanded data sharing and meta-

analyses efforts (Toga et al., 2012; Thompson et al., 2014;

Van Horn and Toga, 2014), sample sizes for disease-specific

datasets are still relatively small, limiting the direct
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application of deep learning to characterize pathological

neuroanatomical patterns. To address this challenge, we use

a transfer learning approach leveraging a large and diverse

sample of MRI scans, and demonstrate that robust brain age

estimates can be obtained across scanners and populations.

Our deep-learning-based brain age prediction approach is

motivated by the pioneering work of Cole et al. (2017a),
who demonstrated that a convolutional neural network

model trained on MRI scans of n = 2001 healthy adults can

obtain high predictive accuracy, with comparable perform-

ance using either preprocessed or raw T1-weighted scans.

Nonetheless, we use a significantly larger and more hetero-

geneous dataset derived from 18 studies for training the

brain age model. In a recent paper, Jonsson et al. (2019)

used a dataset comparable to ours in sample size for training

a deep-learning-based brain age model. However, their train-

ing set predominantly comprised data from a single study,

UKBIOBANK, and application on other smaller datasets

required retraining of the model. Also, the main and only

focus of both studies was brain age prediction, while in our

case we used brain age prediction as a tool for constructing

a brain-specific deep network model using the largest sam-

ple available.

The first contribution of the current study is in demonstrat-

ing that deep learning yields robust biomarkers of brain age

when applied with minimal data preprocessing to a large and

diverse cohort of 14468 brain MRI scans across the lifespan

and including multiple scanners, acquisition protocols, and

geographic locations around the world. Moreover, we dem-

onstrate that the common approach of prioritizing brain age

models based on their fit (Franke et al., 2013; Cole et al.,
2017a) may not produce the most informative brain age

delta (in the remainder of the text we use the term ‘Brain age

delta’ or ‘delta’ to denote the difference between the predicted

brain age and the chronological age), i.e. the important devi-

ations from typical brain development and ageing that indi-

cate the presence of underlying pathology. Instead, we

demonstrate that moderately-fit models provide the most

clinically informative brain age estimates in that respective

deviations from typical brain development and ageing pro-

vide the best separation of individuals with Alzheimer’s dis-

ease, MCI, schizophrenia, and major depression.

The second contribution of our study is that, by leveraging

this large and diverse brain MRI dataset, it constructs a

structural brain imaging network that is domain-specific, i.e.

specific to brain structure, as opposed to being informed by

generic databases of natural images. As a result, the

DeepBrainNet was found to produce disease-specific classi-

fiers that achieve accuracy and convergence significantly out-

performing networks trained directly from patient and

control datasets, or initialized with commonly used weights

derived from the ImageNet natural scene database (Deng

et al., 2009). We further demonstrate the advantage of using

DeepBrainNet weights for classification of patients with

Alzheimer’s disease, MCI, and schizophrenia, by showing

robust classification accuracy as sample size decreases across

these conditions.

The DeepBrainNet model is made publicly available via

Github (https:// github. com/ vishnubashyam/

DeepBrainNet). The deep learning models can also be

applied on new scans using the CBICA Internet Processing

Portal (IPP) (https:// ipp. cbica. upenn. edu/ ), which allows

users to apply our methods and models without the need for

installing any software packages.

Materials and methods

Datasets

We used a large multisite collection of T1-weighted brain MRI
scans from normal control subjects (n = 11729) covering indi-
viduals of ages 3 to 95 for training the DeepBrainNet model
and for calculating cross-validated brain age predictions. This
dataset, which we refer to as LifespanCN, represented a diverse
range of geographic locations, scanners, acquisition protocols,
and studies. Additionally, we tested the model’s performance on
an unseen site by training a model excluding the SHIP cohort
and then testing it on SHIP (n = 2739). We also used three dif-
ferent disease-specific cohorts in order to investigate brain age
deltas of the DeepBrainNet model in case of disease. These data-
sets included normal control, Alzheimer’s disease and MCI sub-
jects from ADNI 1 and 2 (n = 1699, normal control = 513,
MCI = 833, Alzheimer’s disease = 353), normal control and
schizophrenia subjects from a multisite schizophrenia consor-
tium (n = 835, normal control = 448, schizophrenia = 387)
(Rozycki et al., 2018) and matched normal control and major
depression subjects from UK Biobank (n = 408, normal control
= 204, major depression = 204) (Sudlow et al., 2015). Disease-
specific cohorts were also used to build and validate disease
classification models through transfer learning. An overview of
all datasets that are used in different models is given in Table 1.
A more detailed description of the demographics of these data-
sets is given in the Supplementary material, section S.1.

