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Abstract

Although the fundamental symptoms of polycystic ovary syndrome (PCOS) relate most directly to 

ovarian dysfunction, central neuroendocrine systems play a prominent role in its pathophysiology. 

Gonadotropin-releasing hormone (GnRH) pulse generator resistance to negative feedback 

contributes to rapid GnRH pulse secretion, which promotes gonadotropin abnormalities that foster 

ovarian hyperandrogenemia and ovulatory dysfunction. The causes of GnRH neuron dysfunction, 

however, have remained enigmatic. In this review, we highlight a number of recent preclinical and 

clinical studies pertinent to the neuroendocrine abnormalities of PCOS, including those that have 

provided important insights into the relevance of animal models with PCOS-like features, the 

potential roles of kisspeptin and γ-aminobutyric acid (GABA)-ergic neurons, and the potential 

role of anti-Müllerian hormone.

Introduction

Although the definitional characteristics of polycystic ovary syndrome (PCOS)—androgen 

excess, oligo-/anovulation, and polycystic ovarian morphology—relate most proximately to 

ovarian dysfunction, central neuroendocrine systems play a prominent role in the 

pathophysiology of PCOS. Women with PCOS exhibit exaggerated luteinizing hormone 

(LH) production—related to persistently high LH (and by inference gonadotropin-releasing 

hormone [GnRH]) pulse frequency, increased LH pulse amplitude, and exaggerated LH 

responses to exogenous GnRH—and relative follicle-stimulating hormone (FSH) deficiency. 

These abnormalities of gonadotropin secretion materially contribute to the ovarian 

hyperandrogenemia and ovulatory dysfunction of PCOS. In addition, ovarian 

hyperandrogenemia in PCOS is LH-dependent: PCOS typically manifests during or shortly 

after the pubertal increase in LH secretion, and long-acting GnRH agonists markedly reduce 

androgen production in women with PCOS. More recently, gonadotropin-related genes have 
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been implicated in the etiology of PCOS, including those for FSH subunit beta (FSHB), the 

FSH receptor (FSHR), LH subunit beta (LHB), and the LH/choriogonadotropin receptor 

(LHCGR) [1, 2].

GnRH neurons represent the final common pathway for the central control of reproductive 

function. High and low frequency GnRH pulses favor LH or FSH production, respectively. 

Thus, persistently high GnRH pulse frequency prominently contributes to the gonadotropin 

abnormalities of PCOS. Yet mechanisms underlying rapid pulsatile GnRH secretion remain 

unclear. While high GnRH pulse frequency in PCOS partly reflects anovulation (i.e., 

infrequent progesterone secretion from corpora lutea), relative resistance to sex steroid 

negative feedback also plays an important role as estradiol and progesterone do not 

appropriately restrain GnRH pulse generator activity in PCOS [3, 4]. This resistance to 

negative feedback appears to relate, at least in part, to hyperandrogenemia per se, as it can be 

reversed by the androgen-receptor antagonist flutamide [5]. Thus, PCOS involves a vicious 

cycle of androgen excess contributing to poor negative feedback suppression of GnRH 

pulsatility, leading to gonadotropin abnormalities that promote both additional 

hyperandrogenemia and on-going ovulatory dysfunction.

Prenatally-androgenized animal models of PCOS: utility and potential 

drawbacks

For ethical and practical reasons, the GnRH pulse generator and relevant neuronal afferents 

are inaccessible to direct and detailed interrogation in humans. Hence, animal models have 

remained critically-important tools to investigate neuroendocrine dysfunction in PCOS. In 

several animal species, experimental hyperandrogenism produces a number of PCOS-like 

features. Perhaps the best phenocopy of PCOS is the prenatally-androgenized (PNA) female 

rhesus macaque: these animals exhibit ovarian and adrenal hyperandrogenism, ovulatory 

dysfunction, increased LH secretion, and central resistance to the feedback effects of sex 

steroids [6]. Similar findings pertain to PNA rodents and sheep [7, 8]. However, the 

relevance of such PNA animal models has been somewhat controversial, in part because of 

inter-species differences in reproductive physiology and in part because no animal model 

perfectly conforms to PCOS. It also remains unclear whether methods of model generation 

(e.g., prenatal androgenization) faithfully recapitulate the events leading to PCOS.

