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Abstract

Resting state functional connectivity magnetic resonance imaging (rsfcMRI) has become a key 

component of investigations of neurocognitive and psychiatric behaviors. Over the past two 

decades, several methods and paradigms have been adopted to utilize and interpret data from 

resting-state fluctuations in the brain. These findings have increased our understanding of changes 

in many disease states. As the amount of resting state data available for research increases with big 

datasets and data-sharing projects, it is important to review the established traditional analysis 

methods and recognize areas where research methodology can be adapted to better accommodate 

the scale and complexity of rsfcMRI analysis. In this paper, we review established methods of 

analysis as well as areas that have been receiving increasing attention such as dynamic rsfcMRI, 

independent vector analysis, multiband rsfcMRI and network of networks.
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Brain function in functional magnetic resonance imaging (fMRI) can utilize task-based 

paradigms, which require subjects to perform cognitive tasks, or resting state, in which 

subjects are instructed to let their minds wander in the absence of a task or stimulus. Resting 

state functional connectivity was first described in 1995, when Biswal et al. observed 

temporally correlated low-frequency signals (0.01–0.1 Hz) in spatially distinct regions of the 

brain in subjects at rest1. These signals were significant even after correcting for cardiac and 

respiratory noise, suggesting that the signals arose from spontaneous resting brain functions. 

Currently, resting state functional connectivity magnetic resonance imaging (rsfcMRI) is 

widely used to measure patterns of synchronous and spontaneous activation in the “task-

negative” brain in healthy subjects and patients with different neurologic diseases2. This 
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review provides a broad overview of conventional analytic methods used in rsfcMRI and 

discusses recent developments in this field together with perspectives on future research.

1. Resting State Networks

Functional connectivity has become a powerful tool for the definition of several resting state 

brain networks that are reliably detectable and consistently reproducible, both at individual 

and group levels when using a wide variety of analysis methods3–6. These include the 

primary sensorimotor network1, language networks7, visual networks8, the default mode 

network9, the salience network, the central executive network10, among others2,11,12. 

RsfcMRI has provided a new modality to examine these networks in healthy function and 

disease states including autism13,14, schizophrenia15–17, neurodegenerative diseases18,19, 

and brain tumor20. Figure 1 displays commonly identified resting state networks using 

independent component analyses.

2. Conventional Methods of Analysis of rsfcMRI

Before analyzing the data, several preprocessing steps are generally performed including 

correction for section-dependent time shifts, regression of head motion and other nuisance 

regressors, spatial smoothing and band-pass filtering to retain frequencies between 0.01–0.1 

Hz. Images are then either registered to individual subject structural space or registered to 

anatomic space to allow spatial concordance between subjects. Following preprocessing, 

several different approaches can be used to analyze resting state data, with some relying on a 
priori identification of regions of interest (ROI) and others that are data-driven and model-

free as described in the sections below.

2.1 Frequency-Domain Analyses

The amplitude of low frequency fluctuations (ALFF) for a voxel’s time series is the total 

power in the low frequency range (0.01 – 0.1 Hz)21. Specifically, the time series for each 

voxel is transformed to the frequency domain and the power spectrum is obtained. The 

square root is calculated at each frequency of the power spectrum and the average square 

root is obtained across the 0.01–0.1 Hz frequency range for each voxel. This ALFF of each 

voxel is then divided by the individual global mean of ALFF with a brain mask. The 

resultant ALFF values are believed to reflect spontaneous regional neural activity21 but can 

be contaminated by non-neural physiologic fluctuations from respiration, cardiac activity 

and motion22. To improve on the original ALFF approach, a modified measure called 

fractional ALFF (fALFF) was introduced, examining the ratio of the power of each 

frequency at the low-frequency range to that of the entire frequency range23. Both ALFF and 

fALFF are used to study regional activation changes in sensorimotor tasks24, ADHD21, 

Alzheimer’s Disease25, OCD26, bipolar disorder27, schizophrenia28 and psychosis29. 

