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Periodontitis is the sixth-most prevalent chronic inflammatory disease and gradually devastates tooth-supporting tissue. The
complexity of periodontal tissue and the local inflammatory microenvironment poses great challenges to tissue repair. Recently,
stem cells have been considered a promising strategy to treat tissue damage and inflammation because of their remarkable
properties, including stemness, proliferation, migration, multilineage differentiation, and immunomodulation. Several varieties
of stem cells can potentially be applied to periodontal regeneration, including dental mesenchymal stem cells (DMSCs),
nonodontogenic stem cells, and induced pluripotent stem cells (iPSCs). In particular, these stem cells possess extensive
immunoregulatory capacities. In periodontitis, these cells can exert anti-inflammatory effects and regenerate the periodontium.
Stem cells derived from infected tissue possess typical stem cell characteristics with lower immunogenicity and
immunosuppression. Several studies have demonstrated that these cells can also regenerate the periodontium. Furthermore, the
interaction of stem cells with the surrounding infected microenvironment is critical to periodontal tissue repair. Though the
immunomodulatory capabilities of stem cells are not entirely clarified, they show promise for therapeutic application in
periodontitis. Here, we summarize the potential of stem cells for periodontium regeneration in periodontitis and focus on their
characteristics and immunomodulatory properties as well as challenges and perspectives.

1. Background

Periodontitis is a chronic inflammatory condition that grad-
ually devastates tooth-supporting tissue, which is comprised
of the periodontal ligament (PDL), gingiva, and alveolar
bone. The severe form of periodontitis, which impacts 743
million around the world, is the sixth-most prevalent chronic
disease [1, 2]. Periodontitis is not only the main reason for
tooth loss in adults but is also related to a variety of chronic
diseases (i.e., diabetes, obesity, osteoporosis, arthritis, depres-
sion, cardiovascular disease, and Alzheimer’s disease) [3–5].

Conventional therapies focus on utilizing natural and
synthetic materials to fill defects of periodontal tissue, but
these substitutes do not result in the actual restoration of

the original physical structure and function of the tissue
[6]. Due to the complexity of periodontal tissue, it is still a
challenge to regenerate the periodontium. Tissue engineering
approaches for regenerative dentistry consist of stem cells in
the oral cavity, cytoskeleton, and growth factors. Stem cells
exhibit highly promising therapeutic potential in periodontal
regeneration owing to their self-renewal property and the
plasticity of their potential to differentiate [7]. DMSCs,
nonodontogenic stem cells, and iPSCs can be applied to peri-
odontal tissue regeneration. Given the remarkable properties
and versatility of stem cells, they are considered to be an effi-
cient approach to regenerate periodontal tissue [8–10]. In
addition, stem cells play a crucial role in immunosuppressive
and anti-inflammatory functions [11]. In periodontitis, stem
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cells can be delivered to a site of infection and function as
critical players to control inflammation and the immune
response, achieving a regenerative process [12].

Here, we briefly summarize the potential of stem cells for
periodontium regeneration, mainly focusing on their charac-
teristics and immunomodulatory properties as well as the
challenges and perspectives for their application.

2. Pathological Mechanism of Periodontitis

Uncovering the mechanisms of inflammatory responses in
periodontitis will facilitate the application of stem cells to
treat this disease [13]. Periodontal tissue homeostasis is
dependent on the balance between host immune defenses
and microbial attacks [14]. Once the dysbiotic microbial
community subverts a susceptible host, an inflammatory
response is generated [15]. This process is mediated by the
immune system of the host, which triggers the breakdown
of tooth-supporting structures, resulting in the initiation of
periodontitis (Figure 1).

2.1. Microbial Dysbiosis: The Causative Agent of Periodontitis.
The dysbiotic microbial community consists of anaerobic
bacterial genera, including Proteobacteria, Firmicutes, Spiro-
chaetes, Synergistetes, and Bacteroidetes [16]. The subgingival
microenvironment affords opportunities for the microbial
community due to the enrichment of inflammatory media-
tors. The dysbiotic microbial community subverts host
immune responses by enhancing their nutrient acquisition
and evasion strategies in the inflammatory milieu. The
dysbiotic oral microbiota display synergistic interactions that
can cause reciprocal proteomic and transcriptomic responses
to reinforce nutrient acquisition [17, 18]. The dysbiotic oral
microbiota procure nutrients from destructive inflammatory
tissue, including heme-containing composites and degraded
collagen peptides [19]. These periodontal bacteria can
improve their fitness by regulating the communication with
the host immune response. For example, these bacteria
escape neutrophil-mediated assault and protect themselves
from complement. As a result, periodontal tissue breakdown
is increased by neutrophil-mediated responses due to the
inability of the neutrophil to control the dysbiotic microbial
attack [20].