Data preprocessing

Raw T1-weighted scans were input to DeepBrainNet model after
minimal and fully-automated preprocessing. In particular, the
scans were first skull-stripped by applying an automated method
based on multi-atlas label fusion (Doshi et al., 2013) consistent-
ly on each scan. A systematic quality control procedure was
applied by using an automatic outlier detection followed by
manual verification of flagged cases. Skull-stripped images were
affinely registered to a common atlas space using FMRIB’s
Linear Image Registration Tool FLIRT (Jenkinson and Smith,
2001; Jenkinson et al., 2002).

DeepBrainNet network architecture

The DeepBrainNet model was built using the inception-resnet-
v2 framework, which combines skip connections and inception
modules (Szegedy et al., 2017). This framework is commonly
used in computer vision and has been shown to perform very
well on many complex imaging tasks. Confirming these find-
ings, in our validation experiments this model obtained the
highest prediction accuracy against other common architecture,
although differences were not statistically significant.

2314 | BRAIN 2020: 143; 2312–2324 V. M. Bashyam et al.

https://github.com/vishnubashyam/DeepBrainNet
https://github.com/vishnubashyam/DeepBrainNet
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa279#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa279#supplementary-data


As is common in other deep-learning-based neuroimaging
applications, we used a 2D convolutional architecture. The pref-
erence for a 2D rather than a 3D architecture was motivated by
two main reasons: first, for the initialization of our networks we
used a model pretrained on ImageNet, a natural scene database
consisting of over 14 million hand annotated images belonging
to over 1000 categories. Using a 2D architecture allowed us to
use ImageNet for initialization, which has been shown to lead
to more consistent and accurate models (Tajbakhsh et al.,
2016). Second, the increase in the parameter space resulting
from 3D kernels may make them impractical for use on MRI
data, as the sample sizes are typically too small compared to the
dimensionality of the data, even with 410000 scans.

We represented each scan as a collection of 80 slices in the
axial plane. During training, each slice is considered as an inde-
pendent sample, resulting in a training set of �1 million images
for the LifespanCN dataset.

We performed online data augmentation, with random verti-
cal and horizontal flips and intensity and contrast variations
obtained by randomly scaling intensities within 95% to 105%
of their initial values, to make the network further invariant to
imaging variations and site effects.

Inception-resnet-v2 convolutional layers were connected to a
global max pooling layer, followed by a fully connected layer of
size 1024 with 80% dropout and RELU (rectified linear units)
activation. We used dropout after the fully connected layer dur-
ing model training to prevent overfitting (Srivastava et al.,
2014). Dropout rates were chosen a priori. We preferred a large
dropout value because of the large number of fully connected
nodes in the final layers (n = 1024 nodes). Dropout randomly
removes some percentage of the inputs to a layer with the inten-
tion of reducing the network’s reliance on any single node.
During the testing, the dropout function is inactive and all nodes
are used. A single node with a linear activation is added as the
output layer. The outline of the inception-resnet-v2 architecture
is shown in Fig. 1.

The network is trained from a random weight initialization
using the Adam optimizer (Kingma and Ba, 2014) with mean
squared error as the loss function. The learning rate for training

is set to 1 � 10–4 and decreased by a factor of 10 if the training
loss remains constant for five epochs. The network is trained
until the training loss remains constant for 10 consecutive
epochs or until the validation loss increases for five consecu-
tive epochs.

To obtain the final age prediction for a test sample, each of
80 slices of the test scan was input to the trained model inde-
pendently and the median prediction is calculated as the pre-
dicted brain age.

We implemented our model in Tensorflow and Keras (Abadi
et al., 2016). This model was trained using a NVIDIA P6000
Quadro graphics processing unit with 24 GB video RAM.
Cross-validated experiments were conducted using 5-fold valida-
tions. Computational time for training in each fold was around
10 h.