Although both measures are related, they are not entirely the same: the reliability of ALFF 

in gray matter regions is better than fALFF and it is more sensitive to differences between 

groups and individuals23,30. However, ALFF is more likely to be affected by noise from 

physiological sources5. Therefore, it is recommended that both measures be evaluated and 

reported in papers that examine these frequency domain parameters5.
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2.2 Regional Homogeneity Analysis

Regional homogeneity (ReHo) is a voxel-based measure of brain activity that evaluates the 

synchronization between the time series of a given voxel and its nearest neighbors using 

Kendall’s coefficient of concordance31. ReHo requires no apriori definition of ROIs and has 

a high test-retest reliability32. ReHo is usually calculated within the frequency range 

between 0.01 to 0.1 Hz and can be subdivided into different frequency bands33. Moreover, 

although several studies demonstrated the frequency dependence of ReHo changes in 

different neurologic disorders34–36, the exact biologic meaning of ReHo within these 

different frequency bands remains elusive limiting its use in the research and clinical realm. 

However, like ALFF, ReHo methods are used to identify local neural activity of the brain 

and are sometimes implemented to define a region of interest (ROI) for seed-based 

connectivity analysis37.

2.3 Seed-Based Connectivity Analysis

The earliest form of rsfcMRI analysis was a seed-based approach used by Biswal et al.1 to 

identify the sensorimotor network. Seed-based analysis is a modelbased approach that relies 

on defining a particular ROI or set of ROIs and correlating the BOLD fMRI time series of 

this region against the time series of all other regions, resulting in a functional connectivity 

map. The seed can be chosen based on a priori knowledge or could be isolated based on 

task-based activation2. Seed-based connectivity analysis is used in numerous studies due to 

the easy interpretability of the method and because of its test-retest reliability3. However, 

although seed-based analysis produces more precise measurements, it can only capture 

coactivations with the defined ROIs. Thus, it can provide finer detail but is very much user/

definition dependent and cannot be used to analyze a large number of nodes38. Figure 2 

demonstrates seed-based functional connectivity analysis performed with the left Brodmann 

Area 44 (BA44) for the language network and the left precentral gyrus for the motor 

network as seed regions.

2.4 Independent Component Analysis

One of the most popular model-free methods applied to rsfcMRI is independent component 

analysis (ICA). ICA, like other model-free methods, analyzes signals from all voxels of the 

brain. This is distinct from the more limited seed-based approach, in which all voxel 

correlations were only calculated against one seed ROI. The central assumption of ICA is 

that each voxel’s signal output is composed of many different sources of activation and noise 

and the different sources of signal (whether they are neuronal, or artifact based) can be 

parsed apart by looking at similarities in BOLD signal across brain regions. ICA programs 

group areas of the brain based on the degree of similarity between their voxel activation time 

series, into a user-specified number of groups, or “components”8,39. ICA is useful because it 

is data-driven and does not depend on user-selected a priori ROI. An additional advantage of 

ICA is that unlike seed-based analysis which extracts only networks specific to the ROI, 

ICA extracts all networks within the subject simultaneously. However, ICA programs can be 

computationally demanding and produce results that may be hard to interpret, as users must 

discern which components represent noise signals and which represent true neuronal 

activation based on a priori understanding40. Figure 2 illustrates the language and motor 
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networks obtained by ICA analysis and seed-based analysis, demonstrating that both seed-

based and ICA methods produce similar results in a patient with brain tumor.

2.5 Clustering Analysis

Clustering analysis is an additional method that groups voxels together by similarities in 

time series11,41. Although also data-driven, it differs from ICA by directly grouping voxels 

together by their similarities without requiring user-dependent filtering of components42. 

ICA, seed-based, and clustering methods have been shown to produce concurrent results2.

