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Abstract

Objectives—There is evidence to suggest that asthma pathogenesis is affected by both genetic 

and epigenetic variation independently, and there is some evidence to suggest genetic-epigenetic 

interactions affect risk of asthma. However, little research has been done to identify such 

interactions on a genome-wide scale. The aim of this studies was to identify genes with genetic-

epigenetic interactions associated with asthma.

Methods—Using asthma case-control data, we applied a novel nonparametric gene-centric 

approach to test for interactions between multiple SNPs and CpG sites simultaneously in the 

vicinities of 18,178 genes across the genome.

Results—Twelve genes, PF4, ATF3, TPRA1, HOPX, SCARNA18, STC1, OR10K1, UPK1B, 

LOC101928523, LHX6, CHMP4B, and LANCL1, exhibited statistically significant SNP-CpG 

interactions (FDR = 0.05). Of these, three have previously been implicated in asthma risk, PF4, 

ATF3, and TPRA1. Follow-up analysis revealed statistically significant pairwise SNP-CpG 

interactions for several of these genes, including SCARNA18, LHX6, and LOC101928523, (P-

Values = (1.33E-04, 8.21E-04, 1.11E-03), respectively).
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Conclusions—Joint effects of genetic and epigenetic variation may play an important role in 

asthma pathogenesis. Statistical methods that simultaneously account for multiple variations 

across chromosomal regions may be needed to detect these types of effects on a genome-wide 

scale.
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Introduction

Asthma is a chronic inflammatory disorder of the airways, characterized by airway hyper-

responsiveness and airflow limitation. Asthma prevalence has increased in recent years [1], 

afflicting 300 million worldwide, and is highly variable across population centers, ranging 

from 1% to 18% [2]. In the United States more than 23 million people were diagnosed with 

asthma as of August 2015, including over 6 million children [3].

Numerous genome-wide association studies (GWAS) have shown a substantial genomic 

contribution to the etiology of asthma, with heritability estimates varying between 35% and 

95% [4–6]. However, only a fraction of this variation has been explained by specific causal 

variants, such as those near Chr17q12–21 [7,8]. Epigenetic mechanisms, another source of 

disease variation, may explain a portion of this missing heritability [9–11]. Epigenomic 

alterations, while heritable, may also occur as a response to the endogenous and exogenous 

environment, and contribute to asthma pathogenesis [9,12].

There is evidence to suggest that genetic and epigenetic variation interact synergistically to 

affect gene expression [13]. In fact, interactions between SNPs and DNA methylation in the 

genomic regions of T-helper 2 pathway genes IL4R and others were found to affect asthma 

risk [14,15], possibly through expression of these genes.

Methods for detecting statistical interactions in population studies often involve linear or 

logistic models that include a product term to represent the interaction effect. These pairwise 

approaches suffer from a multiple testing challenge [16,17], which is particular severe if 

applied on a genome-wide scale. For example, in a study with one million SNPs and 

450,000 CpG sites, 450 billion tests would be required. In addition, pairwise approaches 

may not optimally leverage information from dependencies between SNPs and CpG sites 

across contiguous genomic regions. Using case-control data, we applied a novel gene-centric 

approach to test for interactions between multiple SNPs and CpG sites simultaneously in the 

neighborhood of each gene across the whole genome.

Methods

Asthma BRIDGE Data

These data are from the Asthma BioRepository for Integrative Genomic Exploration 

(Asthma BRIDGE) [18–21], which is publicly accessible and includes 1542 individuals with 

asthma and controls with comprehensive phenotype and genomic data. Asthma was defined 

via questionnaire by the presence of asthma symptoms, use of an inhaled bronchodilator at 
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least twice per week, or use of a daily asthma medication for the 6 months before the 

screening interview. Genome-wide SNP and DNA methylation was obtained from whole 

blood samples from 576 participants. Samples were randomized to avoid confounding by 

experimental batch. The final data set included 356 asthmatic and 220 non-asthmatic adults, 

for whom we had complete data.

