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• PM2.5 levels during COVID-19 mitiga-
tion decreased across 7 states and the
capital.

• PM2.5 reduction during COVID-19 miti-
gation is estimated to lowered air
pollution-related deaths.

• Findings have implications for the indi-
rect health effects of mitigation efforts.

• Results have implications for potential
health benefits from air pollution policy.
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To control the novel coronavirus disease (COVID-19) outbreak, state and local governments in the United States
have implemented severalmitigation efforts that resulted in lower emissions of traffic-related air pollutants. This
study examined the impacts of COVID-19mitigation measures on air pollution levels and the subsequent reduc-
tions in mortality for urban areas in 10 US states and the District of Columbia. We calculated changes in levels of
particulate matter with aerodynamic diameter no larger than 2.5 μm (PM2.5) duringmitigation period versus the
baseline period (pre-mitigationmeasure) using the difference-in-difference approach and the estimated avoided
total and cause-specificmortality attributable to these changes in PM2.5 by state and district.We found that PM2.5

concentration during the mitigation period decreased for most states (except for 3 states) and the capital. De-
creases of average PM2.5 concentration ranged from 0.25 μg/m3 (4.3%) in Maryland to 4.20 μg/m3 (45.1%) in
California. On average, PM2.5 levels across 7 states and the capital reduced by 12.8%. We estimated that PM2.5

reduction during the mitigation period lowered air pollution-related total and cause-specific deaths. An
estimated 483 (95% CI: 307, 665) PM2.5-related deaths was avoided in the urban areas of California. Our findings
have implications for the effects of mitigation efforts and provide insight into the mortality reductions can be
achieved from reduced air pollution levels.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

A novel coronavirus disease (COVID-19) is causing a global pandemic
with approximately 233,411 deaths worldwide as of April 30, 2020
(Worldmeter, 2020). State and local governments in the United States
have implemented several mitigation efforts such as stay-at-home
onment, Yale University, 195
measures aimed at lowering the contact rate through social/physical
distancing to reduce COVID-19 transmission. Although responses to
COVID-19 are varied across states, thesemeasures have generally reduced
level of traffic-related air pollution. Similar phenomena were observed
elsewhere, with recent studies finding dramatic decline in air pollution
levels in China due to quarantine measures (Chen et al., 2020; Dutheil
et al., 2020; Isaifan, 2020). Ambient air pollution is linked with a range
of adverse health outcomes such as mortality, hospital admissions, emer-
gency room visits, and respiratory symptoms through several pathways
(e.g., oxidative lung damage and inflammation, hypoxemia, elevated
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plasma viscosity) (Pope 3rd, 2000; Samet and Krewski, 2007). Therefore,
policies aimed at addressing the public health consequences of COVID-19
may have indirect health benefits through lower levels of air pollution.
This is oneof themanypathways throughwhich the virus could indirectly
impact health, such as through increases in domestic violence, psychiatric
illness and emotional distress, harmful alcohol and drug use, and suicidal
behavior, amongmany others (Graham-Harrison et al., 2020; Kumar and
Nayar, 2020). This study investigated the impacts of COVID-19mitigation
measures on air pollution levels and the potential subsequence reduc-
tions in mortality for 8 US states and the District of Columbia.

2. Methods

To estimate the impacts of COVID-19 mitigation measures on air pol-
lution levels and related reductions in mortality, we calculated changes
in levels of particulate matter with aerodynamic diameter no larger than
2.5 μm(PM2.5) and the estimated avoided total and cause-specificmortal-
ity attributable to these changes in PM2.5 by state and district for 8 US
states and the District of Columbia. Implementation of mitigation
measures varied by US state and district as each area declared a state of
emergency at different times (Table 1). We defined the baseline period
(pre-mitigation measure) as the 30 days before the emergency declara-
tion date and the mitigation period (during the mitigation measure) as
the 30 days after the emergency declaration was enacted by each state
Table 1
Date of some COVID-19 mitigation-related executive orders by state and the District.
Note: Each government involves a series of executive orders and policies, a subset of
which are listed here. Other policies that affect air pollution such as guidance from local
governments and corporations' work-from-home orders, etc. are not included but also
likely impacted levels of air pollution.
Source: The Council of State Governments. State executive orders. https://web.csg.org/
covid19/executive-orders/

State Date of executive orders

California
March 4, 2020: State of emergency declared
March 12, 2020: Further respond to COVID-19 pandemic
March 19, 2020: Stay at home order

