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Abstract

Objectives—There is evidence to suggest that asthma pathogenesis is affected by both genetic
and epigenetic variation independently, and there is some evidence to suggest genetic-epigenetic
interactions affect risk of asthma. However, little research has been done to identify such
interactions on a genome-wide scale. The aim of this studies was to identify genes with genetic-
epigenetic interactions associated with asthma.

Methods—Using asthma case-control data, we applied a novel nonparametric gene-centric
approach to test for interactions between multiple SNPs and CpG sites simultaneously in the
vicinities of 18,178 genes across the genome.

Results—Twelve genes, PF4, ATF3, TPRA1, HOPX, SCARNA18, STC1, OR10K1, UPK1B,
LOC101928523, LHX6, CHMP4B, and LANCL 1, exhibited statistically significant SNP-CpG
interactions (FDR = 0.05). Of these, three have previously been implicated in asthma risk, PF4,
ATF3 and TPRAL. Follow-up analysis revealed statistically significant pairwise SNP-CpG
interactions for several of these genes, including SCARNA18, LHX6, and LOC101928523, (P-
Values = (1.33E-04, 8.21E-04, 1.11E-03), respectively).
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Conclusions—Joint effects of genetic and epigenetic variation may play an important role in
asthma pathogenesis. Statistical methods that simultaneously account for multiple variations
across chromosomal regions may be needed to detect these types of effects on a genome-wide

scale.
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Introduction

Methods

Asthma is a chronic inflammatory disorder of the airways, characterized by airway hyper-
responsiveness and airflow limitation. Asthma prevalence has increased in recent years [1],
afflicting 300 million worldwide, and is highly variable across population centers, ranging
from 1% to 18% [2]. In the United States more than 23 million people were diagnosed with
asthma as of August 2015, including over 6 million children [3].

Numerous genome-wide association studies (GWAS) have shown a substantial genomic
contribution to the etiology of asthma, with heritability estimates varying between 35% and
95% [4-6]. However, only a fraction of this variation has been explained by specific causal
variants, such as those near Chr17q12-21 [7,8]. Epigenetic mechanisms, another source of
disease variation, may explain a portion of this missing heritability [9-11]. Epigenomic
alterations, while heritable, may also occur as a response to the endogenous and exogenous
environment, and contribute to asthma pathogenesis [9,12].

There is evidence to suggest that genetic and epigenetic variation interact synergistically to
affect gene expression [13]. In fact, interactions between SNPs and DNA methylation in the
genomic regions of T-helper 2 pathway genes /L4R and others were found to affect asthma
risk [14,15], possibly through expression of these genes.

Methods for detecting statistical interactions in population studies often involve linear or
logistic models that include a product term to represent the interaction effect. These pairwise
approaches suffer from a multiple testing challenge [16,17], which is particular severe if
applied on a genome-wide scale. For example, in a study with one million SNPs and
450,000 CpG sites, 450 billion tests would be required. In addition, pairwise approaches
may not optimally leverage information from dependencies between SNPs and CpG sites
across contiguous genomic regions. Using case-control data, we applied a novel gene-centric
approach to test for interactions between multiple SNPs and CpG sites simultaneously in the
neighborhood of each gene across the whole genome.

Asthma BRIDGE Data

These data are from the Asthma BioRepository for Integrative Genomic Exploration
(Asthma BRIDGE) [18-21], which is publicly accessible and includes 1542 individuals with
asthma and controls with comprehensive phenotype and genomic data. Asthma was defined
via questionnaire by the presence of asthma symptoms, use of an inhaled bronchodilator at
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least twice per week, or use of a daily asthma medication for the 6 months before the
screening interview. Genome-wide SNP and DNA methylation was obtained from whole
blood samples from 576 participants. Samples were randomized to avoid confounding by
experimental batch. The final data set included 356 asthmatic and 220 non-asthmatic adults,
for whom we had complete data.