Genotyping and DNA Methylation

Genotyping methods are described in detail in Torgerson et al. [19]. Briefly, SNPs included 

all Phase 2, Release 21 consensus HapMap variants and were obtained from studies 

participating in the EVE consortium [19,22]. The genotyping platforms, Illumina (1Mv1, 

550k, 610k, 650k) and Affymetrix (500k, 6.0), varied by sample source. Quality control 

(QC) procedures included filtration for call rates (> 95%) and tests for agreement with 

Hardy-Weinberg expectations applied to SNPs oriented to the plus strand. High-density 

imputation using 1000 Genomes reference panel was performed using the MACH software 

[23]. Data were checked for consistency in reference alleles and strand orientation, and 

SNPs were excluded based on low quality scores and examination of QQ plots comparing 

the distribution of association p-values for genotyped and imputed markers. SNPs with 

minor allele frequencies less than 0.05 were excluded.

A total of 11 plates were run on the Illumina human 450K methylation platform. Data 

preprocessing steps included application of Norm-Exponential (NE) background correction 

on the raw methylation data, plate by plate for all 11 plates. HG19 annotations, including 

gene symbols, chromosome number, and sequence position, were added via the 

Bioconductor package, FDb.InfiniumMethylation.hg19. One sample from a non-asthmatic 

participant was excluded due to having an extreme value of 1.0 for all probes. Methylation 

of CpG sites were assessed for outliers, and observations exceeding 3 interquartile ranges 

(IQRs) from the 25th and 75th percentiles, per Tukey’s outer fences [24], were removed 

unless they comprised greater than or equal to 5% of the data for that variable. The 11 NE 

corrected plates were combined and four additional samples were excluded as outliers. Dye 

bias (DB) correction was done using one sample as reference for all others, and quantile 

normalization (QN) was applied to the resulting data set.

Canonical Analysis of Set Interactions (CASI)

Here we describe and apply a new method, CASI, designed to identify statistical interactions 

between high-order sets of features in a simultaneous approach. In contrast to direct 

interactions in which DNA sequence variation affects DNA methylation, we are seeking to 

identify genomic regions underlying genes where there is synergism between the effects of 

SNPs and methylation on asthma susceptibility.

CASI is described in detail in Supplemental Methods and is freely available to the public in 

a downloadable R package (https://github.com/USCbiostats/CASI). Briefly, it is a hypothesis 

testing approach to detect differences in correlations between linear combinations of SNPs 

and CpG sites in cases vs. controls. In this study, SNPs and CpG sites were mapped to the 

nearest gene, thus defining the feature sets, with positions identified using the UCSC 

genome browser for all RefSeq genes. Overlapping isoforms of the same gene were 
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combined to form a single full length version. SNPs and CpG sites residing in flanking 

regions extending 2kb on either side were included. A total of 18,178 gene-centric regions 

were identified across the genome. Using canonical correlation analysis (CCA), coefficients 

that maximize the correlation, the canonical correlation, between linear combinations of the 

SNPs and CpG sites are estimated in cases. The same coefficients are then used to compute 

linear combinations in controls. The CASI statistic is based on the scaled difference between 

Fisher transformed canonical correlation coefficients in cases vs controls. Estimation is 

performed in cases because it leverages the superior statistical power of the case-only 

interaction analysis approach [25]; dependencies among predictive variables in cases may 

indicate multiplicative interactions in their effects on disease [26,27]. Due to the limitations 

of CCA in the number of variables relative to the sample size, sparse canonical correlation 

analysis as described by Tibshirani and Hastie [28] is applied for sets with dimensions that 

are too large to be accommodated by conventional CCA. The parametric distribution of this 

test statistic, the scaled difference between cases and controls, is unknown. Therefore we use 

a permutation-based procedure to estimate the null distribution by randomly permuting case 

status and computing the test statistic. The permutation analysis is conducted repeatedly 

until a sufficient number of values have been generated under the null. Rather than compute 

p-values, a computationally efficient FDR approach is used that requires few permutations 

and yields confidence intervals that account for dependencies among tests as well as the 

number of permutations conducted [29]. For this study, 100 permutation analyses were 

conducted and statistical significance was defined by an FDR threshold of 0.05.