2.2. Host Susceptibility to Periodontitis. Host susceptibility to
periodontitis not only governs the transition from microbial
synergy to dysbiosis but also determines the development of
inflammation and the progression of irreversible tissue
destruction [21, 22]. The progression and severity of
periodontitis rely on host-related factors, including immuno-
regulatory dysregulation, immunodeficiencies, systemic
diseases related to periodontitis (such as diabetes, cardiovas-
cular disease, obesity, osteoporosis, arthritis, depression, and
Alzheimer’s disease), risk factors affecting the host’s immune
system (such as smoking, stress, ageing, and microbial
factors), and regenerative responses [23, 24]. Defects or dys-
regulation of the host immune response leads to an inability
to suppress dysbiotic microbial communities and the resul-
tant pathogenesis. The susceptible host immune response is

subverted by dysbiotic microbiota, leading to the formation
of a self-perpetuating pathogenic cycle [15].

2.3. Immune Response in Periodontitis. Once periodontitis is
triggered by dysbiotic microbiota, the immune response in
periodontitis changes from acute inflammation into the
chronic condition and leads to the breakdown of the peri-
odontium [25] (Figure 1).

Dysbiotic microbiota can reinforce their own tolerance to
host immune responses by interacting with neutrophils and
complement [14]. Neutrophils congregate in the gingival
sulcus, while T cells, B cells, and monocytes are recruited.
Neutrophils release elastase to degrade membrane proteins
in some bacteria, which causes the breakdown of elastin
and type IV collagen in the PDL and therefore disintegrates
its attachment to the cementum and alveolar bone, leading
to the formation of a periodontal pocket [26]. Neutrophils
also secrete cytotoxic substances and degradative enzymes
(i.e., reactive oxygen species and matrix metalloproteinases)
that result in the inflammatory destruction of tissue [27]. In
addition, neutrophils release the receptor activator of nuclear
factor kappa-B ligand (RANKL), which is necessary for
osteoclastogenesis and periodontal bone resorption [28].
Another major source of RANKL is via secretion from B cells
and T cells in inflammatory lesions [29]. Specifically, neutro-
phils mediate the chemotactic recruitment of interleukin-
(IL-) 17-mediated T helper 17 (Th17) cells through the
expression of chemokine ligand (CCL) 2 and CCL20. Mean-
while, chemokine receptor (CCR) 2 and CCR6 are secreted
by Th17 cells [30, 31]. Th17 cells are a subset of T cells that
promote osteoclastogenesis and act as effective helpers of B
cells [32]. The progression of periodontitis is characterized
by inflammatory infiltration with large numbers of B cells
and plasma cells accompanied by the increasing expression
of immune complexes and complement fragments [33].
Specifically, B cells induce the conducive destruction of peri-
odontal tissue which is due to matrix metalloproteinases and
inflammatory cytokines secreted by B cells [34].

Macrophages remodel connective tissue by balancing
matrix metalloproteinases and their tissue inhibitors.
Macrophages also regulate bone homeostasis by mediating
osteoblasts and osteoclasts. Moreover, this capacity of
polymorphonuclear leukocytes and monocytes is achieved
by the secretion of cytokines, including tumor necrosis factor
α (TNF-α), adhesion molecules, IL-1β, and IL-6. These
factors induce these cells to adhere to the endothelium and
to increase the permeability of gingival capillaries and alveo-
lar bone resorption [13, 35].