Connecticut

March 10, 2020: State of emergency declared
March 12, 2020: Prohibition of large gatherings, limits on nursing
home visitors, waiver of 180-day school year etc.
March 15, 2020: Canceled classes in public schools
March 23, 2020: Restrictions on workplaces for non-essential
business, stay at home

Florida
March 9, 2020: State of emergency declared
April 3, 2020: Stay at home order

Maryland

March 5, 2020: State of emergency declared
March 12, 2020: Prohibiting large gatherings and events and
closing senior centers
March 30, 2020: Stay at home order

Massachusetts

March 10, 2020: State of emergency declared
March 13, 2020: Prohibiting gatherings of more than 250 people
March 15, 2020: Closure of all public and private schools
March 24, 2020: Closing nonessential business and organizations,
stay at home

New Jersey

March 9, 2020: State of emergency declared
March 16, 2020: Limits on gatherings of 50 or more; closure of all
schools, closure of racetracks, casinos; restaurant restrictions
March 21, 2020: Stay at home order

New York

March 7, 2020: State of emergency declared
March 18, 2020: Closure of all schools
March 22, 2020: Closure of nonessential business and bans of
gatherings of any size, stay at home

Pennsylvania
March 6, 2020: State of emergency declared
April 1, 2020: Statewide stay at home order

Texas
March 13, 2020: State of emergency declared
April 2, 2020: Stay at home order

Washington
state

February 29, 2020: State of emergency declared
March 13, 2020: School closure
March 23, 2020: Stay at home order

Washington
D.C.

March 11, 2020: State of emergency declared
March 24, 2020: Closure of non-essential businesses and
prohibition on large gatherings
April 1, 2020: Stay at home order
or district. For this study, we selected 10 states (California, Connecticut,
Florida, Maryland, Massachusetts, New Jersey, New York, Pennsylvania,
Texas, and Washington) and the capital (Washington, D.C.) based on
the high numbers of confirmed cases and deaths from COVID-19. We ob-
tained monitor values of daily concentrations of PM2.5 for each state and
the District from the U.S. Environmental Protection Agency (EPA) AirNow
(U.S. EPA, n.d.). For states, we first calculated county-specific averages
(i.e., average across all monitors within a county) and then state-specific
averages (i.e., population-weighted average across counties within a
state) for each period (baseline and mitigation period) using the Vintage
2018 postcensal estimates of the resident population released byNational
Center for Health Statistics (NCHS) to calculate death rates (NCHS, 2019).
As monitors were not available for all locations throughout the states, we
only included counties with monitors. As air pollution monitoring net-
works are more likely to be located in urban locations (Bravo et al.,
2017), the states in this study represent the more urban areas within
the states, not the entire states. We then quantified air pollution changes
by calculating changes in PM2.5 concentration during the mitigation
period compared to the baseline period for each of the 11 spatial units
(10 states and the District). We compared average concentrations of
PM2.5 during the mitigation measures (mitigation period) with those
during the pre-emergency declaration measures (baseline period), by
state/district. We compared these changes with those based on a
difference-in-difference approach using the air pollution levels from
2017 to 2019 (Wing et al., 2018). In this approach, we compared two dif-
ferences: (1) the difference in PM2.5 concentration during the mitigation
measure (mitigation period) versus pre-mitigation measure (baseline
period) in 2020 (EM-EB); and (2) the difference during the mitigation
measure (mitigation period) versus pre-mitigation measure (baseline
period) in 2017–2019 (CM-CB). The changes in PM2.5 concentration that
are related to implementation of mitigationmeasure beyond background
trends (e.g., seasonality) can be estimated as follows: (EM-EB)-(CM-CB).
The difference-in difference analysis has a parallel trends assumption
that the trends in outcomes (i.e., PM2.5 level) between the treated
(i.e., year 2020) and control (i.e., 2017–2019) groups are the same prior
to the intervention. If the assumption is satisfied, it is reasonable to as-
sume that these parallel trends of PM2.5 concentration over time would
be the same for both groups.We tested this assumption using a regression
model by assessing the significance of the interaction term between time
and pre-mitigation period. We found that coefficient for the interaction
term is statistically insignificant, which suggests that the parallel trend as-
sumption for difference-in-difference approach is plausible.