Follow-up Analyses in Significant Regions

SNPs and CpG sites can be ranked in their contribution to the test statistic by computing 

correlations, loadings, in cases with their corresponding linear combinations, the canonical 
variates. SNP-CpG site pairs that were the greatest contributors to statistically significant 

tests were identified by selecting all SNP-CpG pairs among those with loadings greater than 

0.5 within a gene region. The loading threshold of 0.5 has been proposed as the “operational 

definition” of a large effect size [30]. Using logistic regression, conventional likelihood ratio 

tests of multiplicative interactions were conducted, including one degree of freedom 

likelihood ratio tests (1-df LRT) for interaction and three degree of freedom tests (3-df LRT) 

for the combined main and interaction effects. Statistical significance was assessed 

according to FDR level of 0.05, using a parametric version of Millstein and Volfson [31]. 

Variables found to be significantly correlated with asthma status (Table 1) were included as 

adjustment covariates in the logistic models. While education level was not significant (p-

value = 0.14), it was nevertheless included due to prior evidence of association with asthma. 

Final models were adjusted for gender, ancestry, family history of asthma, age at sample 

collection, and education level. The ancestry variables were composed of the top two 

principal components computed by the software Eigensoft [32] using 128 ancestry 

informative markers (AIMs) [33]. The primary results do not include adjustment for site, 

because two ABRIDGE sites contributed only cases (Table 1). However, sensitivity analyses 

were conducted by restricting to sites that included both cases and controls and including 

site as an adjustment covariate, and the results did not change substantially (Supplemental 

Table S1).
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Results

Performance of the CASI Approach in Simulation Studies

The simulation results demonstrate that the CASI hypothesis test is sensitive to correlation 

differences between cases and controls and that sensitivity is associated with magnitude of 

the differences (Figures S1). We also found that CASI is a consistent test with asymptotics 

depending on effect size and that type I error is very low as the effect size approaches zero 

(Figure S2). CASI performed quite well in the simulation results as compared to other 

related approaches, especially in the vicinity of conventional levels of FDR that imply 

statistical significance (Figure S3). Applying a conventional pair-wise logistic regression 

approach combined with FDR evaluated significance to the same simulated data resulted in a 

complete failure to detect interactions, highlighting the utility of the proposed approach 

(Figure S3).

Demographics of the Asthma BRIDGE Population

Of the 576 participants, 62 percent had asthma (Table 1). While males and females were 

evenly distributed among cases, there were more females than males among the controls. 

Asthma cases had a greater percentage of Hispanics whereas controls had a greater 

proportion of African Americans. Frequency of asthma prevalence varied by clinic site by 

design, with some sites recruiting only cases.

CASI Analysis of Asthma BRIDGE Data

Note that p-values were not generated in the main analysis even as intermediate statistics 

because FDR was estimated directly from the observed and permuted CASI statistics. The 

estimated FDR and corresponding confidence intervals (CIs) for a series of increasingly 

stringent significance thresholds for the CASI test statistic demonstrate a downward trend 

with narrow confidence intervals (Figure 1), indicating that the CASI statistic is informative 

with respect to distinguishing observed from permuted data. However, this dynamic does not 

continue beyond about 4.35 where a minimum FDR occurs, implying that more extreme 

values of the CASI statistic do not correspond to lower rates of false discoveries. The 

threshold of 4.35 was therefore used to identify the most statistically significant results, 

yielding 12 genes, HOPX, SCARNA18, PF4, STC1, ATF3, OR10K1, UPK1B, 

LOC101928523, LHX6, CHMP4B, TPRA1, and LANCL1 (FDR = 0.050, CI = (0.024, 

0.104)). Though we highlight these 12 genes due to low FDR, it is clear from the tight CIs 

bracketing FDR estimates at more permissive significance thresholds that substantially more 

such interactions are implied by these results.

Pairwise SNP-CpG Interaction Analysis

Pairwise analyses of SNPs and CpG sites from the 12 significant genomic regions with 

loadings of 0.5 or greater using logistic regression revealed evidence of pairwise interactions 

for 19 top-loading pairs (Table 2), corresponding to 4 of the 12 genomic regions, 

LOC101928523, SCARNA18, LHX6, and STC1.