3. Characteristics, Immunological Properties,
and Periodontal Regeneration Potential of
Stem Cells

In this section, we review the characteristics as well as the
immunological properties of stem cells, including DMSCs,
nonodontogenic stem cells, and iPSCs. Specifically, we pres-
ent stem cells as having potential efficacy for regenerating
compromised tissues.
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3.1. DMSCs. DMSCs are composed of periodontal ligament
stem cells (PDLSCs), dental follicle stem cells (DFSCs),
dental pulp-derived stem cells (DPSCs), stem cells from api-
cal papilla (SCAPs), stem cells from exfoliated deciduous
teeth (SHEDs), gingival mesenchymal stem cells (GMSCs),
and dental socket-derived stem cells (DSSCs) [36, 37]
(Figure 2). DMSCs are multipotent stem cells with a self-
renewal ability as well as multiple lineage differentiation
potentials [38]. More importantly, DMSCs mediate the
activity of various immune cells. The immunomodulatory
potential of DMSCs mainly relies on inflammatory factors
secreted by immune cells.

3.1.1. PDLSCs. The PDL is a connective tissue that connects
the tooth root to the surrounding alveolar bone. The PDL
originates from the dental follicle and plays a critical role in
sustaining tooth homeostasis and providing nutrition.
PDLSCs were first derived and identified from adult third
molars [39]. PDLSCs have the potential to generate PDLs,
alveolar bone, cementum, blood vessels, and peripheral
nerves [40]. In addition, these cells also have a self-renewal
capacity and high proliferative potential [41]. PDLSCs
expressed various types of MSC-related cluster of differentia-
tion (CD) markers, including CD73, CD90, and CD105, and
lack expression of hematopoietic markers, such as CD14,
CD19, CD34, CD40, CD45, CD80, and CD86 [42–44].
Human PDLSCs also express antigens such as TRA-1-60,
TRA-1-81, sex-determining region Y-box (Sox) 2, alkaline
phosphatase (ALP), stage-specific embryonic antigen-
(SSEA-) 1, SSEA-3, SSEA-4, and reduced expression 1 [6, 45].

Recently, PDLSCs were deemed to be a promising poten-
tial cell source for the repair of periodontal defects following
periodontitis on account of their immunomodulatory
properties (Figure 3). Activated human peripheral blood
mononuclear cells (PBMCs) generate interferon- (IFN-) γ,

which induces PDLSCs to secrete some soluble factors (i.e.,
transforming growth factor- (TGF-) β, indoleamine 2,3-
dioxygenase-1 (IDO-1), and hepatocyte growth factor
(HGF)) that, in turn, partially decrease the proliferation of
PBMCs [46]. Upregulated proliferation and downregulated
apoptosis of neutrophils constitute another innate immune
response mediated by PDLSCs [47]. PDLSCs also greatly
inhibit T cell proliferation by reducing the secretion of major
histocompatibility complex glycoprotein1b (GP1b) and
prostaglandin E2 (PGE2) from dendritic cells (DCs) [48].
Additionally, PDLSCs improve the activity and proliferation
of anti-inflammatory Treg cells and suppress proinflamma-
tory Th1/Th2/Th17 cells [49]. In addition to these cells, the
mechanism of immunosuppression is mediated by PDLSCs
through the inhibition of B cell proliferation, migration,
and differentiation. These properties of PDLSCs are achieved
via stimulating the expression of programmed cell death pro-
tein 1 (PD-1) and its ligand (PD-L1) [50]. PDLSCs enhance
the polarization of the anti-inflammatory phenotype (M2
phenotype) by stimulating Arginase- (Arg-) 1, CD163, and
IL-10 and inhibiting TNF-α [47].

Currently, both the animal experiments and clinical trials
demonstrate that PDLSCs can regenerate periodontal defects.
Studies have reported that delivery of PDLSCs to periodontal
defects in rat models improves periodontal regeneration by
generating PDLs, cementum-like tissue, and new bone with-
out inflammation [51]. More importantly, PDLSCs achieve
periodontal regeneration without adverse effects. In a
miniature swine periodontitis model, transplantation of an
allogeneic PDLSC sheet achieved the regeneration of the
periodontium and cured periodontitis through immunosup-
pressive effects and low immunogenicity [52]. A clinical
study exhibited that autologous PDLSC transplantation
possessed the advantages of stability and effectiveness dur-
ing the long-term follow-up of patients with periodontitis,
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Figure 1: The pathological mechanism of periodontitis. Periodontal tissue homeostasis is dependent on the balance between the host
immune defenses and microbial attacks. Once dysbiotic microbial communities subvert a susceptible host, the inflammatory dialog would
be generated. Thus, dysbiotic microbiota act as a pathobiont which overactivate the inflammatory response, then trigger periodontal tissue
breakdown associated with innate and adaptive immunoregulation, potentially resulting in resorption of supporting alveolar bone, even
tooth loss and systemic complications.
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suggesting that PDLSCs may be an innovative approach to
treat periodontitis [46].