While a number of studies have suggested that cord blood androgen concentrations are 

elevated in newborn daughters of mothers with PCOS, others studies have not supported this 

notion [9]. Maternal androgen concentrations, however, are an imperfect surrogate for fetal 

androgen concentrations, and cord blood assessments in these studies were performed at the 

time of delivery. It remains possible that androgen exposure is high during gestational 

windows that are difficult to assess directly in humans. Supporting prenatal androgenization 

in PCOS etiology, recent studies suggest that anogenital distance, which correlates with fetal 

androgen exposure, is longer in adult women with PCOS [10–12], although data are mixed 

in neonatal daughters of mothers with PCOS [13, 14]. Additionally, a recent study suggested 

that neonatal sebum production—another androgen-responsive process—is increased in 

newborn daughters of mothers with PCOS [15].
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In the aforementioned study [15], sebum production was undetectable by the next 

observation at four weeks of age, compatible with a maternal source of neonatal androgen 

excess. While one might expect the placenta to protect a fetus from maternal 

hyperandrogenemia, one study suggested that placental tissue from women with PCOS 

exhibited lower aromatase activity and higher 3β-hydroxysteroid dehydrogenase type 1 

activity—changes that could render fetuses vulnerable to maternal androgen excess [9]. 

Fetal hyperandrogenemia could also be of fetal origin in some instances. In support of this, 

women with virilizing congenital adrenal hyperplasia appear to have a high prevalence of 

PCOS-like features (e.g., ovarian hyperandrogenemia, elevated LH) [16].

Recent interest has focused on the contribution of 11-oxygenated androgens (e.g., 11-

ketotestosterone) to the hyperandrogenism of PCOS [17, 18] and other androgenic disorders 

[19]; to our knowledge, however, these androgens have not been assessed in pregnant 

women with PCOS or in fetal cord blood from newborn daughters of mothers with PCOS. 

Moreover, alternative (“backdoor”) pathways to dihydrotestosterone production—pathways 

that may be fed by placental progesterone [20]—could plausibly be relevant to the fetal 

androgenization hypothesis of PCOS, but this notion requires further study.

In contrast to monkey and sheep models, rodent models are relatively inexpensive to create 

and maintain, their reproductive lifespans are short, and their genomes can be readily 

manipulated. This affords the use of neuroscience tools that enable the dissection of specific 

neuronal circuits within the GnRH neuronal network. Accordingly, much of our recent 

insight into the likely neurobiological mechanisms underlying androgen-mediated 

neuroendocrine dysfunction in PCOS has been derived from rodent models.

Mechanisms of androgen-mediated GnRH neuron dysfunction

Earlier studies demonstrate that progesterone and dihydrotestosterone (DHT; a 

nonaromatizable androgen) decrease and increase, respectively, GnRH neuron firing rates in 

murine brain slices [21]. Similarly, PNA mice exhibit increased GnRH neuron firing 

frequency [22–24], and both PNA mice and sheep exhibit impaired progesterone negative 

feedback on LH (GnRH) pulse frequency [25, 26]. The latter impairment likely reflects 

reduced basal and estradiol-induced progesterone receptor expression in relevant 

hypothalamic regions, as described in rodents [27]. Indeed, PNA mice and sheep 

demonstrate reduced hypothalamic progesterone receptor expression in the arcuate nucleus 

[28, 29], although results are mixed in PNA rats [30, 31].