Although the 3-df tests were significant for most of these pairs, the 1-df tests tended to be 

more significant, implying that main effects were not appreciably contributing. Nine 
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individual SNPs and ten CpG sites in LHX6, three SNPs and two CpG sites in 

LOC101928523, and three SNPs and two CpG sites in SCARNA18 met the criteria of 

having loadings greater than 0.5 (Figure 2). The SNP-CpG pair with the greatest loadings 

did not always elicit a significant result for multiplicative interaction (Table S2), however, 

this is not surprising considering that the CASI statistic is formed from linear combinations 

of SNPs and CpGs. Multiple genomic regions, HOPX, PF4, ATF3, UPK1B, CHMP4B, 

TPRA1, and LANCL1 did not show evidence of interactions for their top loading SNP-CpG 

pair (Table S2). The lack of statistical significance for individual pairs may indicate that it is 

necessary to evaluate joint interactions between multiple SNPs and CpGs in order to have 

adequate power to detect the effects.

Additional pairwise interaction analyses were conducted for SNPs and CpGs with loadings 

greater than 0.5 underlying LHX6, LOC101928523, and SCARNA18 (Tables 3-5). 

Significant interactions were found for LHX6, where involved SNPs had negative loadings 

located at the center haplotype block interacting with CpG sites clustered to the right in a 

CpG island (Figure 2 and Table 3). Odds ratios for the main effects of both SNPs and CpGs 

in LHX6 were not statistically significant (Table 3). However, interactions for seven SNP-

CpG pairs were significant, with odds ratios (ORs) ranging from 0.53 (0.36, 0.77) to 0.84 

(0.74, 0.96) (Table 3). High LD between SNPs as well as dependencies among CpGs may 

explain the similarity in interaction effects that is apparent across SNP-CpG pairs. For 

LHX6, minor allele dose was associated with increasingly protective effects of methylation 

(Table 3). This trend is particularly apparent in the conditional ORs (ORmeth|SNP). For the 

most significant interaction in LHX6, individuals with the common GG genotype in 

rs10818651 had a 9% greater odds of asthma for a 5% difference in cg21469772 

methylation. Addition of one minor allele A reverses the association to a 21% decrease in 

the odds of asthma for 5% greater methylation, whereas individuals with AA had a 43% 

decrease. Similarly, for the next most significant interaction (rs10985567 and cg21213617), 

the odds of asthma for an individual with 5% higher methylation and GG (common 

homozygote) increases by 24% whereas the odds for an individual with 5% higher 

methylation and AA decreases by 66%.

In LHX6 the most statistically significant interaction involved the SNP with the greatest 

loading (rs10818651, loading = −0.86) (Table 2) that resides within the middle LD block 

(between base pair locations 124972042 and 124982500, indicated by vertical bars in Figure 

2), paired with CpG site cg01363324 (loading=0.53). The opposite signs of the loadings for 

this pair (Figure 2) convey that these variables are negatively correlated among cases (Figure 

3), which is reflected in the interaction pattern. Increasing minor allele dose of the SNP 

reflects an association between methylation level and asthma that is increasingly negative.

Boxplots of methylation values with jittered points can provide a visual demonstration of 

relationships underlying the significant interaction effects (Figure 3). For example, LHX6 
median methylation (cg04282082) is greater in individuals with asthma than controls with 

the GG genotype (rs10818651), but less within AG individuals. In general, for LHX6, 

increased methylation was protective in the presence of a minor allele (Table 3). In another 

example, median methylation of cg16688533 in STC1 is greater in individuals with asthma 

vs those without in AA individuals (rs9969426), but those with GG tend to be unmethylated 
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and have asthma. Another clear example can be observed for LOC101928523, where 

median methylation (cg07956857) is greater in CC individuals with asthma (rs13301641), 

approximately equal in TC individuals but less in TT.

SNPs within the LOC101928523 genomic region were confined to a single haplotype block 

(Figure 2). The highest loading SNPs, rs13301641 (loading = 0.87), rs11792474 (loading = 

0.87), and rs75088949 (loading = −0.68) as well as the highest loading CpG site, 

cg07956857 (loading = −0.89), were the most statistically significant interactions for this 

genomic region (Table S3). As with LHX6, there was little evidence of main effects, 

however, unlike LHX6, minor allele dose was accompanied by both decreased and increased 

ORs. The most significant interaction for LOC101928523, between rs13301641 and 

cg07956857, involved loadings with opposite signs (Figure 2), which reflected negative 

correlation between methylation level and number of minor alleles among individuals with 

asthma.