We then estimated the avoided mortality attributable to PM2.5

changes based on the concentration-response function from a previ-
ous study and 2018 total and cause-specific mortality data from the
Centers for Disease Control and Prevention (CDC)WONDER database
(CDC and NCHS, n.d.; Krewski et al., 2009). To quantify PM2.5-related
mortality, we chose Krewski et al. (2009) study used by the US EPA to
quantify health risk assessment for PM2.5 (US EPA, 2010). US EPA
chose Krewski et al. (2009) study for several reasons: (1) the cohort
includes both men and women regardless of underlying health
status; (2) the study includes data from cities from across the US;
(3) the analysis has rigorous examination of model forms and effect
estimates; and (4) the study includes coverage for extensive
ecological variables (US EPA, 2010).

We used the following equation to estimate avoided total and
cause-specific death associated with changes in PM2.5 exposure
using the concentration-response function from Krewski et al.
(2009) as applied by US EPA:

ΔMi; j ¼ Yi; j � eβ j�ΔPM2:5i−1
� �

� Pi

where ΔMi,j is the avoided death due to a particulate disease j (total
or cause-specific mortality) for area i (specific US state or the
District), Yi,j is the baseline mortality for disease j for area i, βj is
the cause-specific effect estimates provided by Krewski et al.
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(Supplementary Table 1), ΔPM2.5i is the change in PM2.5 for area i,
and Pi is the exposed adult population (above 30 years of age) for
area i (i.e., population of included counties that have monitor
(s) within state).

3. Results

3.1. Change in air pollution

The percentage of included counties of each state or district ranged
from 11.4% in Texas to 100% in Washington D.C., with average of
55.5% across states/district. The population covered by the monitoring
network for each area ranged from 59.3% in New Jersey to 100% in
Washington D.C. Supplementary Fig. 1 shows PM2.5 levels before and
throughout various COVID-19 measures for the 10 states and the
District of Columbia, and comparable levels in previous years
(2017–2019) for comparison. PM2.5 concentrations in Supplementary
Fig. 1 represent the population-weighted average PM2.5 levels across
counties withmonitors within a state, not thewhole state. The numbers
of counties with monitors included in this study and total number of
counties included for each state/district are provided in Table 2. Results
using the difference-in-difference approach generally indicated lower
reductions in air pollution, but smaller reductions and not in all loca-
tions, with average reduction of 0.5 μg/m3 as opposed to 1.2 μg/m3,
and the most consistent results for California (Table 2, Supplementary
Fig. 1, Supplementary Table 2).We found that PM2.5 concentration dur-
ing themitigation period (after implementing themitigationmeasures)
decreased for most states (although not for Pennsylvania, Texas, and
Washington state) and the capital. Except for 3 states, decreases of aver-
age PM2.5 concentration ranged from 0.25 μg/m3 (4.3%) in Maryland to
4.20 μg/m3 (45.1%) in California. On average, PM2.5 levels across 7 states
and the capital reduced by 12.8%. The states/district with the highest
baseline levels generally had larger percent reductions in air pollution
(Table 2, Supplementary Fig. 1, Supplementary Table 2).

3.2. Changes in health estimates

We estimated that PM2.5 reduction during the mitigation period
lowered PM2.5-related total and cause-specific deaths (Table 3). We es-
timated a total of 483 (95%CI: 307, 665) avoided PM2.5-related deaths in
the urban areas of California, where the 95% confidence intervals are
based on those from the concentration-response function in the epide-
miological research. Avoided PM2.5-related deaths for cardiopulmonary,
ischemic heart disease, and lung cancer were 207 (95% CI: 132, 286), 69
(95% CI: 44, 96), and 20 (95% CI: 13, 28) in California, respectively.
Table 2
Average change in PM2.5 concentration during mitigation periods between 2020 and the
comparable dates for 2017–2019, by state and the District, based on difference-in-differ-
ence approach.

State/district⁎ No. of counties
included/total
No. counties

Mitigation vs
baseline period
for 2020

Mitigation vs
baseline period
for 2017–2019

Difference
in
difference

California 41/58 −4.03 0.18 −4.20
Connecticut 5/8 −2.97 −1.72 −1.25
Florida 28/67 0.44 0.94 −0.50
Maryland 11/24 −1.26 −1.01 −0.25
Massachusetts 11/14 −2.06 −1.47 −0.59
New Jersey 11/21 −1.94 −1.24 −0.70
New York 18/62 −2.27 −1.70 −0.57
Pennsylvania 28/67 −1.48 −1.49 0.01
Texas 29/254 2.91 0.78 2.13
Washington
state 30/39 −0.11 −1.28 1.17

Washington,
D.C. 1/1 −0.84 −0.45 −0.39

⁎ States represent the portion of states with monitoring networks. PM2.5 levels are
population weighted.
4. Discussion