3.1.2. DFSCs. DFSCs are responsible for periodontium forma-
tion bymigrating around the tooth germ anddifferentiating into

PDLs, osteoblasts, and cementoblasts [53]. Surface markers of
DFSCs contain CD13, CD44, CD73, CD105, CD56, CD271,
human leukocyte antigen- (HLA-) ABC, STRO-1, and
NOTCH-1. Among them, STRO-1 and CD44 are common
surface markers that are used to identify DFSCs [54].

SHEDs iDPSCs

DFSCs
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SCAPs PDLSCs iPDLSCs

Figure 2: The different populations of dental mesenchymal stem cells and their distribution. PDLSCs: periodontal ligament stem cells;
DFSCs: dental follicle stem cells; DPSCs: dental pulp-derived stem cells; SCAPs: stem cells from apical papilla; SHEDs: stem cells from
exfoliated deciduous teeth; GMSCs: gingival mesenchymal stem cells; DSSCs: dental socket-derived stem cells; iPDLSCs: PDLSCs derived
from infected tissue; iDPSCs: DPSCs derived from infected tissue.
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Figure 3: The immunological properties of PDLSCs linked with innate and adaptive immunity. PDLSCs possess immunoregulatory and anti-
inflammatory capacities via both innate and adaptive immune responses.
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The immunosuppressive properties of DFSCs are depen-
dent on TLRs. In periodontitis, P. gingivalis and F. nucleatums
activate the expression of TLR2 and TLR4 on the membrane
of DFSCs and then trigger DFSCs to inhibit the proliferation
of peripheral blood mononuclear cells (PBMCs) [55].
Moreover, DFSCs can upregulate the secretion of the anti-
inflammatory cytokine IL-10 and simultaneously downregu-
late the levels of the proinflammatory cytokines IL-4, IL-8,
and IFN-γ, thereby damaging bacterial adherence and inter-
nalization [56]. DFSCs exert anti-inflammatory effects and
suppress bone degradation bymediating the phagocytic activ-
ity, chemotaxis, andNET formation of neutrophils and induc-
ing macrophage polarization into the M2 phenotype [57].

Several animal experiments have proven that DFSCs
possess the capacity to repair periodontal defects. In a canine
model of periodontal defects, the potential of DFSCs to repair
periodontal defects was proven via implantation of autolo-
gous DFSCs into defects, inducing the generation of new
PDLs, alveolar bone, and cementum [36]. In another study,
ectopic transplantation of DFSCs from human-impacted
third molars into nude mice generated the cementum-PDL
complex [58].

3.1.3. DPSCs. DPSCs were the first characterized mesenchy-
mal stem cells derived from the dental pulp in 2002. These
cells possess the potential to differentiation into osteogenic,
adipogenic, chondrogenic, and neural cells and show high
expression of surface markers of MSCs [59].

DPSCs possess the ability to mediate both innate and
adaptive immune responses by interacting with T cells, B
cells, macrophages, and natural killer (NK) cells [60]. DPSCs
exert anti-inflammatory and immunosuppressive effects by
suppressing the proliferation of activated T cells as well as
triggering apoptotic programmed cell death [61]. DPSCs also
inhibit immunoglobulin production of B cells and IL-17 by
increasing the secretion of IFN-γ [62]. The inhibitory effect
of DPSCs on the proliferation of PBMCs is achieved by gen-
erating TGF and stimulating the mitogen-activated protein
kinase (MAPK) signaling pathway [63]. DPSCs exert an
anti-inflammatory function in two ways. On the one hand,
DPSCs inhibit macrophages from secreting TNF-α by an
IDO-dependent pathway. On the other hand, DPSCs initiate
macrophage M2 polarization [64]. Induction of DPSC differ-
entiation enhances the inhibitory effects of DPSCs on NK
cell-mediated lysis and cytotoxicity.