For SCARNA18 there were three SNPs, rs67216017, rs113665237, and rs10061690, all in 

high LD, with loadings greater than 0.5. Thus interaction analysis results are 

indistinguishable among the three (Table S4). The loadings for SNPs and CpGs are 

concordant (Figure 2), which is consistent with the idea that minor allele dose is associated 

with increasingly deleterious effects of methylation on asthma susceptibility. The range of 

methylation for cg14999833 is narrow (Figure 3), hence it is appropriate to estimate the 

effect over a 1% change. Deletion of allele ‘A’ near rs67216017 or ‘T’ near rs113665237 

appears to have an equivalent effect to presence of minor allele ‘A’ at rs10061690 on the 

relationship between methylation at the CpG site cg14999833 and asthma. With respect to 

cg14999833 a biologically meaningful effect is observed for a 1% difference in methylation 

in contrast to cg20697188 where a 5% difference is within the range of the observed data.

Discussion

The proposed statistical approach, CASI, was able to overcome the substantial challenges 

imposed by high dimensional data to identify statistical interactions between methylation 

variation at CpG sites and DNA variation in SNPs. Part of the explanation for the adequate 

power that led to this success as well as the superior performance of CASI in simulated data 

in comparison to other similar methods is the fact that CASI leverages the concept 

underlying the case-only interaction method, known to be a powerful approach [25,34]. This 

characteristic is unique to CASI among related set based methods designed to detect 

statistical interactions [35–37]. Another unique characteristic of the CASI approach is the 

reliance on a computationally efficient permutation based FDR estimator to define statistical 

significance. This is a nonparametric approach that is robust to feature distributions and 

yields confidence intervals that bracket the FDR estimates, allowing uncertainty in those 

estimates to be quantified. These confidence intervals play an especially important role in 

studies of weak effects where an FDR level of 0.05 may not be achievable.

A limitation of the CASI procedure is the inablility to explicitly adjust for potential 

confounding covariates. However, this problem was mitigated in follow up analyses by 

applying conventional logistic regression with covariates to pairs of features implied by 
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CASI results. Like many conventional approaches, CASI is designed to detect linear 

associations, which limits the power for non-linear relationships. However, considering that 

we were able to identify 12 genes with evidence of interactions using a sample size in the 

hundreds suggests that more interactions may be detectable if the sample size is increased 

substantially. Though the procedure requires considerable computational resources due to its 

reliance on permutations, the required number of permutations is small enough to allow 

genome-wide applications.

Though several previous studies have investigated statistical interactions between genetic 

and epigenetic variation [13–15,38], we know of no others that have attempted a genome-

wide assessment. CASI identified 12 genomic regions defined by the positions of 12 genes 

with evidence of statistical interactions between sets of SNPs and sets of methylated CpGs 

with respect to asthma risk. Of these 12 genes, 3 have previously been implicated in asthma 

risk or underlying biological pathways related to pathology of the disease, PF4 [39], ATF3 
[40,41], and TPRA1 [42]. Three genomic regions not previously implicated in asthma, 

LOC101928523, SCARNA18, and LHX6, contained the most statistically significant 

pairwise interactions between the considered individual SNPs and CpGs.

LHX6 (LIM homeobox domain 6) has not been implicated in asthma, however it is a 

recognized transcriptional regulator that controls the differentiation and development of 

lymphoid cells [43]. LHX6 is known to be regulated epigenetically in lung cancer, where in 

vitro and in vivo studies found that in normal lung tissue it is readily expressed but down-

regulated or silenced in lung cancer cells in which the gene is hyper-methylated [43]. Other 

evidence of epigenetic regulation in the vicinity of LHX6 has been found in head and neck 

squamous cell carcinomas (HNSCC) [44]. Similar to the lung cancer study, hyper-

methylation of the CpG island in LHX6 was associated with transcriptional silencing of 

LHX6. These findings suggest that differential methylation near LHX6 plays a role in lung 

biology and lends credence to a potential role in asthma.