Transfer learning models for disease
classification

Deep learning models typically leverage large pretrained net-
works for initialization. For example, in computer vision it is
standard practice to use ImageNet weights to initialize a net-
work. A network that is trained on a large and varied dataset
can learn a feature representation that has been shown to be
highly generalizable to many other tasks (Donahue et al., 2014).
The weights of the pretrained networks can be refined in specific
classification problems using the available training data specific
for that task. This process of transfer learning is critically im-
portant for successful training in problems that do not offer
such large training sets. Medical imaging belongs to this cat-
egory of problems, as the overwhelming majority of disease-spe-
cific classification studies rarely have access to more than 1000
patient scans, and often much less.

We used a similar inception-resnet-v2 based network model
with transfer learning for disease classification tasks.
Importantly, for the initialization of transfer learning models we
used the weights from the best performing fold of the age pre-
diction task on LifespanCN dataset. Note that the initialization

Table 1 Dataset description

Study n (male/female) n Controls n Disease Mean age Age range Experiments

ADC 76 (29/47) 76 CN 0 72.59 37 LifespanCN

AIBL 446 (197/249) 446 CN 0 72.77 32 LifespanCN

BLSA 1.5 T 90 (58/32) 90 CN 0 72.69 29.9 LifespanCN

BLSA 3 T 952 (436/516) 952 CN 0 67.04 72.7 LifespanCN

CARDIA 719 (342/377) 719 CN 0 50.29 14 LifespanCN

PAC-WASH 247 (95/152) 247 CN 0 61.19 24 LifespanCN

PAC-WISC 127 (39/88) 127 CN 0 61.47 34.2 LifespanCN

PAC-JHU 95 (36/59) 95 CN 0 67.75 44.9 LifespanCN

PING 398 (200/198) 398 CN 0 12.69 17.83 LifespanCN

PNC 1396 (665/731) 1396 CN 0 14.97 15 LifespanCN

PENN PMC 41 (19/22) 41 CN 0 72.37 35 LifespanCN

SHIP 2739 (1248/1491) 2739 CN 0 52.55 69.21 LifespanCN

UK BioBank 4402 (2067/2335) 4403 CN 0 63.2 34.4 Residual Analysis

ADNI-1 747 (437/310) 189 CN 366 MCI, 192 AD 75.29 36.5 Residual analysis and transfer learning

ADNI-2 952 (500/452) 324 CN 467 MCI, 161 AD 73.23 39.6 Residual analysis and transfer learning

PHENOM 835 (472/363) 448 CN 387 SCZ 34.55 70 Residual analysis and transfer learning

AD = Alzheimer’s disease; CN = normal control; MD = major depression; SCZ = schizophrenia.
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preserved only the weights from the convolutional layers. The
final fully connected layers from the age prediction model are
removed and replaced with a fully connected layer of 1024
nodes with 85% dropout and RELU activation. A slightly larger
value (85%) was chosen for the classification task since the
smaller amount of training data available for these tasks may
have resulted in more overfitting. This is followed by an output
layer with one node with a sigmoid activation function. The
fully connected layers are then trained for one epoch with the
convolutional layers frozen. This is to ensure that the weights in
the convolutional layers are not excessively disturbed by the
large gradient caused by the random initialization of the final
fully connected layers. Finally, all layers are unfrozen, and the
network is trained until convergence or until the validation loss
increases. The network is trained using the Adam optimizer
with a learning rate of 5 � 10–5 with binary cross-entropy as
the loss function.

In testing, similar to the brain age model, the final classifica-
tion label is decided by calculating the median of the output
probabilities for individual slices of the test scan.

Statistical testing

While comparing the effect of varying levels of regularization on
brain age deltas we conduct appropriate testing to examine
whether the brain age gap values differentiate disease (e.g.
Alzheimer’s disease, MCI, schizophrenia or depression) and con-
trols subjects, and whether such discrimination differ by the
chose models (loose, middle and tight) (Supplementary material,
section S.14). Hence, we are testing the difference (by models)
of the difference (by diagnosis) in brain age gaps. We use a
mixed effects model for this task because the model-specific
brain age deltas are generated from the same subject’s data.
Hence for any pairwise comparison such as middle fit versus
tight fit, the data might be correlated within subject. Mixed
effects models with subject-specific random intercepts are
known to provide valid inference for correlated outcome data.