In fact, Park and colleagues showed that DPSCs hardly
repaired periodontal defects on account of their limited
capacity to form a cementum-like structure, while PDLSCs
regenerated the periodontium with new bone, cementum,
and Sharpey’s fibers [36]. As the function of DPSCs on pulp
repair, there is little research about immunomodulatory
properties of DPSCs in PDL tissue. Consequently, the present
evidence indicates that DPSCs may not be an appropriate
source for periodontal tissue engineering.

3.1.4. SCAPs. SCAPs were first isolated from human apical
papilla tissue of immature permanent teeth in 2006 [65].
Similar to other MSCs, SCAPs show a self-renewal capacity,
high proliferative potential, and low immunogenicity as well

as multilineage differentiation. STRO-1, CD24, and CD146
are widely expressed in SCAPs and are considered to be
surface markers of SCAPs [66]. SCAPs can inhibit T cell
proliferation by a mechanism independent of apoptosis
[67]. It has also been reported that transplanting SCAPs
into a periodontitis site significantly ameliorates the peri-
odontitis parameters of periodontal tissue 12 weeks after
transplantation [68]. All of these results suggest SCAPs
may be a promising cell source for repairing the periodon-
tium in regenerative dentistry.

3.1.5. SHEDs. SHEDs were first characterized and isolated
from the human dental pulp of exfoliated deciduous teeth
by Miura. SHEDs show the ability to regenerate bone and
dentin-like tissue, with a high osteoinductive ability and pro-
liferation rate [62].

SHEDs show immunomodulatory characteristics via
mediating T cell activation, maturation, and differentiation.
Moreover, downregulation of Th17 cells and upregulation
of regulatory T cells (Tregs) are additional immunosuppres-
sive effects of SHEDs [69]. Furthermore, SHEDs can sup-
press DCs from secreting the inflammatory cytokines IL-2,
IFN-γ, and TNF-α and can facilitate DCs to generate the
anti-inflammatory factor IL-10 [70]. SHEDs induce polariza-
tion of bone marrow-derived macrophages towards M2
polarization, which contributes to the regeneration of the
periodontium and anti-inflammatory effects in periodontal
tissues [71].

In an experimental periodontitis model, delivery of
SHEDs into periodontal tissues led to a reduction of cytokine
expression, osteoclast differentiation, and gum bleeding as
well as promoted the formation of new attachments of PDL
and alveolar bone. These results suggest that SHEDs contrib-
ute to the improvement of periodontal regeneration and the
decrease of periodontal tissue inflammation [72].

3.1.6. GMSCs. The epithelium and connective tissue make up
the human gingiva, which is considered to be an essential
constituent of the periodontium that exerts remarkable
effects on periodontal regeneration and immunity and is
notable for its wound healing properties without scaring.
GMSCs were derived and identified from the lamina propria
of gingival tissue in 2009 [73]. Based on their remarkable
self-renewal, multilineage differentiation, and regenerative
abilities, GMSCs are expected to be a suitable cell source in
periodontal tissue engineering.

Recently, the easy accessibility and prominent immuno-
modulatory properties of GMSCs have led to more attention
on the use of cellular therapy [74]. GMSC-induced immuno-
modulation represents a promising perspective in therapy of
periodontal tissue inflammation via interaction with inflam-
matory cells and cytokines [74]. GMSCs communicate with
the inflammatory environment through the expression of
TLRs 1, 2, 3, 4, 5, 6, 7, and 10, which affect the immunomod-
ulatory properties of GMSCs [75]. Human GMSCs show the
capacity to facilitate the polarization of macrophages to the
M2 phenotype; meanwhile, they inhibit the activation of M1
macrophages by producing PGE2, IL-6, and IL-10 [76].
Furthermore, GMSCs significantly reduce the activation and

5Stem Cells International



maturation of DCs by a PGE2-related mechanism that sup-
presses the antigen presentation ability of DCs and weakens
the inflammatory response [77]. Human GMSCs also reduce
the proliferation and differentiation of Th1/Th2/Th17 cells.
GMSCs have an inhibitory function onPHA-dependent T cell
proliferation and activation by upregulating immunosuppres-
sive factors, such as IDO and IL-10 [78].

A study reported that GMSCs mixed with an IL-1RA-
hydrogel synthetic extracellular matrix, when delivered into
a periodontitis model, led to an obvious improvement of
regenerating PDLs, cementum, and alveolar bone [74]. In a
dog model, the transplantation of GFP-labelled GMSCs into
furcation defects obviously improved the regeneration of
damaged periodontal tissues [79].