GnRH neuron responsiveness to these hormonal cues is mediated indirectly, primarily via a 

complex network of afferent neuronal systems. This suggests that the central pathology 

underpinning neuroendocrine impairments in PCOS originates within specific neuronal 

circuits afferent to GnRH neurons.

The potential role of kisspeptin neurons

Kisspeptin is a neuropeptide that directly and potently stimulates GnRH neuron activity and 

GnRH release, and arcuate nucleus kisspeptin neurons are implicated as a crucial component 

of the GnRH pulse generator [32]. The majority of kisspeptin-expressing neurons in the 
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arcuate nucleus co-express neurokinin B and dynorphin—hence the name KNDy 

(kisspeptin/neurokinin B/dynorphin) neurons—and studies suggest that neurokinin B 

augments while dynorphin reduces kisspeptin release. Importantly, KNDy neurons play a 

prominent role in mediating sex steroid negative feedback on GnRH secretion.

Many but not all studies suggest that PNA rodents exhibit increased Kiss1 expression, and 

some indicate an increased number of kisspeptin neurons, in the arcuate nucleus [31, 33, 

34]. Some of these studies also demonstrate a higher number of NKB-expressing cells in the 

arcuate nucleus [31] and greater hypothalamic Tac2 mRNA expression [33] in PNA rats. 

Hypothalamic dynorphin mRNA expression does not appear to be altered in PNA mice [34]. 

In studies of PNA ewes, the number of arcuate nucleus cells expressing neurokinin B and 

dynorphin were reduced; and no change in kisspeptin cell numbers was observed in the 

arcuate nucleus, although kisspeptin cell body size was increased [29, 35]. PNA sheep also 

exhibited reduced progesterone receptor expression in the arcuate nucleus, but the degree of 

cellular colocalization between kisspeptin and progesterone receptors remained high [29], 

suggesting that loss of progesterone receptor density in kisspeptin-secreting cells does not 

explain impaired progesterone negative feedback in this model. Instead, these investigators 

proposed that such insensitivity may partly relate to the loss of inhibitory (dynorphin) 

neuropeptide input into GnRH neurons.

Characteristics of the kisspeptin/KNDy neuronal network in women with PCOS are 

unknown. In a recent study, the GG genotype of the rs4889 polymorphism in the KISS1 
gene was shown to be more common in women with PCOS [36]. Women with PCOS are 

reported to exhibited elevated circulating kisspeptin levels in a majority, but not all, reports 

[37]. Importantly, the extent to which peripherally-circulating kisspeptin concentrations 

parallel hypothalamic kisspeptin action on GnRH neurons is unclear, although reports of 

temporal concordance between kisspeptin pulses and LH pulses [38, 39] may be supportive 

in this regard.

Together, these data provide support for the hypothesis that kisspeptin neuron overactivity 

may be involved in elevated GnRH pulsatility in PCOS, and support the notion that agents 

targeting the KNDy neuronal network may have promise in the treatment of PCOS. Indeed, 

a recent clinical study suggested that a neurokinin-3 receptor antagonist can reduce both LH 

pulse frequency (by 3.55 LH pulses over 8 hours) and circulating LH concentrations (50% 

reduction in LH area under the curve), while preserving FSH secretion, in adult women with 

PCOS [40].

The potential role of γ-aminobutyric acid (GABA)-ergic neurons

Because of the high intracellular chloride level in GnRH neurons, GABAA receptor 

stimulation depolarizes GnRH neurons and can have a net excitatory effect on GnRH 

neurons. Progesterone and DHT decrease and increase, respectively, GABAergic stimulation 

of GnRH neurons [41], implicating GABA neurons in the negative feedback effects of 

progesterone and the pathological effects of androgen excess on GnRH neuron activity [8]. 