Genotyping and DNA Methylation

Genotyping methods are described in detail in Torgerson et al. [19]. Briefly, SNPs included
all Phase 2, Release 21 consensus HapMap variants and were obtained from studies
participating in the EVE consortium [19,22]. The genotyping platforms, Illumina (1Mv1,
550k, 610k, 650k) and Affymetrix (500K, 6.0), varied by sample source. Quality control
(QC) procedures included filtration for call rates (> 95%) and tests for agreement with
Hardy-Weinberg expectations applied to SNPs oriented to the plus strand. High-density
imputation using 1000 Genomes reference panel was performed using the MACH software
[23]. Data were checked for consistency in reference alleles and strand orientation, and
SNPs were excluded based on low quality scores and examination of QQ plots comparing
the distribution of association p-values for genotyped and imputed markers. SNPs with
minor allele frequencies less than 0.05 were excluded.

A total of 11 plates were run on the lllumina human 450K methylation platform. Data
preprocessing steps included application of Norm-Exponential (NE) background correction
on the raw methylation data, plate by plate for all 11 plates. HG19 annotations, including
gene symbols, chromosome number, and sequence position, were added via the
Bioconductor package, FDb.InfiniumMethylation.hg19. One sample from a non-asthmatic
participant was excluded due to having an extreme value of 1.0 for all probes. Methylation
of CpG sites were assessed for outliers, and observations exceeding 3 interquartile ranges
(IQRs) from the 25 and 75™ percentiles, per Tukey’s outer fences [24], were removed
unless they comprised greater than or equal to 5% of the data for that variable. The 11 NE
corrected plates were combined and four additional samples were excluded as outliers. Dye
bias (DB) correction was done using one sample as reference for all others, and quantile
normalization (QN) was applied to the resulting data set.

Canonical Analysis of Set Interactions (CASI)

Here we describe and apply a new method, CASI, designed to identify statistical interactions
between high-order sets of features in a simultaneous approach. In contrast to direct
interactions in which DNA sequence variation affects DNA methylation, we are seeking to
identify genomic regions underlying genes where there is synergism between the effects of
SNPs and methylation on asthma susceptibility.

CASI is described in detail in Supplemental Methods and is freely available to the public in
a downloadable R package (https://github.com/USCbiostats/CASI). Briefly, it is a hypothesis
testing approach to detect differences in correlations between linear combinations of SNPs
and CpG sites in cases vs. controls. In this study, SNPs and CpG sites were mapped to the
nearest gene, thus defining the feature sets, with positions identified using the UCSC
genome browser for all RefSeq genes. Overlapping isoforms of the same gene were
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combined to form a single full length version. SNPs and CpG sites residing in flanking
regions extending 2kb on either side were included. A total of 18,178 gene-centric regions
were identified across the genome. Using canonical correlation analysis (CCA), coefficients
that maximize the correlation, the canonical correlation, between linear combinations of the
SNPs and CpG sites are estimated in cases. The same coefficients are then used to compute
linear combinations in controls. The CASI statistic is based on the scaled difference between
Fisher transformed canonical correlation coefficients in cases vs controls. Estimation is
performed in cases because it leverages the superior statistical power of the case-only
interaction analysis approach [25]; dependencies among predictive variables in cases may
indicate multiplicative interactions in their effects on disease [26,27]. Due to the limitations
of CCA in the number of variables relative to the sample size, sparse canonical correlation
analysis as described by Tibshirani and Hastie [28] is applied for sets with dimensions that
are too large to be accommaodated by conventional CCA. The parametric distribution of this
test statistic, the scaled difference between cases and controls, is unknown. Therefore we use
a permutation-based procedure to estimate the null distribution by randomly permuting case
status and computing the test statistic. The permutation analysis is conducted repeatedly
until a sufficient number of values have been generated under the null. Rather than compute
p-values, a computationally efficient FDR approach is used that requires few permutations
and yields confidence intervals that account for dependencies among tests as well as the
number of permutations conducted [29]. For this study, 100 permutation analyses were
conducted and statistical significance was defined by an FDR threshold of 0.05.