These estimates are based on lowered PM2.5 levels, the association
between PM2.5 and mortality from previous epidemiological research,
and county-level baseline adult mortality and population from CDC da-
tabase. Results give insight into air pollution-relatedmortalities avoided
by the COVID-19 mitigation measures, but should be interpreted with
caution due to uncertainty in several areas. Importantly, the original
concentration-response function is based on an association between
outdoor air pollution levels and mortality based on activity patterns
that have changed under current conditions (e.g., changes in activity
patterns (indoor/outdoor) due to COVID-19 mitigation measures) and
is based on long-term exposure. Ambient air quality may improve due
to reduced outdoor activities due to COVID-19 mitigation measures,
however indoor air pollution exposure during the mitigation period
may increase due to increased time spent indoors leading to high expo-
sure to household air pollution, such as from by cooking and use of con-
sumer products (Anthes, 2020). Estimating the change in air pollution
under the pandemic is challenging due to the decision needed about
the baseline level for comparison, as demonstrated by different results
for our two approaches. Results for two approaches are most consistent
for California (PM2.5 reductions of 4.0 to 4.2 μg/m3).

Our study does not incorporate changes in chemical composition
and sources of PM2.5, whichmay have changed due to COVID-19mitiga-
tion policy. The chemical composition of PM2.5 varies with location,
time, and season due to differences in pollutant sources including natu-
ral sources (e.g., wildfires), transportation, manufacturing or power
plants (Adams et al., 2015; Bates et al., 2018).Mixtures of chemical con-
stituents of PM2.5 from various emission sources show strong regional
patterns across the US (Bell et al., 2007; Meng et al., 2018). Health im-
pacts of PM2.5 appear to differ by its chemical composition (Adams
et al., 2015; Bell, 2012). Presumably, changes in baseline activities,
transportation, and major vehicle types (diesel-, leaded-gasoline-, and
unleaded-gasoline-fueled vehicles) following the mitigation policies of
COVID-19 could have altered the chemical composition of the particle
mixture after the declared state of emergency, and these changes
would further have different patterns in each state. Thus, the
exposure-response functions of PM2.5 may have changed in our study
period compared to the time period of the original epidemiological
analysis. Further, studies indicate that short-term and long-term expo-
sures to air pollution have different magnitude of mortality effects as
findings vary among studies (Beverland et al., 2012; Cai et al., 2016;
COMEAP, 2010). We note our limitation that adopting exposure-
response functions from previous long-term exposure study for our
30-day exposure period may obscure more accurate quantification of
mortality reduction due to air pollution level changes following themit-
igationmeasures of COVID-19. Our exposure period is amonth,whereas
most studies examine exposure of a single day or few days or longer-
term exposure of a year or several years, whereas our exposure period
fits neither of these exposure metrics perfectly. Our results on the re-
duced PM2.5-related mortality does not represent potential mortality
reduction of all populations in each state since counties without moni-
toring data were excluded in our analysis. We did not distinguish the
mortality reductions for subgroups of sex or race/ethnicity.

Lower levels of air pollution have been documented during the
COVID-19 pandemic. In Hubei province, where COVID-19 related miti-
gation measures were implemented on January 23, 2020, PM2.5 and ni-
trogen dioxide (NO2) levelswere shown to have decreased in theweeks
that followed (Chen et al., 2020). In the United States, estimates using
satellite imagery indicate as much as a 30% reduction in air pollution
levels compared to the same weeks of the previous year (NASA,
2020). Globally, reduction estimates range from 9% to 29%, depending
on the air pollutant (Venter et al., 2020). Such amagnitude of reduction
in air pollution during the COVID-19 pandemic is comparable to events
such as the 2008 Beijing Olympics, during which air pollution levels
were estimated to be approximately 10% lower (Wang et al., 2009). In



Table 3
Estimated avoided adult (over 30 years) deaths due to air pollution reduction (PM2.5) during the COVID-19measures for urban areas, by state and theDistrict, for thefirst 30 days after the
declared state of emergency.