PNA mice demonstrate both increased GABAergic innervation (anatomical) and excitatory 

GABAergic drive (functional) onto GnRH neurons [23, 28, 42, 43]. Moreover, while 

increased GABA input onto GnRH neurons is evident prior to puberty and the development 
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of a PCOS-like phenotype in PNA mice [23, 43], the abnormally high GABAergic input to 

GnRH neurons can be reversed with post-pubertal administration of the androgen-receptor 

antagonist flutamide [42, 43]. Interestingly, these GABAergic neurons are primarily derived 

from the arcuate nucleus, and this GABAergic neuron population shows significantly less 

colocalization with progesterone receptors [28]. Additionally, a recent study demonstrated in 

transgenic mice that long-term selective activation of arcuate nucleus GABAergic neuron 

terminals in the rostral preoptic area (known to densely contact GnRH neurons) renders a 

number of PCOS-like changes, including abnormal estrous cyclicity, increased serum 

testosterone concentrations, and a trend toward increased LH pulse frequency [44]. PNA 

ewes also demonstrate increased GABAergic synapses/inputs onto GnRH neurons in the 

mediobasal hypothalamus and onto arcuate nucleus KNDy neurons, suggesting that 

GABAergic neurons can affect GnRH neuron activity both directly and indirectly [45]. 

Taken together, these studies are consistent with the notion that PNA leads to organizational 

and functional changes within the GABAergic neuronal networks governing GnRH 

secretion, promoting GnRH neuron overactivity, LH excess, and other PCOS-like features.

With regard to supportive clinical research, a recent study suggested that cerebrospinal fluid 

GABA concentrations were elevated in women with PCOS [46]; and the use of valproate—a 

medication that increases GABAergic tone—is associated with a higher risk for PCOS when 

used for disorders such as epilepsy [47] and bipolar disorder [48]. Although an older study 

suggested that valproate administration for one month did not increase LH pulse frequency 

in normal women [49], the role of GABAergic mechanisms in PCOS pathophysiology 

clearly deserves additional study.

The potential role of anti-Müllerian hormone

Anti-Müllerian hormone (AMH) is a product of granulosa cells in pre-antral and small antral 

ovarian follicles. Serum AMH concentrations are elevated in women with PCOS, and a 

recent series of experiments provided compelling evidence that AMH can directly stimulate 

GnRH neuron activity and secretion in mice [50]. Of interest, a recent study of daughters of 

women with PCOS, who are at high risk for developing PCOS [51], found that these 

postmenarcheal adolescents exhibit high circulating LH and AMH concentrations, with a 

positive correlation between the two [52]— compatible with a putative role of AMH in the 

neuroendocrine defects of PCOS. Another series of mouse experiments suggested that 

maternal AMH excess produces a PCOS-like syndrome in female progeny, including 

increases in GABAergic appositions onto GnRH neurons, GnRH neuron firing rate, LH 

pulse frequency, and mean LH concentrations [53]. While circulating AMH had access to 

the maternal median eminence in mice, it did not appear to traverse the placental barrier; and 

the aforementioned manifestations in offspring were reversed by maternal cotreatment with 

a GnRH antagonist [53]. Accordingly, the fetal effects of maternal AMH excess may reflect 

GnRH-mediated effects on maternal LH secretion and subsequent ovarian androgen 

production. Of interest in this regard, two recent studies suggested that circulating maternal 

AMH levels are increased during pregnancy in women with PCOS [53, 54], and another 

study suggested that cord blood AMH concentrations are elevated in neonates born to 

women with PCOS [55].
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Selected insights from other models of PCOS

While PCOS-like neuroendocrine dysfunction is well described in PNA mice, there is no 

clear evidence to date for similar neuroendocrine impairments in mice exposed to postnatal 

androgenization [56] despite the linkage between peripubertal androgen excess and PCOS 

development. Nonetheless, a recent study in mice strongly implicates the CNS in the 

development of PCOS-like features following postnatal DHT treatment [57]. In particular, 

neuron-specific AR knockout prevented DHT-induced ovulatory dysfunction, mitigated the 

untoward effects of DHT on ovarian morphology and large antral follicle morphology, and 

abrogated the untoward effects of DHT on adiposity.