2.6 Graph Theory

The transdisciplinary approach of graph theory, used in network science, has become 

germane to the study of functional connectivity41,43–45. Using a graph theory approach, the 

brain’s networks are modeled with nodes (regions of interest) and edges (connections 

between those regions of interest). By examining measures of this graph, such as average 

distance between nodes, number of edges and nodes, and how they are arranged in space, we 

can calculate network parameters that characterize these networks, such as global and local 

efficiency, node degree, centrality, and modularity46,47. Graph theory approaches allow for 

the examination of not only connections within specialized networks (segregation) but also 

how those networks and nodes interact or overlap with each other (integration). Graph 

theory applications to rsfcMRI are centered on the idea of constructing a functional 

connectome, a matrix of all possible paired connections between brain regions. The concept 

of a connectome was first introduced in reference to the anatomical connections of the 

brain48 but has since been applied more broadly to functional connectivity49.

Several network characteristics of resting state functional networks are understood. First, 

that brain networks have small world architecture, characterized by short path lengths 

between nodes and a high clustering coefficient between nodes12,43,50,52. Second, that brain 

networks can also be described as scale-free, meaning that although the average number of 

connections at each node are low, there is still a high level of global connectivity due to a 

few hub nodes in the network with very high number of connections44,46,53,54. Scale-free 

networks tend to be resilient against random attacks, due to the robustness of the many non-

critical nodes, but are vulnerable against targeted attacks on the hub nodes, such as 

connectivity diseases47. Figure 3 illustrates a representative flow chart for graph theoretical 

analysis of resting state fMRI data.

Challenges of graph theory analyses can arise if there is poor node definition and nodes 

derived from a graph theory model do not fit well with subjects’ true brain regions38. This 

can lead to limited interpretation of the data’s biological significance. In addition, because 

graph theory summarizes networks by global network measures, such as efficiency and 

small worldness, changes in these summary metrics may not actually reflect changes in 

nodes but rather confounding factors2.

Several studies have also implemented graph theory approaches to white-matter tracts 

derived using diffusion tensor imaging55–59. Similar to resting state graph theory 

approaches, these results have identified a small-world architecture of the brain. However, 

very few studies have objectively compared the brain functional architecture derived through 
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resting state fMRI and structural architecture derived through diffusion tensor imaging 

studies60,61. One of the limitations of these approaches is related to the absence of structural 

white matter connections between regions of interest although functionally these regions 

may still be correlated.

3. New Methods of Analysis of rsfcMRI

3.1 Dynamic rsfcMRI

More recently, studies have been examining dynamic or non-stationary rsfcMRI, an 

approach that focuses on changes in network connections over a short period of time (often 

in the range of 10 s-2 min). Previous literature proposes dynamic rsfcMRI as a way to detect 

between-group differences and neurometabolic changes not evident in traditional rsfcMRI 

analyses62,63. Dynamic rsfcMRI evaluates fluctuations in connectivity by calculating the 

variations in temporal and spatial correlations over multiple time intervals of fMRI signal 

rather than over the full BOLD fMRI time series62. The dynamic fluctuations seen in 

functional connectivity may be a physiological process to balance efficient information 

processing and minimize metabolic demands on the brain, and the most dynamic 

connections are those that are spatially distant and intermodular64.

There are several approaches to defining the time series intervals. Many of these are 

variations of a standard sliding window approach, the prevailing dynamic rsfcfMRI 

methodology65–67. The sliding window method is relatively straightforward: the correlation 

matrix is calculated using a subset of the resting state time series, and this is repeatedly 

recalculated as the starting point of the window shifts incrementally down the time series 

with the window length and amount of desired overlap between windows defined by the 

user68. Figure 4 provides a schematic representation of the sliding window method of 

analysis adapted and modified from Valsasina et al67. The limitations of the sliding window 

approach primarily involve the user-dependent decision of the shape and size of the window; 

too large of a time segment may result in dynamic rsfcMRI approximating traditional 

rsfcMRI, while too short of a window may introduce spurious fluctuations67,69. A window 

size ranging between 30s-60s is therefore recommended for accurately capturing dynamic 

rsfcMRI69 and other methods have been explored to overcome the limitations of a user-

driven process, such as data-driven adaptive windowing and time-frequency analysis65. 