State/district⁎ Covered population (%) of each state/district Total Cardiopulmonary Ischemic heart disease Lung cancer

California 96.9 483 (307, 665) 207 (132, 286) 69 (44, 96) 20 (13, 28)
Connecticut 87.9 15 (10, 21) 6 (4, 8) 2 (1, 3) 1 (0, 1)
Florida 78.8 35 (22, 48) 15 (9, 20) 5 (3, 7) 2 (1, 3)
Maryland 71.1 4 (2, 5) 2 (1, 2) 1 (0, 1) 0 (0, 0)
Massachusetts 95.9 15 (9, 20) 5 (3, 8) 2 (1, 2) 1 (0, 1)
New Jersey 59.3 13 (8, 18) 5 (3, 7) 2 (1, 2) 1 (0, 1)
New York 80.6 30 (19, 42) 14 (9, 19) 6 (4, 9) 1 (1, 2)
Washington, D.C. 100.0 1 (1, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Note: In this Table, we excluded Pennsylvania, Texas, and Washington state to estimate avoided adult deaths due to air pollution reduction as those states did not show air pollution re-
duction during the first 30 days of mitigation period.
⁎ States represent the portion of states with monitoring networks.
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the months during and immediately after the 2008 Beijing Olympics,
the health status of the population in areas of reduced air pollution
levels appeared to improve (Rich et al., 2012; Rich et al., 2015). Other re-
searchers also hypothesized that reductions in air pollution during the
COVID-19 pandemic could lead to avoided premature deaths due to re-
ductions in air pollution exposure (Venter et al., 2020).

Air pollution and COVID-19 may be linked through pathways be-
yond reduced exposure resulting from mitigation measures. Ambient
air pollution has been suspected to increase the risk of respiratory vi-
ruses (Contini and Costabile, 2020). Findings from recent studies sug-
gest that areas with higher air pollution may have higher mortality
risks associatedwith COVID-19. After adjusting for a range of potentially
confounding factors (e.g. population density, socioeconomic status,
weather), counties in the U.S. with higher long-term levels of PM2.5

had higher death rates attributable to COVID-19 (Wu et al., 2020). A
similar analysis by Liang et al. (2020) found significant association be-
tween county-level long-term NO2 exposure and COVID-19 case-
fatality and mortality rates, but not with PM2.5 or ozone (O3). A recent
European study found that 78% of the COVID-19 deaths across 66 ad-
ministrative regions in Italy, Spain, France and Germany occurred in
the five regionswith the highest NO2 levels (Ogen, 2020). Other studies
also found positive associations between air pollution and the risk of
COVID-19, after adjusting for potential confounders. Long-term average
concentrations of NO2, O3, PM2.5, and particles with aerodynamic diam-
eter ≤ 10 μm (PM10) were positively associated with confirmed cases in
Italian provinces (Fattorini and Regoli, 2020). Findings of a Chinese
study suggest that even shorter-term exposure (e.g., two weeks) to
PM2.5, PM10, O3, and NO2 was associated with a higher number of
daily confirmed cases (Zhu et al., 2020). Although these studies are
rather preliminary, these findings suggest that long-term exposure to
air pollutants increase vulnerability to severe COVID-19 outcomes.
These findings of links between air pollution levels and COVID-19 war-
rant further research, butmay relate to reduced host immune response,
prolonged systemic inflammation, and chronic respiratory conditions
due to air pollution exposures (Conticini et al., 2020; Rivellese and
Prediletto, 2020). Air pollution is linked with several comorbidities
that have been associated with poor diagnosis and higher mortality
risk among COVID-19 patients. As more accurate data on the number
of COVID-19 cases at a finer spatial scale and over a longer period of
time become available, the complex relationship between air pollution,
COVID-19, and health can be better disentangled with improved study
designs.

Our results highlight one of the many complex pathways through
which the economic, social, and cultural transitions of COVID-19 are
impacting health. In the U.S., the public health burden of COVID-19
overwhelmingly outweighs these avoided mortalities from reduced air
pollution. On the other hand, very stringent lockdowns were placed in
China, leading to significant decrease in air pollution levels, and one
study reported that the number of lives that were saved due to the de-
crease in air pollution potentially outnumbered the number of deaths
directly due to COVID-19 in China (Chen et al., 2020). Findings linking
the resulting decrease in air pollution with health benefits during this
pandemic give insight into the extent to which aggressive air pollution
mitigation policies can potentially reduce the public health burden of air
pollution.

In this study, we observed that the mitigation measures to reduce
the COVID-19 transmission led to improved air quality, which is esti-
mated to result in loweredmortality due to the harmful mixture of par-
ticles from combustion such as through vehicle emissions. Clearly, the
stark mitigation measures are not appropriate pathways to improve
air quality, but our findings provide an insight for efforts to reduce am-
bient air pollution and show evidence of potential health benefits
through the policy of air pollution control and restriction.
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