Follow-up Analyses in Significant Regions

SNPs and CpG sites can be ranked in their contribution to the test statistic by computing
correlations, /oadings, in cases with their corresponding linear combinations, the canonical
variates. SNP-CpG site pairs that were the greatest contributors to statistically significant
tests were identified by selecting all SNP-CpG pairs among those with loadings greater than
0.5 within a gene region. The loading threshold of 0.5 has been proposed as the “operational
definition” of a large effect size [30]. Using logistic regression, conventional likelihood ratio
tests of multiplicative interactions were conducted, including one degree of freedom
likelihood ratio tests (1-df LRT) for interaction and three degree of freedom tests (3-df LRT)
for the combined main and interaction effects. Statistical significance was assessed
according to FDR level of 0.05, using a parametric version of Millstein and Volfson [31].
Variables found to be significantly correlated with asthma status (Table 1) were included as
adjustment covariates in the logistic models. While education level was not significant (p-
value = 0.14), it was nevertheless included due to prior evidence of association with asthma.
Final models were adjusted for gender, ancestry, family history of asthma, age at sample
collection, and education level. The ancestry variables were composed of the top two
principal components computed by the software Eigensoft [32] using 128 ancestry
informative markers (AlMs) [33]. The primary results do not include adjustment for site,
because two ABRIDGE sites contributed only cases (Table 1). However, sensitivity analyses
were conducted by restricting to sites that included both cases and controls and including
site as an adjustment covariate, and the results did not change substantially (Supplemental
Table S1).
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Results

Performance of the CASI Approach in Simulation Studies

The simulation results demonstrate that the CASI hypothesis test is sensitive to correlation
differences between cases and controls and that sensitivity is associated with magnitude of
the differences (Figures S1). We also found that CASI is a consistent test with asymptotics
depending on effect size and that type | error is very low as the effect size approaches zero
(Figure S2). CASI performed quite well in the simulation results as compared to other
related approaches, especially in the vicinity of conventional levels of FDR that imply
statistical significance (Figure S3). Applying a conventional pair-wise logistic regression
approach combined with FDR evaluated significance to the same simulated data resulted in a
complete failure to detect interactions, highlighting the utility of the proposed approach
(Figure S3).

Demographics of the Asthma BRIDGE Population

Of the 576 participants, 62 percent had asthma (Table 1). While males and females were
evenly distributed among cases, there were more females than males among the controls.
Asthma cases had a greater percentage of Hispanics whereas controls had a greater
proportion of African Americans. Frequency of asthma prevalence varied by clinic site by
design, with some sites recruiting only cases.

CASI Analysis of Asthma BRIDGE Data

Note that p-values were not generated in the main analysis even as intermediate statistics
because FDR was estimated directly from the observed and permuted CASI statistics. The
estimated FDR and corresponding confidence intervals (Cls) for a series of increasingly
stringent significance thresholds for the CASI test statistic demonstrate a downward trend
with narrow confidence intervals (Figure 1), indicating that the CASI statistic is informative
with respect to distinguishing observed from permuted data. However, this dynamic does not
continue beyond about 4.35 where a minimum FDR occurs, implying that more extreme
values of the CASI statistic do not correspond to lower rates of false discoveries. The
threshold of 4.35 was therefore used to identify the most statistically significant results,
yielding 12 genes, HOPX, SCARNA18, PF4, STC1, ATF3, OR10K1, UPK1B,
LOC101928523, L HX6, CHMP4B, TPRA1, and LANCL1 (FDR = 0.050, CI = (0.024,
0.104)). Though we highlight these 12 genes due to low FDR, it is clear from the tight Cls
bracketing FDR estimates at more permissive significance thresholds that substantially more
such interactions are implied by these results.

Pairwise SNP-CpG Interaction Analysis

Pairwise analyses of SNPs and CpG sites from the 12 significant genomic regions with
loadings of 0.5 or greater using logistic regression revealed evidence of pairwise interactions
for 19 top-loading pairs (Table 2), corresponding to 4 of the 12 genomic regions,
LOC101928523, SCARNA18, LHXE6, and STCL.