The P-values shown in Fig. 3 are generated from t-tests per-
formed on the respective controls versus disease groups for each
level of model fit. The significance of the differential discrimin-
ation from the mixed effects models were determined based on
likelihood ratio (LRT) tests of the fixed effects.

Data availability

The data that support the findings of this study are available,
but restrictions apply to the availability of these data, which
were used under license for the current study, and so are not
publicly available. Data may be available from the authors
upon reasonable request and with permission.

Results

Brain age prediction

The DeepBrainNet model using the inception-resnet-v2

framework was trained on LifespanCN dataset (n = 11729).

The model was applied for predicting the brain age with 5-

fold cross validation, i.e. it was trained and optimized on

80% of the data and tested on the remaining 20%, repeat-

ing this procedure for each five folds. The model obtained a

mean absolute error (MAE) = 3.702 in the prediction of

brain age for the complete LifespanCN dataset. Alternative

network architectures, i.e. DenseNet169 (Huang et al.,

2017), VGG16 (Simonyan and Zisserman, 2014) and

Resnet50 (He et al., 2015), obtained lower predictive accur-

acy, although differences between architectures were not

statistically significant (Supplementary material, section S.2).

The correlation between the chronological and predicted

brain ages of the subjects was r = 0.978 (Fig. 2A). The pre-

diction accuracies in each fold were consistent

Figure 1 DeepBrainNet architecture.
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(Supplementary material, section S.3). The distribution of

the brain age deltas per site is shown in Supplementary ma-

terial, section S.4.

Brain age deltas for male and female subjects were similar

(MAE = 3.68 and MAE = 3.72, respectively;

Supplementary material, section S.5). We further investi-

gated gender differences by training separate male and fe-

male models with 5-fold cross validation on the LifespanCN

dataset. Brain age obtained by mixed-gender and gender-spe-

cific models were highly correlated (98% and 97% for males

and females respectively), suggesting that the gender bias

does not significantly affect the results of the age prediction

models (Supplementary material, section S.6).

To evaluate out of sample performance of the

DeepBrainNet model we trained the model using the

LifespanCN dataset excluding the SHIP cohort, and then

applied it on the SHIP data (n = 2739). We obtained an

MAE of 4.12 for the SHIP subjects (Fig. 2B). This result is

comparable to intra-site predictions of similarly aged indi-

viduals, thus showing that the age prediction is highly gener-

alizable across sites.

We repeated all experiments on LifespanCN and SHIP

datasets using input images processed with additional pre-

processing steps, specifically bias correction (Tustison et al.,

2010) and histogram equalization. The results of these

experiments indicated that the performance was comparable

with or without additional preprocessing (Supplementary

material, section S.7).

We evaluated the effect of the data sample age range on

prediction, particularly considering that our sample included

both paediatric and adult subjects. We trained and applied

models separately for paediatric datasets (PING and PNC,

age range 3–22) and all other datasets together (age range

18–95). Brain age obtained by mixed-age and age-specific

models were highly correlated (97% for the paediatric and

95% for the adult subjects, respectively; Supplementary ma-

terial, section S.8). These results indicate that the

DeepBrainNet model was capable to capture complex imag-

ing signatures associated with significantly different proc-

esses of brain development and brain ageing within a

single network.

A major challenge of deep learning algorithms is the inter-

pretation of the imaging patterns that are learned by the net-

work. A direct visualization of these patterns is not possible

because of the complexity of the network (Zeiler and

Fergus, 2014). We used the technique suggested in

Kotikalapudi and contributors (2017) to create saliency

maps that show the voxels with the highest activation in dif-

ferent axial image slices at different age ranges

(Supplementary material, section S.11).

Effect of regularization on brain age
deltas for diseased subjects

The clinical significance of brain age is obviously not in

determining someone’s age, but in identifying individuals

who deviate from typical brain development and ageing, i.e.

individuals who have positive or negative brain age deltas.