The three genes previously implicated in asthma pathogenesis are PF4, ATF3, and TPRA1. 

PF4 (Platelet Factor 4) is a protein coding gene which functions as an inhibitor of T-cell 

function [45]. PF4 activation in the lung is a feature of the late inflammatory response to 

antigen challenge and may play an important role in allergic inflammation and asthma [46]. 

Atf3 (Activating transcription factor 3) is a negative regulator of allergic inflammation in 

mice challenged with ovalbumin [47] and deficiency in mice leads to the development of 

significantly increased airway hyper-responsiveness and pulmonary eosinophilia [40]. 

Significant increases in ATF3 mRNA have also been observed in patients with mild asthma 

as compared with non-asthmatic patients [48]. TPRA1 (transmembrane protein adipocyte 

associated 1) is an irritant-sensing cation channel expressed in TRPV1-positive, capsaicin-

sensitive chemosensory neurons that innervate various organs, including the airways [49]. 

Various exogenous chemicals have been described to activate TRPA1, including agents 

recognized to trigger and/or worsen asthma such as diisocyanates, cigarette smoke, acrolein, 

and chlorine [42]. A potential role of TRPA1 in mediating allergen-induced asthmatic 

responses has been described in ovalbumin-sensitized mice, in which genetic deletion of 

Trpa1 or pretreatment with a selective Trpa1 antagonist reduced leukocyte infiltration, 

decreased cytokine and mucus production, and almost completely abolished airway 
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hyperactivity [49]. Bessac et al. (2008) suggested that TRPA1 may function as an integrator 

of immunological stimuli modulating inflammation in the airways [50]. Furthermore, 

chemical irritant-induced activation of TRPA1 may trigger the release of neuropeptides and 

chemokines in the airways, thereby exacerbating the cellular and tissue inflammatory 

response observed in allergic individuals [51].

HOPX, OR10K1, UPK1B, CHMP4B, and LANCL1 were identified as significantly 

associated with asthma in the tests for joint interactions but require further investigation into 

their putative biological functions. There is scant prior evidence of a role for these genes in 

pulmonary or immune function, lung disease, or asthma, although HOPX is involved in the 

function of regulatory T cells [52].

Conclusions

We demonstrated that simultaneous consideration of genomic and epigenomic variation has 

the potential to identify genetic risk factors for asthma beyond individual GWAS studies or 

epigenetic screens. These results add to existing evidence suggesting a synergy between 

genomic and epigenomic variation affecting risk of asthma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
FDR and confidence intervals for 18,178 genomic regions (genes) defined by 2kb up and 

downstream of each gene. The value of the CASI statistic (x-axis) has no direct 

interpretation other than that larger values are more extreme. 12 significant genomic regions 

correspond to a threshold of 4.35 (vertical dashed line) and FDR of 0.05, CI = (0.024, 

0.104). Integer values shown in green specify the number of genomic regions with CASI 

statistics at least as extreme as the thresholds specified by the horizontal axis.
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Figure 2: 
SNP and methylation loadings for genomic regions LOC101928523, LHX6, and 

SCARNA18 with LD heat maps. Red circles indicate SNPs and blue squares CpG sites. The 

horizontal axis indicates base pair (BP) positions in each of the three genomic regions. Heat 

maps represent dependencies between SNPs and CpGs (alignment is approximate).
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Figure 3: 
Interaction box plots for SNP-methylation pairs with highest loadings in the top 12 genomic 

regions. (See supplemental Table S1 for adjusted odds ratios.)
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TABLE 1.

Characteristics of Participants in the ABRIDGE Study.