Although the 3-df tests were significant for most of these pairs, the 1-df tests tended to be
more significant, implying that main effects were not appreciably contributing. Nine
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individual SNPs and ten CpG sites in LHX86, three SNPs and two CpG sites in
LOC101928523, and three SNPs and two CpG sites in SCARNA18 met the criteria of
having loadings greater than 0.5 (Figure 2). The SNP-CpG pair with the greatest loadings
did not always elicit a significant result for multiplicative interaction (Table S2), however,
this is not surprising considering that the CASI statistic is formed from linear combinations
of SNPs and CpGs. Multiple genomic regions, HOPX, PF4, ATF3, UPK1B, CHMPA45,
TPRA1, and LANCL did not show evidence of interactions for their top loading SNP-CpG
pair (Table S2). The lack of statistical significance for individual pairs may indicate that it is
necessary to evaluate joint interactions between multiple SNPs and CpGs in order to have
adequate power to detect the effects.

Additional pairwise interaction analyses were conducted for SNPs and CpGs with loadings
greater than 0.5 underlying LHX6, LOC101928523, and SCARNA18 (Tables 3-5).
Significant interactions were found for LAH.X6, where involved SNPs had negative loadings
located at the center haplotype block interacting with CpG sites clustered to the right in a
CpG island (Figure 2 and Table 3). Odds ratios for the main effects of both SNPs and CpGs
in LHX6 were not statistically significant (Table 3). However, interactions for seven SNP-
CpG pairs were significant, with odds ratios (ORs) ranging from 0.53 (0.36, 0.77) to 0.84
(0.74, 0.96) (Table 3). High LD between SNPs as well as dependencies among CpGs may
explain the similarity in interaction effects that is apparent across SNP-CpG pairs. For
LHX®6, minor allele dose was associated with increasingly protective effects of methylation
(Table 3). This trend is particularly apparent in the conditional ORs (ORpethsnp)- For the
most significant interaction in LAHX®, individuals with the common GG genotype in
rs10818651 had a 9% greater odds of asthma for a 5% difference in cg21469772
methylation. Addition of one minor allele A reverses the association to a 21% decrease in
the odds of asthma for 5% greater methylation, whereas individuals with AA had a 43%
decrease. Similarly, for the next most significant interaction (rs10985567 and cg21213617),
the odds of asthma for an individual with 5% higher methylation and GG (common
homozygote) increases by 24% whereas the odds for an individual with 5% higher
methylation and AA decreases by 66%.

In LHX6the most statistically significant interaction involved the SNP with the greatest
loading (rs10818651, loading = —0.86) (Table 2) that resides within the middle LD block
(between base pair locations 124972042 and 124982500, indicated by vertical bars in Figure
2), paired with CpG site cg01363324 (loading=0.53). The opposite signs of the loadings for
this pair (Figure 2) convey that these variables are negatively correlated among cases (Figure
3), which is reflected in the interaction pattern. Increasing minor allele dose of the SNP
reflects an association between methylation level and asthma that is increasingly negative.

Boxplots of methylation values with jittered points can provide a visual demonstration of
relationships underlying the significant interaction effects (Figure 3). For example, LHX6
median methylation (cg04282082) is greater in individuals with asthma than controls with
the GG genotype (rs10818651), but less within AG individuals. In general, for LHXE,
increased methylation was protective in the presence of a minor allele (Table 3). In another
example, median methylation of cg16688533 in S7CZ is greater in individuals with asthma
vs those without in AA individuals (rs9969426), but those with GG tend to be unmethylated
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and have asthma. Another clear example can be observed for LOC101928523, where
median methylation (cg07956857) is greater in CC individuals with asthma (rs13301641),
approximately equal in TC individuals but less in TT.