Another limitation to dynamic-rsfcMRI research is the susceptibility for noise to be 

interpreted as dynamic fluctuations64,67.

Although there are current challenges in utilization and interpretation of dynamic rsfcMRI, 

this paradigm has been shown to explain more variation in behavioral measurements such as 

working memory, facial expression processing, and sustained attention66. Testing dynamic 

rsfcMRI can provide a better picture of the dynamic changes that may underly many clinical 

conditions that involve unstable or overly stable states69. Dynamic rsfcMRI has been used to 

study RSFC in several disease states67, including MS70,71 neurodegenerative diseases72–74, 

bipolar disease75, major depressive disorder76, schizophrenia77,78, post-traumatic stress 

disorder79, and stroke80. There are also indications that dynamic rsfcMRI can detect changes 

that happen over the course of hours or months as well, and it has been proposed that these 

longer-term changes may reflect learning or variable gene expression69.
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3.2 Independent Vector Analysis

Another emerging data-driven rsfcMRI method is independent vector analysis (IVA), which 

builds upon ICA. IVA is similar to ICA in its blind source splitting approach but is proposed 

as a method to solve for the permutation ambiguities found in ICA output81. IVA, like ICA, 

assumes that elements of each source vector are independent from elements of other source 

vectors in the same fMRI dataset, but it differs in that it assumes increased dependence 

among the similar source vectors across fMRI datasets. In their paper defining IVA 

methodology, Kim et al. first showed that by defining a multivariate score function rather 

than a single-variate score function, as is used in ICA, the IVA analysis provides a well-

ordered output of source vectors, compared to the scrambling of source signal elements from 

ICA82. IVA approaches to group-level rsfcMRI analysis can improve the isolation of true 

signal source elements and improve user-independence by eliminating the need for manual 

selection of components from each source signal required in ICA83. Additionally, IVA 

algorithms applied to a group level rsfcMRI analysis can result in spatially similar activation 

maps, which can be related to group level analysis maps as a result of general linear based 

modelling approaches. IVA has also been shown to be better at detecting spatial fluctuations. 

Recently, Ma et al. used IVA to examine group-level dynamic spatial fluctuations between 

pairs of resting state networks that existed in healthy controls and in schizophrenia 

patients84. The IVA findings resembled previous research on schizophrenia patients, finding 

the most spatial fluctuations in the frontoparietal, cerebellar, and temporal areas. It also 

found that schizophrenia patients exhibited more dynamic fluctuations in connectivity, 

suggesting a more disorganized way of recruiting functional areas of the brain84. A practical 

implementation of IVA is available through the Group ICA Toolbox (GIFT, http://

mialab.mrn.org/software); however, extensive computation time and interpretation 

challenges have limited the application of IVA to wider clinical populations.

3.3 Multiband rsfcMRI

Until recently, most of the studies in rsfcMRI have investigated functional connectivity in 

clinical population in low-frequency bands of BOLD fMRI fluctuations (0.01–0.1 Hz). This 

has been mainly due to the significantly higher power observed by Biswal et al1 in the low-

frequency ranges of 0.01–0.1Hz. Additionally, due to the limitations on temporal sampling 

for whole brain BOLD fMRI data, most fMRI studies have used rsfcMRI data collected at 2 

second intervals, thus limiting the study of BOLD signal frequencies in the low-frequency 

range. Recent advancements in data acquisition techniques have enabled researchers to 

collect BOLD fMRI data from multiple brain slices at the same time, resulting in faster brain 

acquisition sequences. With the implementation of such imaging sequences referred to as 

multi-band imaging techniques85–87, it is now possible to acquire whole brain fMRI at sub-

second temporal resolutions. This has resulted in significant improvements in temporal 

resolution along with enhanced capabilities to investigate resting state functional 

connectivity at high-frequency bands and improved characterization of cardiac and 

respiratory noises. Using these multiband imaging data, researchers have shown presence of 

resting state functional connectivity across BOLD signal frequencies higher than 0.1 