In that respect, accurate age predictions don’t necessarily

yield the most clinically informative brain age deltas, since

the deep learning model might focus on imaging features

Figure 2 Brain age predictions using DeepBrainNet. Left: Predictions for the complete LifespanCN dataset. DeepBrainNet was trained

and tested on LifespanCN dataset with 5-fold cross-validation. Right: Performance on previously unseen site. DeepBrainNet was trained using

LifespanCN data excluding SHIP and was applied on the SHIP data.
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Figure 3 Distribution of brain age residuals for disease versus normal control groups for different regularizations of the brain

age model. The rows in each subplot show the results for loose, moderate and tight-fit models, respectively. The left columns show predicted

versus actual ages. The right columns show histograms of brain age residuals for normal control and diseased subject groups and the significance

of group differences. The Cohen’s d effect size between the two groups are reported with 95% confidence intervals. AD = Alzheimer’s disease;

MAE = mean absolute error.
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and patterns that are not affected by pathologies, in an effort

to match brain age and chronological age in individuals

with such pathologies. To address this issue, we developed

three different models with varying levels of fitness to the

data. Specifically, the model was saved after each epoch of

training, and for comparative evaluations we selected three

models with smaller to larger number of epochs, such that

the average MAE on the training set was 7.651, 5.922 and

3.701 for each model, respectively, for the loose, moderate,

and tight fits. We then evaluated the resultant deltas on the

groups with pathology for each model. These deltas were

corrected for age using a linear model, as has been suggested

in the literature in order to remove age-related bias (Le

et al., 2018).

In line with our hypothesis, all cohorts with pathologies

displayed positive brain age deltas on average, i.e. their brain

age was older than their chronological age. However, the

model with highest age prediction accuracy was not the best

one in terms of yielding brain age deltas with the highest dis-

crimination between patients and controls (Fig. 3). Indeed,

the moderately-fit model, with the mid-range MAE, had

brain age deltas with more significant group differences and

the largest effect sizes between disease and normal control

groups across all brain pathologies tested. Further statistical

testing with a mixed effects model confirmed that the moder-

ate fit was most discriminative across Alzheimer’s disease,

MCI, and schizophrenia, with significant differences between

the models for Alzheimer’s disease and MCI, but not for

schizophrenia and depression (Supplementary material, sec-

tion S.14).

Transfer learning for pathology-
specific classification

We tested the hypothesis that the DeepBrainNet network,

which was trained on the LifespanCN data for the brain age

prediction task, would provide a better platform for transfer

learning for disease-specific classification in the Alzheimer’s

disease, MCI, schizophrenia and major depression groups,

compared to alternative initializations. Our hypothesis was

that while many of the lower level features captured by the

ImageNet weights are useful for neuroimaging tasks, the

higher level abstractions might not be. This approach

presents an opportunity for more specialized network

weights, i.e. model weights that will better capture high-level

abstract neuroimaging features. In particular, we constructed

four independent classifiers, one for each of these four pa-

tient cohorts, using transfer learning. These models were ini-

tialized with network weights of the DeepBrainNet model,

and further trained and tested for the specific task with 5-

fold cross-validation. For the comparative evaluations, we

also constructed models by training from scratch (random

initialization), and by initializing the model with pretrained

ImageNet weights. Both these models were retrained with

scans from the disease groups during the cross-valid-

ation analysis.

It should be noted that the major depression classifier did

not converge with any initialization.

BrainNet-based classification models outperformed models

initialized using ImageNet consistently for Alzheimer’s dis-

ease, MCI, schizophrenia and major depression classification

tasks, with a significant increase in both accuracy and area

under the curve (AUC) values for all tasks (Table 2).

Additionally, using DeepBrainNet weights for initialization

allowed the model to consistently converge faster in all

tasks. The network with random initialization failed to con-

verge for at least 1-fold for all diseases tested.

We performed a series of additional experiments to evalu-

ate the classification performance of network models using

BrainNet and ImageNet initializations on problems where

smaller sample sizes are available for training. For this pur-

pose, we subsampled each disease-specific subset and created

new datasets with decreasing sample sizes. A stratified sub-

sampling technique was used to preserve the initial normal

control versus diseased subjects’ ratio in the new datasets.