SNPs within the LOC101928523 genomic region were confined to a single haplotype block
(Figure 2). The highest loading SNPs, rs13301641 (loading = 0.87), rs11792474 (loading =
0.87), and rs75088949 (loading = —0.68) as well as the highest loading CpG site,
cg07956857 (loading = —0.89), were the most statistically significant interactions for this
genomic region (Table S3). As with LHX6, there was little evidence of main effects,
however, unlike LAHX6, minor allele dose was accompanied by both decreased and increased
ORs. The most significant interaction for LOC101928523, between rs13301641 and
cg07956857, involved loadings with opposite signs (Figure 2), which reflected negative
correlation between methylation level and number of minor alleles among individuals with
asthma.

For SCARNA18there were three SNPs, rs67216017, rs113665237, and rs10061690, all in
high LD, with loadings greater than 0.5. Thus interaction analysis results are
indistinguishable among the three (Table S4). The loadings for SNPs and CpGs are
concordant (Figure 2), which is consistent with the idea that minor allele dose is associated
with increasingly deleterious effects of methylation on asthma susceptibility. The range of
methylation for cg14999833 is narrow (Figure 3), hence it is appropriate to estimate the
effect over a 1% change. Deletion of allele ‘A’ near rs67216017 or ‘T’ near rs113665237
appears to have an equivalent effect to presence of minor allele ‘A’ at rs10061690 on the
relationship between methylation at the CpG site cg14999833 and asthma. With respect to
cg14999833 a biologically meaningful effect is observed for a 1% difference in methylation
in contrast to cg20697188 where a 5% difference is within the range of the observed data.

Discussion

The proposed statistical approach, CASI, was able to overcome the substantial challenges
imposed by high dimensional data to identify statistical interactions between methylation
variation at CpG sites and DNA variation in SNPs. Part of the explanation for the adequate
power that led to this success as well as the superior performance of CASI in simulated data
in comparison to other similar methods is the fact that CASI leverages the concept
underlying the case-only interaction method, known to be a powerful approach [25,34]. This
characteristic is unique to CASI among related set based methods designed to detect
statistical interactions [35-37]. Another unique characteristic of the CASI approach is the
reliance on a computationally efficient permutation based FDR estimator to define statistical
significance. This is a nonparametric approach that is robust to feature distributions and
yields confidence intervals that bracket the FDR estimates, allowing uncertainty in those
estimates to be quantified. These confidence intervals play an especially important role in
studies of weak effects where an FDR level of 0.05 may not be achievable.

A limitation of the CASI procedure is the inablility to explicitly adjust for potential
confounding covariates. However, this problem was mitigated in follow up analyses by
applying conventional logistic regression with covariates to pairs of features implied by
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CASI results. Like many conventional approaches, CASI is designed to detect linear
associations, which limits the power for non-linear relationships. However, considering that
we were able to identify 12 genes with evidence of interactions using a sample size in the
hundreds suggests that more interactions may be detectable if the sample size is increased
substantially. Though the procedure requires considerable computational resources due to its
reliance on permutations, the required number of permutations is small enough to allow
genome-wide applications.

Though several previous studies have investigated statistical interactions between genetic
and epigenetic variation [13-15,38], we know of no others that have attempted a genome-
wide assessment. CASI identified 12 genomic regions defined by the positions of 12 genes
with evidence of statistical interactions between sets of SNPs and sets of methylated CpGs
with respect to asthma risk. Of these 12 genes, 3 have previously been implicated in asthma
risk or underlying biological pathways related to pathology of the disease, PF4[39], ATF3
[40,41], and TPRA1[42]. Three genomic regions not previously implicated in asthma,
LOC101928523, SCARNA18, and LHX®6, contained the most statistically significant
pairwise interactions between the considered individual SNPs and CpGs.

LHX6 (LIM homeobox domain 6) has not been implicated in asthma, however it is a
recognized transcriptional regulator that controls the differentiation and development of
lymphoid cells [43]. LHX®6is known to be regulated epigenetically in lung cancer, where in
vitro and in vivo studies found that in normal lung tissue it is readily expressed but down-
regulated or silenced in lung cancer cells in which the gene is hyper-methylated [43]. Other
evidence of epigenetic regulation in the vicinity of LAH.X6 has been found in head and neck
squamous cell carcinomas (HNSCC) [44]. Similar to the lung cancer study, hyper-
methylation of the CpG island in LHX6 was associated with transcriptional silencing of
LHX®6. These findings suggest that differential methylation near LH.X6 plays a role in lung
biology and lends credence to a potential role in asthma.