Hz88,89. Studies have implemented progressively faster multiband imaging sequences, 

resulting in a sampling time of as little as 333 ms90. which has pushed the upper range of 

BOLD fMRI signal frequency that can be investigated to as high as 1.5 Hz. Recent studies 
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have used these frequency specific resting state measures to quantify functional brain 

disruptions in clinical populations including epilepsy91, psychosis29,92, ADHD93, 

dyskinesia34, and brain tumors30. Although there are challenges associated with the effect of 

nuisance regression techniques94 and head motion on high-frequency resting state data95, 

multi-band resting state fMRI analysis represents an innovative approach to quantify 

functional brain disruptions.

4. Future Directions

4.1 Network of Networks

An emerging graph theoretical approach is the idea of the brain being modeled as a 

“network of networks” (NoN). In 2017, Morone and colleagues described a robust, modular 

NoN pattern that was defined by functionally specialized subnetworks within the brain. They 

studied a n=15 visual-auditory task paradigm and created a map of neural networks that 

identified critical nodes they labelled as neural collective influencers (NCI). Morone defined 

NCIs as the minimal set of nodes that would confer global connectivity to the network, and 

the identified NCIs in the visual-auditory task were the anterior cingulate cortex, the 

posterior parietal cortex, and the posterior occipital cortex96.

To model the network’s robustness against disease, neural influencers were removed, and 

global efficiency was re-evaluated by calculating the giant component G, or the largest 

interconnected active component of the network. In modular NoN network model, not all of 

the activated nodes participated in the giant component G, and their ability to activate apart 

from G suggests that a modular NoN is robust to cascading effects of injury (power-grid 

catastrophic effects). This NoN paradigm is promising in its ability to help further elucidate 

key areas of influence and modulation in the brain and understand the brain’s response to 

injury and should be extended to resting state research.

4.2 Big Data Analysis

Understanding the human connectome has been recognized as a major new frontier of 

research. In 2010, the NIH established the Human Connectome Project (HCP) to compile a 

comprehensive map of functional brain networks and improve current MRI acquisition 

techniques97. A group led by Washington University, the University of Minnesota, and 

Oxford University (WU-Minn Consortium) is collecting over 1000 subject scans, and the 

data is publicly available at humanconnectome.org. This has provided a large database of 

rsfcMRI data that can help elucidate the behavior and function of resting brain networks, 

and the many factors (genetics, age, environmental factors) that can affect how those 

networks function. Concurrently, the 1000 Functional Connectomes Project (FCP) was 

started in 2009 to promote resting state data sharing, publishing over 1200 rsfcMRI datasets, 

including many heterogenous datasets sourced from many subject groups and pathologies, 

and this was succeeded by the International Neuroimaging Datasharing Initiative (INDI)98.

Traditionally, fMRI analysis has involved unwieldy preprocessing pipelines to reduce noise 

and normalize imaging data. As big datasets become more common in research with data 

sharing initiatives, newer processing methods are necessary to streamline rsfcMRI analysis 
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and standardize the outputs. The several central challenges of big data in rsfcfMRI concern 

high-performance computing requirements, adequate data-sharing infrastructure and 

standardization of processing pipelines99. Currently, no consensus exists on the ordering or 

utilization of optimal preprocessing steps. In addition, when examining big datasets, 

common noise variances can be exacerbated, leading to increased risk of interpreting 

spurious signal as true activation99,100. Solutions proposed have been to minimize the 

preprocessing steps, conduct systematic reviews of preprocessing methods and outcomes, 

and adopt software packages better suited for big fMRI data100. Makkie et al. also recently 

reviewed fMRI applications of Apache Spark and Hadoop, two open-source software suites 

with big data capabilities101. Standardization of fMRI processing of big data is an important 

area of work as big datasets continue to be an invaluable resource in neuroscience research 

and will allow for more efficient exploration of the underlying resting state networks that 

might explain common behaviors and pathologies.