The two deep learning models, initialized using

DeepBrainNet or ImageNet weights, were applied on each

new subsampled dataset with cross-validation, similar to

experiments that were performed on the complete samples.

We repeated each small sample experiment two additional

times with different stratified randomizations to obtain ro-

bust estimates of the performance with gradually decreasing

sample size. These experiments show similar results to

Fig. 4. It should be noted that at n = 50, the schizophrenia

classifier failed to converge in one sampling. This may indi-

cate that the convergence at this sample size is not reliable

(Supplementary material, section S.12).

Classification accuracy and AUC values for the two mod-

els on datasets with decreasing sample sizes are shown in

Fig. 4. DeepBrainNet obtained superior performance in all

classification tasks. Importantly, DeepBrainNet based mod-

els have maintained performance relatively well with smaller

sample sizes, compared to ImageNet-based models that

showed a consistently lower accuracy. In Alzheimer’s disease

versus normal control and schizophrenia versus normal con-

trol classification tasks, DeepBrainNet’s performance on

small samples was particularly stable, while ImageNet based

models showed a significant decrease in accuracy with

smaller sample sizes. Both networks performed well for these

classification tasks with large sample sizes. For the MCI ver-

sus normal control classification, DeepBrainNet had a larger

decrease in performance with decreasing samples while

ImageNet had a stable but lower accuracy.

Discussion
We developed a deep brain network, DeepBrainNet, derived

from and tested on collectively 14468 diverse structural

brain MRI scans, which generates estimates of an individu-

al’s brain age. We showed that minimal preparation and

preprocessing of the brain MRI scans is sufficient for

DeepBrainNet to produce informative estimates of brain
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age. Most importantly, we found that using DeepBrainNet

as a foundation for further deriving disease-specific networks

via transfer learning resulted in better accuracy and conver-

gence across all tested diseases, especially for relatively

smaller sample sizes, when compared to deep learning mod-

els without prior training with brain MRIs. This result

underlines the importance of domain-specific deep learning

networks that don’t require specialized adaptation and fine-

tuning to specific problems. Finally, we found that moder-

ately fitted brain age models are optimal, in terms of provid-

ing brain age deltas that correlate with four different clinical

categories: MCI, Alzheimer’s disease, schizophrenia, and

major depression, compared to tightly or loosely-fitted brain

age models. This finding challenges current trends to achieve

the tightest possible brain age estimates, and provides guide-

lines as to how this increasingly popular biomarker should

be used.

Deep learning-based age prediction
from minimally processed scans
achieves high accuracy

It is well established that brain structure shows consistent

patterns of developmental and ageing related changes

through the lifespan. Yet, the degree of change is highly het-

erogeneous across different brain structures and different

phases of life, resulting in complex non-linear age trajecto-

ries of regional brain changes (Fjell and Anders, 2013). The

concept of estimating brain age from MRI scans has been

previously explored (Dosenbach, 2010; Franke et al., 2010;
Brown et al., 2012; Habes et al., 2016; Madan and

Kensinger, 2018), showing that it is possible to accurately

predict the chronological age of subjects from volumetric or

voxelwise imaging features using machine learning or multi-

variable regression techniques. However, most prior studies

have been restricted to relatively homogeneous sets of data

and small samples. Perhaps most importantly, prior attempts

to provide robust brain age estimates have relied on carefully

preprocessed datasets using sophisticated and often delicate

segmentation and deformable registration tools. These tools

are not easily accessible to clinicians who want to readily

obtain a brain health index, such as brain age. Critically,

these preprocessing steps often need to be carefully adjusted

to the particular characteristics of a study’s, scanner’s, or

centre’s images, and typically require human supervision for

quality checks, which limits their broad applicability.

Deep learning methods provided a valuable opportunity

for overcoming these limitations. As demonstrated in Cole

et al. (2017a), a deep-learning-based model using convolu-

tional neural networks obtained high predictive accuracy

when the model was trained on MRI scans of n = 2001

healthy adults, with performance comparable using either

preprocessed or raw T1-weighted scans. Motivated by these

results, we derived a unique brain age index from a large

and diverse set of brain MRI scans using minimal prepro-

cessing and with fully automated procedures. The size and

diversity of our dataset, as well as our results, bolster confi-

dence that DeepBrainNet can provide an index of brain age

that can be useful in initial screening for the presence of

many pathologies that cause deviation from typical brain de-

velopment and ageing. Further, as our training set is highly

diverse, the network is robust to confounding site effects, as

evidenced by the strong performance on the out of sample

validation, which may allow it to succeed with diverse acqui-

sition and clinical scenarios.