The three genes previously implicated in asthma pathogenesis are PF4, ATF3, and TPRAL
PF4 (Platelet Factor 4) is a protein coding gene which functions as an inhibitor of T-cell
function [45]. PF4 activation in the lung is a feature of the late inflammatory response to
antigen challenge and may play an important role in allergic inflammation and asthma [46].
Alf3 (Activating transcription factor 3) is a negative regulator of allergic inflammation in
mice challenged with ovalbumin [47] and deficiency in mice leads to the development of
significantly increased airway hyper-responsiveness and pulmonary eosinophilia [40].
Significant increases in ATF3mRNA have also been observed in patients with mild asthma
as compared with non-asthmatic patients [48]. TPRAZ (transmembrane protein adipocyte
associated 1) is an irritant-sensing cation channel expressed in TRPV1-positive, capsaicin-
sensitive chemosensory neurons that innervate various organs, including the airways [49].
Various exogenous chemicals have been described to activate 7/RPAZ, including agents
recognized to trigger and/or worsen asthma such as diisocyanates, cigarette smoke, acrolein,
and chlorine [42]. A potential role of 7RPAZ in mediating allergen-induced asthmatic
responses has been described in ovalbumin-sensitized mice, in which genetic deletion of
Trpal or pretreatment with a selective 7rpal antagonist reduced leukocyte infiltration,
decreased cytokine and mucus production, and almost completely abolished airway
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hyperactivity [49]. Bessac et al. (2008) suggested that 7RPAZ may function as an integrator
of immunological stimuli modulating inflammation in the airways [50]. Furthermore,
chemical irritant-induced activation of 7/RPAI may trigger the release of neuropeptides and
chemokines in the airways, thereby exacerbating the cellular and tissue inflammatory
response observed in allergic individuals [51].

HOPX, OR10K1, UPK1B, CHMP4B, and LANCL 1 were identified as significantly
associated with asthma in the tests for joint interactions but require further investigation into
their putative biological functions. There is scant prior evidence of a role for these genes in
pulmonary or immune function, lung disease, or asthma, although #OPX is involved in the
function of regulatory T cells [52].

Conclusions

We demonstrated that simultaneous consideration of genomic and epigenomic variation has
the potential to identify genetic risk factors for asthma beyond individual GWAS studies or
epigenetic screens. These results add to existing evidence suggesting a synergy between
genomic and epigenomic variation affecting risk of asthma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
FDR and confidence intervals for 18,178 genomic regions (genes) defined by 2kb up and

downstream of each gene. The value of the CASI statistic (x-axis) has no direct

interpretation other than that larger values are more extreme. 12 significant genomic regions

correspond to a threshold of 4.35 (vertical dashed line) and FDR of 0.05, Cl = (0.024,
0.104). Integer values shown in green specify the number of genomic regions with CASI
statistics at least as extreme as the thresholds specified by the horizontal axis.
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Figure 3:

Interaction box plots for SNP-methylation pairs with highest loadings in the top 12 genomic
regions. (See supplemental Table S1 for adjusted odds ratios.)
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TABLE 1.
Characteristics of Participants in the ABRIDGE Study.