4.3 RsfcMRI at Ultrahigh Fields

While earlier resting state data was acquired using 3 Tesla (3T) scanning, recently the US 

Food and Drug Administration (FDA) approved the next generation of ultra-high field 7 

Tesla (7T) MRI magnets for clinical use. A major advantage of ultra-high field scanning 

using newer generations of 7T magnets over more traditional 3T imaging is higher 

functional contrast-to-noise ratios resulting in increased spatial resolution102. 7T scanning 

also reduces time-series SNR and is more sensitive to temporal correlations in BOLD signal, 

which can capture previously unrecognized nodes in functional networks103. Resting state 

connections have been seen on 7T scans that are not evident in 3T scans, particularly 

involving short voxel lengths between 1 and 1.5 mm102,104,105. Potential drawbacks of ultra-

high field scanning include increasing sensitivity to motion and noise artifact, and longer 

scan times104,106. Different approaches have been suggested to correct for noise, including, 

for example, an autoregressive statistical approach used for 3T scans, which has been 

extended and proposed for ultra-high field imaging107. Although a number of academic 

institutions have been using ultra-high field scanning at 7T predominantly in research 

settings102,105,108103,109,110 systematic studies comparing 7T and 3T functional MRI in 

different clinical cohorts remain scarce and are warranted.

5. Conclusion

Resting state fMRI has led to the identification of brain networks critical to affecting how 

humans interact, perceive, and process environmental and internal stimuli. While widely 

used rsfcMRI processing techniques are still the topic of discussion and refinement, 

interdisciplinary approaches from the realm of network science could help answer further 

questions about the dynamics, robustness, and interplay of these brain networks. Due to the 

demanding nature of fMRI data collection and analysis, it is of critical importance to engage 

in interdisciplinary research and implement large-scale data-sharing initiatives.
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Figure 1. 
Resting state networks identified using a group-level independent component analysis (ICA) 

on a sample of 50 healthy participants. (A) Lingual gyrus (B) Higher visual network (C) 

Right central executive network (D) Bilateral insula network (E) Anterior default mode 

network (F) salience network (G) Posterior default mode network (H) Left central executive 

network (I) Bilateral middle frontal gyrus (J) Bilateral temporal gyrus network (K) Motor 

network (L) Visual network (M) Dorsal attention network (N) Bilateral precentral gyrus (O) 

Basal ganglia network
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Figure 2. 
Seed-based correlation and ICA maps for a representative subject with a right-sided 

glioblastoma. L-BA44 seed and L-PCG seed maps represent seed-based correlation maps 

while ICA-Lang RSN and ICA-Motor RSN represent the independent component maps 

identified for the same subject. L-BA44: Left Brodmann Area 44. L-PCG: Left Precentral 

Gyrus
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Figure 3. 
Representative flow chart for graph theoretical analysis of resting state fMRI data. (A) brain 

regions overlaid on a Glass brain surface (B) functional connectivity matrix representing 

Pearson’s correlation between BOLD fMRI time series of brain regions (C) Network 

representation of brain network derived from connectivity matrix where circles represent 

nodes and straight lines represent edges demonstrating presence of significant functional 

connectivity between brain regions
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Figure 4. 
Schematic representation of sliding window analysis, the most popular approach in the 

assessment of time-varying functional connectivity. Adapted and reproduced with 

permission from Valsasina P, Hidalgo de la Cruz M, Filippi M, Rocca MA. Characterizing 

rapid fluctuations of resting state functional connectivity in demyelinating, 

neurodegenerative, and psychiatric conditions: from static to time-varying analysis. Frontiers 

Neurosci 2019; 13: Article 618 [doi: 10.3389/fnins.2019.00618]. (Citation #60) Creative 

Commons license: (https://creativecommons.org/licenses/by/4.0/).
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