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ABSTRACT: The putative active metabolite of aeruginascin, a naturally occurring
tryptamine of “magic mushrooms,” has been synthesized and structurally characterized.
Competitive radioligand binding assays demonstrate that it has a high affinity at human
serotonin receptors 5-HT1A, 5-HT2A, and 5-HT2B, though it does not bind at the 5-HT3
receptor, where activity was previously predicted.

■ INTRODUCTION

More than 200 species of fungi, collectively known as “magic
mushrooms,” including those from the genus Psilocybe, are
known to contain psychoactive tryptamine compounds.1

Components of “magic mushrooms” (i.e., psilocybin/psilocin)
have incredible potential for treating intractable mental and
physical conditions.2 These drugs show promise in the
treatment of disorders, including addiction,3,4 anxiety,5

depression,6 and post-traumatic stress disorder.7 Of note,
psilocybin was granted the “breakthrough therapy” designation
by the US Food and Drug Administration (FDA).8 This FDA
designation has cleared the way for clinical trials of psilocybin
to treat major depressive disorders and treatment-resistant
depression.
One of the biggest concerns in using these compounds as

pharmaceuticals for humans is the potential for a “bad trip” or
dysphoric experience.9 The extracts of “magic mushrooms”
demonstrate the same clinical effects as pure psilocybin at
dosages that are an order of magnitude smaller,10 suggesting
important activity by other psychoactive molecules or the
presence of an entourage effect.11 To have a better under-
standing of how “magic mushroom” extracts function, it is
important to understand the properties of the minor active
components of “magic mushrooms,” alone and in combination
with psilocybin.
New psychoactive tryptamines have been identified in

“magic mushrooms” as recently as 2017.12 Until this year,
there was no general synthetic method for producing useful
amounts of the minor psychoactive tryptamines.13 One of
these minor components is aeruginascin,14 the N-trimethyl
analogue of psilocybin. Documented accounts of human
exposure to Inocybe aeruginascens, a species of mushroom
containing aeruginascin, describe hallucinations that exhibited
only euphoric experiences.15 These limited reports about

aeruginascin are interesting, given that dysphoria or a “bad
trip” is a significant concern associated with consuming
psilocybin or mushrooms containing it. Despite these
observations, the pharmacological activity of aeruginascin has
remained unexplored.14

The active metabolite of psilocybin is its hydrolysis product
psilocin; it is likely that aeruginascin undergoes similar
hydrolysis to generate its active metabolite, 4-hydroxy-
N,N,N-trimethyltryptamine (4-HO-TMT).13,14 This com-
pound is closely related to bufotenidine, the N-trimethyl
analogue of serotonin found naturally in toad venom.
Bufotenidine is a selective 5-HT3 agonist,16 with strong
binding to that receptor (Ki = 17 nM).17 The leading
hypothesis for aeruginascin has been that it is similarly active at
5-HT3 and inactive at 5-HT2 receptors. To assess this leading
hypothesis on aeruginascin, we set out to synthesize its
putative active metabolite and examine its binding affinity at
human serotonin receptors.

■ RESULTS AND DISCUSSION

In the case of psilocybin, its phosphate group is hydrolyzed
during metabolism to generate psilocin in the body, which
functions as the active psychedelic (Figure 1).18 A well-known
functional analogue of psilocybin is psilacetin, or 4-acetoxy-
N,N-dimethyltryptamine (4-AcO-DMT), the 4-acetoxy deriv-
ative of psilocybin, which is similarly hydrolyzed to generate
psilocin.19 To synthesize the active metabolite of aeruginascin,
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psilacetin (4-AcO-DMT) fumarate was used as the starting
material and methylated in the presence of excess iodo-
methane. The resulting compound, 4-acetoxy-N,N,N-trime-
thyltryptammonium (4-AcO-TMT) iodide, was generated in a
good yield (53%). In an analogy to psilacetin, 4-AcO-TMT
would be expected to serve as a convenient source of 4-HO-
TMT, which is consistent with our experimental observations.
In aqueous acetic acid, the 4-AcO-TMT iodide is hydrolyzed
to generate 4-HO-TMT iodide (Scheme 1). The material was
purified by recrystallization from a methanolic solution (60%
yield).