Deep learning revealed conserved patterns of brain change

throughout the lifespan, which allowed DeepBrainNet to

achieve a quite accurate estimation of brain age. Although

this success might be somewhat expected, especially in typ-

ical brain development that involves well-coordinated brain

growth and maturation (Erus et al., 2015), it is still quite

surprising in several ways. Our ability to estimate someone’s

age from their brain MRI scan within an average �4 years

implies that the brain changes constantly throughout the life-

span, in subtle but well-coordinated ways that allowed us to

determine a highly predictive brain age network. Notably,

such brain changes are also present in ages 25–55, an age

range previously considered to be mostly stable in terms of

brain structural morphology.

The proposed deep learning approach has a significantly

higher computational complexity compared to other ma-

chine learning or multivariable regression techniques previ-

ously suggested for brain age prediction. While these simpler

Table 2 Transfer learning performance comparison

Task Model Accuracy AUC Epochs to converge (average)

AD versus CN DeepBrainNet 0.86 0.91 3.4

ImageNet 0.849 0.893 4.6

Random Init.a No convergence No convergence No convergence

MCI versus CN DeepBrainNet 0.702 0.743 4.2

ImageNet 0.628 0.645 5.6

Random Init. No convergence No convergence No convergence

SCZ versus CN DeepBrainNet 0.735 0.791 3.4

ImageNet 0.702 0.774 5

Random Init. No convergence No convergence No convergence

aThe model did not converge in all folds.

AD = Alzheimer’s disease; SCZ = schizophrenia.
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Figure 4 Classification performance of transfer learning based networks. Classification performance of transfer learning based net-

works using two different initializations (DeepBrainNet and ImageNet) on three classification tasks [Alzheimer’s disease (AD) versus normal con-

trol, MCI versus normal control and schizophrenia (SCZ) versus normal control] trained and tested on datasets with different sample sizes. The

sample sizes used in different experiments are shown in the x-axis of each plot, with larger (initial) to smaller (subsampled) sample sizes. Each

model was run using 5-fold cross-validation.
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methods work very well in many instances, they benefit

from specialized domain-specific preprocessing and may not

be generalizable to other tasks. Additionally, we should note

that this complexity only involves the training phase. Once a

model is trained, application of the model on new subjects is

straightforward and computationally very efficient, particu-

larly considering that the DeepBrainNet model can be direct-

ly applied on minimally preprocessed scans without

requiring complex processing steps that often limit wide-

spread usage in clinical settings.

Using DeepBrainNet with transfer
learning outperforms generic
ImageNet-based training for smaller
sample sizes

Although the brain age delta is a simple and clinically

appealing index for estimating overall brain health, it is not

specific to or optimized for any particular disease. Diseases

such as Alzheimer’s disease and schizophrenia display highly

distinctive neuroanatomical patterns that could better be

captured by specialized indices (Davatzikos et al., 2009;

Rozycki et al., 2018). Our work has provided insights into

how deep learning can optimize disease-specific indices. In

particular, we showed that using the network weights from

DeepBrainNet along with transfer learning, deep learning

models are more robust across training sample size, so could

be trained with dramatically fewer training examples than

might be otherwise required. This saving in sample size is es-

pecially important in medical imaging where data is expen-

sive and time consuming to collect or for under-studied

diseases. Moreover, we showed that the brain MRI-specific

DeepBrainNet network performs better than deep learning

networks trained on orders of magnitude larger, but not

brain-specific, databases like ImageNet. This finding suggests

that domain-specific technologies for deep learning might

perform better than generically-trained networks, which is

the current practice in medical imaging, especially when rela-

tively limited samples are available for training. Considering

that there are more than a hundred pathologies that can be

captured by medical scans of the brain, it is almost certain

that sufficiently large databases for each pathology will not

be available for many years, especially for rare diseases. The

pooling and use of a large and highly diverse lifespan brain

MRI database used herein played a critical role in our ability

to achieve robust disease-specific indices.