3.1.7. DSSCs. Recent studies have shown that dental sockets
can be a potential source for periodontal regeneration.
DSSCs have the potential to form colonies and can differen-
tiate into osteoblasts, adipocytes, and chondrocytes [80].
Compared with BMSCs, colony formation, proliferation,
and motility of DSSCs are stronger. DSSCs can positively
express surface markers of stem cells, such as CD44, CD90,
and CD271, and lack expression of hematopoietic markers,
such as CD34 and CD45 [81].

Nakajima et al. reported that the transplantation of autol-
ogous DSSCs mixed with β-TCP/PGA into one-wall
periodontal defects regenerated a new periodontium with
PDL-like and cementum-like tissues and alveolar bone [80].
There are few studies on DSSCs, so more preclinical investi-
gations are required to clarify the roles of DSSCs in tissue
regeneration and immune regulation.

3.2. Nonodontogenic Stem Cells. Nonodontogenic stem cells
are composed of bone marrow stromal stem cells (BMSCs)
and adipose tissue-derived stem cells (ASCs).

3.2.1. BMSCs. BMSCs can differentiate into osteoblasts, chon-
drocytes, adipocytes, and muscle cells [82]. BMSCs are sorted
by surface markers of octamer-binding transcription factor-
(Oct-) 4, CD73, CD90, CD105, CD146, STRO-1, and Nanog
and do not express HLA-DR, CD14, CD34, or CD45. BMSCs
have the potential to regenerate periodontal defects by gener-
ating alveolar bone, Sharpey’s fibers, and cementum [83].
BMSCs migrate into PDLs, alveolar bone, blood vessels, and
cementum and differentiate into osteoblasts and fibroblasts
after local or systematic transplantation [84].

Aside from regenerating destroyed tissues in periodonti-
tis, BMSCs also play a crucial role in anti-inflammation and
immunosuppressive function [85]. BMSCs mediate the sur-
vival and proliferation of T lymphocytes for the regulation
of immunomodulation [86]. BMSCs inhibit inflammatory
cytokines, including IL-1 and TNF-α, which indicates that
the use of BMSCs for the treatment of chronic periodontitis
might be feasible [85]. In a clinical study, the combined use
of autologous BMSCs and platelet-rich plasma to treat peri-
odontal defects shows obvious tissue regeneration effects
[87]. Although a significant improvement in periodontal
parameters has been observed, more clinical research is
needed to reveal the function of BMSCs and their ability to

regulate inflammation and immunity to better target them
for the treatment of periodontitis.

3.2.2. ASCs. The characteristics of ASCs are similar to those of
BMSCs, such as expression of the markers STRO-1, CD29,
CD44, CD71, CD90, and CD105 and the lack of expression
of hematopoietic cell markers CD31, CD34, and CD45 [88].
ASCs can differentiate into osteoblast, adipocytes, chondro-
cytes, myogenic, and neurogenic cells. Compared to BMSCs,
ASCs are superior because of their easier harvesting process
and because of their fewer notable donor site complications
[89]. More importantly, ASCs mixed with cytokines TNF-α,
IFN-γ, and IL-6 promote the expression of immune suppres-
sive factors, including GBP4 and IL-1RA [90].

Preclinical studies have demonstrated that ASCs are
potential candidate cells for the regeneration of periodontal
destruction. ASCs can secrete growth factors, such as
insulin-like growth factor binding protein-6, which facilitates
the differentiation of ASCs into the periodontium [91]. Allo-
geneic ASCs were transplanted in a microminipig model of
periodontal tissue defects and led to the generation of new
PDL-like fibers, alveolar bone, and the cementum in defect
sites [90].

3.3. Induced Pluripotent Stem Cells (iPSCs). The formation of
iPSCs can be achieved by reprogramming somatic cells with
the transcriptional markers Oct4, Sox2, Krüppel-like factor
4, and Myc [92]. iPSCs express special pluripotent markers,
including TRA160, TRA180, MSC-heat shock protein 90,
CD73, CD90, CD105, CD146, and CD106 [93]. iPSCs are
pluripotent stem cells with the potential to generate iPSC-
derived MSCs (iPSC-MSCs) and to differentiate into multili-
neage cells [94]. As a promising candidate, iPSCs not only
have the potential to regenerate bone, cartilage, brain, heart,
and liver tissue but also can be applied for inflammatory
tissue regeneration in periodontitis [95]. Stem cells from
dental tissue, including PDLs, buccal mucosa fibroblasts,
gingival, apical papilla, and the dental pulp, have advantages
for the generation of iPSCs [96].