Asthma Case Asthma Control

N (%) N (%)

356 (61.81) 220 (38.19)

Characteristic n (%) n (%)

Gender

 Male 169 (47.5) 78 (35.5)

 Female 187 (52.5) 142 (64.5)

Race/Ethnicity

 European 73 (20.5) 41 (18.6)

 Hispanic/Latino 174 (48.9) 65 (29.5)

 Black or African American 67 (18.8) 92 (41.8)

 Other/Multiple/Uncertain 42 (11.8) 22 (10.0)

Education

 Did Not Complete High School 41 (11.5) 20 (9.1)

 High School or GED Degree 96 (27.0) 51 (23.2)

 Some College 97 (27.2) 74 (33.6)

 College Degree 71 (19.9) 44 (20.0)

 Post-College Coursework 18 (5.1) 15 (6.8)

 Graduate or Professional Degree 18 (5.1) 14 (6.4)

 Other 15 (4.2) 2 (0.9)

Site

 GRAAD, JH 39 (11.0) 87 (39.5)

 CAG/UAC 32 (9.0) 18 (8.2)

 CHS/USC 119 (33.4) 115 (52.3)

 CARE; Denver NJH, Tucson/UARC, St. Louis/WUC, Madison/UWM 42 (11.8) 0 (0)

 MCCAS 124 (34.8) 0 (0)

Age at Methylation Measure

 0–10 4 (1.1) 0 (0)

 10–20 134 (37.6) 4 (1.8)

 20–30 162 (45.5) 143 (65.0)

 30–40 23 (6.5) 21 (9.5)

 40–50 16 (4.5) 27 (12.3)

 50–60 13 (3.7) 21 (9.5)

 >60 4 (1.1) 4 (1.8)

Family History of Asthma

 Yes 173 (48.6) 51 (23.2)

 No 183 (51.4) 169 (76.8)
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Asthma Case Asthma Control

N (%) N (%)

356 (61.81) 220 (38.19)

Characteristic n (%) n (%)

Age at Diagnosis

 0–2 90 (25.3)

 2–5 100 (28.1)

 5–8 64 (18.0)

 8–11 57 (16.0)

 11–14 15 (4.2)

 14–17 9 (2.5)

 >17 21 (5.9)
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Table 2:

Significant interactions for SNPs and CpGs with loadings > 0.5.

SNP Methylation Coefficient
SNP×Meth Interaction

P-Value
1-df LRT

P-Value
3-df LRT

Gene

rs67216017(G/GA) cg14999833 19.79 2.84E-05 1.33E-04 SCARNA18

rs113665237(A/AT) cg14999833 19.79 2.84E-05 1.33E-04 SCARNA18

rs10061690 cg14999833 19.79 2.84E-05 1.33E-04 SCARNA18

rs10818651 cg01363324 −24.84 1.17E-04 8.21E-04 LHX6

rs13301641 cg07956857 −8.11 1.28E-04 1.11E-03 LOC101928523

rs11792474 cg07956857 −7.86 1.79E-04 1.49E-03 LOC101928523

rs10818651 cg21469772 −6.47 2.49E-04 3.74E-03 LHX6

rs10985567 cg01363324 −23.97 2.99E-04 4.35E-04 LHX6

rs10818651 cg04282082 −4.99 3.59E-04 4.88E-03 LHX6

rs10818651 cg13832372 12.80 3.68E-04 1.44E-03 LHX6

rs10985567 cg21213617 −12.88 6.19E-04 4.51E-03 LHX6

rs10985567 cg13832372 12.61 6.42E-04 4.55E-04 LHX6

rs10985567 cg21469772 −6.19 8.17E-04 4.18E-03 LHX6

rs989798 cg04282082 −4.70 1.17E-03 7.01E-03 LHX6

chr8/BP:23713016 (C/CT) cg16688533 −3.99 1.20E-03 3.87E-03 STC1

rs989798 cg13832372 12.33 1.42E-03 1.85E-03 LHX6

rs10818651 cg21213617 −11.34 1.54E-03 1.53E-02 LHX6

rs989798 cg21469772 −5.69 1.60E-03 1.24E-02 LHX6

rs10985567 cg04282082 −4.61 1.73E-03 4.51E-03 LHX6

Statistically significant (FDR < 0.05) pairwise interactions (1-df LRT) for top loading SNPs and CpGs from the 12 genomic regions identified as 
significant by CASI. Logistic regression models were adjusted for gender, ancestry/ethnicity, family history of asthma, age at methylation measure, 
and education level. Very similar p-values may be indicative of SNPs in high LD.
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