For the tasks presented it is likely that the DeepBrainNet

weights are closer to the global minimum of the task in the

gradient decent landscape than the ImageNet weights (and

certainly Random Initialization). Thus, we are more likely to

converge to a minimum closer to the global minimum after

disease-specific training. The reason that the ImageNet

weights do not converge to the same accuracy as the

DeepBrainNet weights, even given more training time, is

that they get trapped in local minima during the optimiza-

tion. This difference further highlights the importance of a

domain-specific set of weights for transfer learning, particu-

larly in complex non-convex optimization problems such as

this (Becherer, 2017).

The final disease classifiers could likely be improved

through careful hyperparameter tuning and refinements of

the architectures. However, this would require a high level

of expert knowledge and extensive experimental validations.

On the other hand, DeepBrainNet allows for out-of-the-box

convolutional neural networks architectures to be reliably

applied to neuroimaging tasks.

The best brain age model is not the
most sensitive in identifying
pathologies

Our deep learning network was able to obtain very good

estimates of brain age, with an MAE of 3.702. This raised

the question of whether such accuracy was beneficial for

detecting the informative discrepancies between brain age

and chronological age that can be used to identify the pres-

ence of pathologies. We evaluated three levels of model

tightness to the data: relatively looser, moderate, and rela-

tively tighter. The moderately fitting brain age model yielded

the most significant brain age deltas across the clinical cate-

gories examined, thereby offering evidence that this ‘middle

of the road’ approach may be the best way to construct

brain age indices. This finding is not unexpected, but it has

been overlooked in the literature, which focuses on finding

the best possible brain age fits for a given model. Tight-fit-

ting brain age predictive models are likely to focus on brain

features and patterns that are not affected by any factor

other than age. However, many typically ageing individuals

have various and often covert pathologies even if they are

cognitively normal, such as small vessel ischaemic disease,

amyloid plaques, and tau neurofibrillary tangles, amongst

others. Therefore, a tightly-fitting brain age model will nat-

urally seek to avoid the effects of such pathological proc-

esses, in its attempt to achieve the lowest MAE. The

resultant brain age delta will then likely fail to capture

brain-ageing effects of these pathological processes, at least

to some extent. On the other hand, loosely fitting brain age

models tend to miss the nuances of pathological patterns,

and hence also fail to capture important features of brain-

ageing. Put differently, a rough estimate of someone’s age

might be obtained from the size of the ventricles or another

simple feature that cannot capture subtle patterns of neuro-

anatomical change induced by neuropathological processes.

Our experiments on four different disease groups showed

that the moderate fit was more discriminative versus the

others, while these differences were statistically significant

for Alzheimer’s disease and MCI groups and not for schizo-

phrenia and depression groups (Supplementary material, sec-

tion S.14). Our results indicate that moderately accurate

brain age models may provide the most meaningful brain

age delta values and future work should investigate

this further.
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The trained network is available as
an online resource, as well as on
our online platform

Additionally, we release the weights of all models described

in this paper as they will be valuable in a variety of transfer

learning tasks. We have collected the DeepBrainAgeNet

weights for multiple popular network architectures so that

the architecture that best suits a research problem can still

be selected. These architectures include VGG-16, ResNet-50

and DenseNet-169 and Inception-ResNet-v2. Files can be

found at our GitHub repository (https:// github. com/ vishnu

bashyam/ DeepBrainNet). The DeepBrainNet model can also

be applied on any new scan to estimate the brain age of the

subject using the pretrained model on the CBICA Internet

Processing Portal (IPP) (https:// ipp. cbica. upenn. edu/ )

In summary, we present a complex and very broadly trained

deep learning network, optimized on brain MRI features used

to estimate brain age. In addition to providing estimates of

brain age, and hence indicators of resilient versus advanced

brain ageing, we found that this specialized network provides a

better springboard for constructing disease-specific deep learn-

ing classifiers. Therefore, we hope to enable the development of

a large family of pathology-specific deep learning networks uti-

lizing DeepBrainNet as a foundation whose parameters are

tuned and adapted to the pathology or disease of interest.
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