Moreover, iPSC-MSCs can inhibit Th1/Th2/Th17 cells
and upregulate the expression of Treg cells, suppressing the
production of leukocytes and alveolar bone resorption [97,
98]. iPSCs are a potential cell source for the clinical preven-
tion and treatment of periodontitis. Duan et al. showed that
transplantation of iPSCs to a scaffold with enamel-derived
factors significantly increased PDL, alveolar bone, and
cementum formation in a mouse periodontal defect model
compared with iPSC-empty groups [99]. Another study
reported that iPSCs could inhibit inflammation and decrease
alveolar bone resorption in a rat model of periodontitis. In
addition, Hynes et al. stated that iPSC-MSCs could repair
periodontal tissue defects and control inflammation while
lessening alveolar bone destruction [100].

4. Interaction of Stem Cells with the
Inflammatory Milieu of the Periodontium

What happens to the stem cells in periodontitis and how they
interact with periodontal inflammation are crucial for the
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application of stem cells into periodontal regeneration [101].
For instance, the interaction of stem cells and immune cells
in the inflammatory milieu may be completely different from
that in a healthy state with altered regenerative processes and
immunomodulatory properties [102]. Thus, it is essential to
understand the properties of stem cells derived from inflam-
matory tissue as well as the inflammatory responses and
immunomodulation properties of stem cells in an inflamed
microenvironment.

4.1. Stem Cells from Inflammatory Tissue. Inflamed stem cells
exhibit characteristics including maintenance of stemness,
formation of colonies, a higher proliferation rate, multiline-
age differentiation potential, and lower immunogenicity
and immunosuppression [102].

In this section, we introduce the properties and immuno-
regulation of DMSCs in inflammatory periodontal sites.
Among stem cells, DMSCs derived from infected tissue
possess the significant advantages of being easily accessible
and having fewer ethical complications [103]. Compared
with other DMSCs, PDLSCs are considered to be an ideal cell
source for periodontal regeneration [104], but there are still
problems with obtaining enough PDLSCs from healthy
donor sources. PDLSCs derived from inflamed periodontal
sites are considered inflammatory periodontal ligament stem
cells (iPDLSCs). Compared to PDLSCs, iPDLSCs have higher
proliferative and migratory capacities. However, iPDLSCs
exhibit lower osteogenic differentiation because of alterations
of the osteogenesis-related signaling pathway, such as the
Wnt/β-catenin, noncanonical Wnt/Ca2+, p38-MAPK, and
NF-κB signaling pathways [105, 106]. More importantly,
iPDLSCs also have reduced immunosuppressive properties
and less efficiently suppress T cell proliferation, PBMC
proliferation, and Th17 differentiation in contrast to cells
from healthy tissue [107]. High levels of IFN-γ, TNF-α, IL-
2, and IDO and low expression of IL-10 are also characteristic
of iPDLSCs [108]. A study reporting on the transplantation
of collagen sponges combined with iPDLSCs isolated from
inflamed human periodontal tissue into immunodeficient
nude rats led to the formation of new PDL-like tissue, bone,
and collagen fibers. Although complete regeneration was
not achieved, the repair effect of iPDLSCs on periodontal
defects was similar to that of PDLSCs from healthy periodon-
tal tissues [51]. Compared with normal DPSCs, DPSCs
derived from infected tissue (iDPSCs) show similar surface
marker expression, proliferation properties, and multilineage
differentiation potential [109, 110]. DPSCs derived from
infected human tissue were layered onto β-tricalcium
phosphate and grafted into periodontal defects in the root
furcation. The outcome revealed new formation of alveolar
bone [111]. These results have important implications for
achieving periodontium regeneration with DMSCs obtained
from inflammatory tissues in the future [112]. It may be a
promising strategy to cultivate or even genetically modify
DMSCs obtained from infected tissue, avoiding the destruc-
tion of the healthy periodontium while implanting DMSCs
into inflamed periodontium tissue to achieve regeneration
[113, 114].