Long term treatment of mice and rats with the aromatase inhibitor letrozole also generates 

PCOS-like features [56]. In one such study, letrozole-treated mice demonstrated elevated 

serum LH and reduced serum FSH concentrations, lower progesterone receptor mRNA 

expression in the mediobasal hypothalamus, and a trend toward higher kisspeptin receptor 

mRNA in the preoptic area [58]. Similarly, letrozole-treated rats exhibited greater numbers 

of kisspeptin-immunoreactive cells in the arcuate nucleus [59, 60]. While such 

neuroendocrine findings may partly reflect the effects of reduced estrogen production 

following aromatase blockade per se, some neuroendocrine findings appear to reflect 

letrozole-induced hyperandrogenemia [61].

In female rhesus monkeys, experimentally producing mild (approximately 3.7-fold elevated) 

hyperandrogenemia via exogenous testosterone administration beginning at one year of age 

(prepubertal) resulted in increased early follicular phase LH pulse frequency at 5 years of 

age, suggesting that peripubertal hyperandrogenemia alters GnRH pulse generator function 

[62]. However, this testosterone treatment-related difference in LH pulse frequency was lost 

within 6 months of western-style diet initiation [63].

Abbott and colleagues recently described a group of reproductive-aged female rhesus 

monkeys with naturally higher testosterone levels. Compared to those with lower 

testosterone levels, these monkeys demonstrated a number of PCOS-like features including 

subfertility, elevated AMH, higher serum LH concentrations, and an increased serum LH-to-

FSH ratio [64]. Such monkeys may represent a natural non-human primate analogue of 

human PCOS, and we believe that additional study of such models will be highly 

informative.

Peripubertal hyperandrogenemia is believed to be a risk factor for PCOS, and 

hyperandrogenemic adolescents demonstrate abnormal LH secretion. A recent study 

suggested an association between hyperandrogenemia and the absence of a sleep-related 

decrease in LH pulse frequency in later-stage pubertal girls [65]. Reasons for this 

observation are uncertain, but it could partly reflect abnormal relationships between sleep 

stages and LH (GnRH) pulse initiation: while follicular phase LH pulse initiation is 

normally discouraged by REM sleep in adult women, LH pulse initiation is not 

appropriately discouraged by REM sleep, and may possibly be encouraged by slow wave 

sleep, in adults with PCOS [66].
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Final thoughts

Taken together, the clinical and preclinical studies described herein support the notion that 

hyperandrogenemia contributes to abnormal GnRH secretion, in part by inducing GnRH 

pulse generator resistance to sex steroid (progesterone) negative feedback, and that these 

factors play an important role in the pathophysiology of PCOS. While it remains unknown 

the degree to which such neuroendocrine abnormalities reflect abnormal developmental 

programming in utero, available data suggest that these defects are maintained by ongoing 

androgen excess [5, 24, 42, 43]. This suggests the utility of androgen-receptor blockade in 

PCOS, although the more holistic efficacy of such treatments remains unclear: for example, 

while some studies suggest that antiandrogens markedly improve ovulation rates in adult 

PCOS, other studies have not confirmed this finding [67]. Nonetheless, it is plausible that 

androgen-receptor blockade may be more effective during critical developmental windows, 

and maneuvers that reduce androgen signaling clearly deserve additional study. 

Pharmacological agents that target KNDy and/or GABAergic neuron function may also 

represent promising treatment options. Moreover, PCOS appears to involve perturbations in 

a number of other neuroendocrine systems, including those involved with energy 

homeostasis, weight maintenance, and adrenal function, and these remain important areas 

for further research. Collaboration among basic, preclinical, and clinical researchers will 

continue to be critically important as we attempt to unravel the complex pathophysiology of

—and to identify potential therapeutic targets for—PCOS.
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