The compounds were both recrystallized from water to
obtain them in a single-crystalline form. The molecular
structures for both compounds are shown in Figure 2. These
are the first two quaternary tryptammonium salts ever
characterized by single-crystal diffraction. The presence of
such structural data is helpful for modeling studies to probe
their activity at receptors. NMR data and elemental analyses
further demonstrate the high purity of these compounds as
synthesized.
The two compounds were screened for binding at the

orthosteric sites of human serotonin receptors 5-HT1A, 5-
HT2A, 5-HT2B, and 5-HT3.

20 Competitive radioligand binding
assays were used to assess the affinity of the compounds for the
receptors. Binding is reported as the Ki for the inhibition of
binding well-characterized orthosteric ligands (Table 1 and
Supporting Information). The aeruginascin active metabolite,
4-HO-TMT, shows binding at 5-HT1A, 5-HT2A, and 5-HT2B
receptors. Counter to the prevailing theory that aeruginascin
should function as a powerful 5-HT3 agonist, there is no
binding (Ki > 10,000 nM) observed at this receptor. The

aeruginascin functional analogue, 4-AcO-TMT, shows no
binding affinity at any of the receptors. For comparison,
psilocybin, the prodrug of psilocin, shows no activity at 5-
HT1A, 5-HT2A, or 5-HT3 but does show itself to bind strongly
at 5-HT2B. Psilocin, its active metabolite, shows activity at 5-
HT1A and 5-HT2A that has a greater, though comparable,
binding affinity to 4-HO-TMT. It is two orders of magnitude
more potent than 4-HO-TMT at the 5-HT2B receptor, and in
fact, psilocybin is more active at this receptor as well.
Despite its close structural relationship to bufotenidine, 4-

HO-TMT does not exhibit binding at the serotonin 5-HT3
receptor. The results of receptor screening show that this
metabolite has unexpected binding affinity at the serotonin 5-
HT2A receptor which is associated with psychotropic activity.
The quaternary ammonium functionality makes it less likely
that this charged species will cross the blood−brain barrier.
However, quaternary ammonium salts have been known to
cross the blood−brain barrier through transporters; therefore,
psychotropic activity remains a possibility.21 It has been
speculated that an inability to cross the blood−brain barrier
might lead to the different observed effects from this
compound.14,22 Also of note is that it shows significantly less
binding than psilocin at the serotonin 5-HT2B receptor, where
activation is tied to valvular heart disease.23

■ CONCLUSIONS
In summary, the putative active metabolite of one of the
naturally occurring tryptamines found in at least one species of
“magic mushrooms” (aeruginascin) has been synthesized and
characterized for the first time. Its binding affinity at
serotonergic receptors has been assayed, demonstrating that
it is not active at the 5-HT3 receptor, as previously predicted,
but shows strong binding at the 5-HT2 receptors which was
unexpected. In the last year, over 100 U.S. cities launched
initiatives to decriminalize “magic mushrooms” despite having
limited scientific information about many of the tryptamines

Figure 1. Analogy of psilocybin and aeruginascin derivatives.

Scheme 1. Synthesis of the Active Metabolite of
Aeruginascin Where (a) MeI/MeOH and (b) AcOH/H2O

Figure 2. Crystal structures of the iodide salts of 4-AcO-TMT (top)
and 4-HO-TMT (bottom) with thermal ellipsoids shown at the 50%
probability level.

Table 1. Inhibition Constants (Ki) in nM Units

compound 5-HT1A 5-HT2A 5-HT2B 5-HT3

4-HO-TMT 4400 670 120 >10,000
4-AcO-TMT >10,000 >10,000 >10,000 >10,000
psilocin20 567.4 107.2 4.6 >10,000
psilocybin20 >10,000 >10,000 98.7 >10,000
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contained in the fungi. The study of this and other natural
products in “magic mushrooms” will be important to
understand their effects and to avoid dangerous peripheral
consequences.
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