Asthma Case  Asthma Control
N (%) N (%)
356 (61.81) 220 (38.19)
Characteristic n (%) n (%)
Gender
Male 169 (47.5) 78 (35.5)
Female 187 (52.5) 142 (64.5)
Race/Ethnicity
European 73 (20.5) 41 (18.6)
Hispanic/Latino 174 (48.9) 65 (29.5)
Black or African American 67 (18.8) 92 (41.8)
Other/Multiple/Uncertain 42 (11.8) 22 (10.0)
Education
Did Not Complete High School 41 (11.5) 20(9.1)
High School or GED Degree 96 (27.0) 51(23.2)
Some College 97 (27.2) 74 (33.6)
College Degree 71(19.9) 44 (20.0)
Post-College Coursework 18 (5.1) 15 (6.8)
Graduate or Professional Degree 18 (5.1) 14 (6.4)
Other 15 (4.2) 2(0.9)
Site
GRAAD, JH 39 (11.0) 87 (39.5)
CAG/UAC 32(9.0) 18 (8.2)
CHS/USC 119 (33.4) 115 (52.3)
CARE; Denver NJH, Tucson/UARC, St. Louis/WUC, Madison/UWM 42 (11.8) 0 (0)
MCCAS 124 (34.8) 0 (0)
Age at Methylation Measure
0-10 4(1.1) 0(0)
10-20 134 (37.6) 4(1.8)
20-30 162 (45.5) 143 (65.0)
30-40 23 (6.5) 21 (9.5)
40-50 16 (4.5) 27 (12.3)
50-60 13 (3.7) 21 (9.5)
>60 4(1.1) 4(1.8)
Family History of Asthma
Yes 173 (48.6) 51 (23.2)
No 183 (51.4) 169 (76.8)
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Asthma Case  Asthma Control

N (%) N (%)
356 (61.81) 220 (38.19)

Characteristic n (%) n (%)
Age at Diagnosis

0-2 90 (25.3)

2-5 100 (28.1)

5-8 64 (18.0)

8-11 57 (16.0)

11-14 15 (4.2)

14-17 9(2.5)

>17 21 (5.9)
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Table 2:

Significant interactions for SNPs and CpGs with loadings > 0.5.

SNP Methylation  Coefficient P-Value P-Value Gene
SNPxMeth Interaction  1-df LRT  3-df LRT

rs67216017(G/GA) €g14999833 19.79 2.84E-05 1.33E-04 SCARNAIS

rs113665237(A/AT) €g14999833 19.79 2.84E-05 1.33E-04 SCARNA1E

rs10061690 €g14999833 19.79 2.84E-05 1.33E-04 SCARNAIS
rs10818651 cg01363324 -24.84 1.17E-04  8.21E-04 LHX6

rs13301641 cg07956857 -8.11 1.28E-04 1.11E-03 LOC101928523
rs11792474 €g07956857 -7.86 1.79E-04 1.49E-03 LOC101928523

rs10818651 €g21469772 -6.47 2.49E-04  3.74E-03 LHX6
rs10985567 €g01363324 -23.97 2.99E-04 4.35E-04 LHX6
rs10818651 €g04282082 -4.99 3.59E-04 4.88E-03 LHX6
rs10818651 €g13832372 12.80 3.68E-04 144E-03 LHX6
s10985567 €g21213617 -12.88 6.19E-04  4.51E-03 LHX6
rs10985567 €g13832372 12.61 6.42E-04  4.55E-04 LHX6
s10985567 €g21469772 -6.19 8.17E-04  4.18E-03 LHX6
rs989798 €g04282082 -4.70 117E-03  7.01E-03 LHXE
chr8/BP:23713016 (C/CT) cg16688533 -3.99 1.20E-03  3.87E-03 S7CI
rs989798 913832372 12.33 1.42E-03 1.85E-03 LHXE
rs10818651 €g21213617 -11.34 1.54E-03  1.53E-02 LHX6
rs989798 €g21469772 -5.69 1.60E-03  1.24E-02 LHX6
s10985567 €g04282082 -4.61 1.73E-03  451E-03 LHX6

Page 19

Statistically significant (FDR < 0.05) pairwise interactions (1-df LRT) for top loading SNPs and CpGs from the 12 genomic regions identified as
significant by CASI. Logistic regression models were adjusted for gender, ancestry/ethnicity, family history of asthma, age at methylation measure,
and education level. Very similar p-values may be indicative of SNPs in high LD.
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