However, there are still various issues that should be
taken into account before translational application. For

example, the source of inflamed stem cells, the inflammatory
status, and the experimental design are confounding
variables that will affect the quality and quantity of stem cells
[115]. Furthermore, the inclusion criteria as well as the
procedure for the isolation and transplantation of the
inflamed stem cells should be established and standardized
to further explore and verify the long-term effects of inflamed
stem cells via in vivo and in vitro experiments [57, 116, 117].

4.2. Effect of the Infected Microenvironment on Stem Cells.
The interaction of stem cells with the surrounding infected
microenvironment could affect the mechanism of periodontal
tissue repair and the regeneration outcome [102]. Transplanta-
tion of stem cells into periodontal defects is usually performed
in an inflamed periodontal milieu, and the immunomodulatory
capacity of stem cells is determined by diverse inflammatory
cytokines. Therefore, understanding the effect of inflamma-
tory cytokines on stem cells is critical to optimize and imple-
ment stem cell-mediated clinical approaches [118, 119].

Various inflammatory cytokines can specifically mediate
the immunomodulatory activity of stem cells [120]. Among
various inflammatory mediators, TNF-α, IL-1β, IL-6, and
IFN-γ are the most effective proinflammatory cytokines
during periodontitis [121]. The proinflammatory cytokines
TNF-α, IL-1α, IL-1β, and IFN-γ exert critical effects by
mitigating the immunosuppressive capacities of stem cells
[122]. Low levels of IFN-γ improve antigen-presenting func-
tions of stem cells and thus reduce their lysis. In contrast,
high levels would reverse their antigen-presenting functions
and show the opposite effect [123, 124].

Several studies have demonstrated the effects of an
infectedmicroenvironment onDMSCs. For example,P. gingi-
valis-LPS significantly enhanced cellular proliferation of
DMSCs [125]. In addition, coculturing PDLSCs with IL-
1β/TNF-α could enhance the proliferation rate of PDLSCs
[126]. The surface markers of DMSCs, such as PDLSCs and
GMSCs, do not change within the IL-1β/TNF-α-inflamed
microenvironment. However, the effect may be compromised
or may even lead to stem cell apoptosis when the IL-1β/TNF-
α stimulus surpasses a certain level. The differentiation poten-
tial of DMSCs could be mediated by proinflammatory
cytokines and microbial pathogens [127]. Specifically, P. gin-
givalis-LPS and E.coli-LPS inhibit PDLSCs’ osteoblastic
differentiation [125, 128]. IL-1β/TNF-α are responsible for
reducing the osteogenesis of PDLSCsby stimulating the canon-
ical Wnt/β-catenin pathway and inhibiting the noncanonical
Wnt/Ca2+ pathway in the local periodontal milieu [106].

Other stem cells also exert important effects on the
infected microenvironment. An increasing number of studies
have shown that IFN-γ is required for BMSCs to exert their
immunosuppressive effect on T lymphocyte proliferation.
Additionally, both LPS and IFN-γ can induce the secretion
of functional IDO and IL-10 by BMSCs [129]. LPS-induced
proliferation of PBMCs could be inhibited by BMSCs [73].
Transplantation of BMSCs into LPS-stimulated models
could inhibit the production of inflammatory cytokines and
ameliorate inflammatory tissue destruction [130]. The
interaction of ASCs with the inflammatory microenviron-
ment is necessary to achieve tissue regeneration. In response
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to inflammatory cytokines, ASCs facilitate the anti-
inflammatory and immunosuppressive potential through
the induction of polarization of macrophages to the M2 phe-
notype [131]. When stimulated with TNF-α and IFN-γ,
ASCs significantly increased their immunomodulatory
capacities [132].

5. Conclusion, Future Clinical Application,
and Challenges

To date, application of extracellular matrix scaffolds, bone
grafts, and growth factors achieve only limited regeneration
of intrabony defects [133]. In the past few years, developing
data have indicated that stem cells have great potential in
periodontitis due to the positive inflammatory-regenerative
effects of these cells in the inflamed microenvironment [36,
134]. These stem cells have remarkable properties and versa-
tility due to their stemness, proliferation, migration, and
multilineage differentiation abilities and their immunosup-
pressive and anti-inflammatory functions in a local inflamed
microenvironment [118, 135, 136].

The immunoregulatory effects of stem cells make them a
promising therapy for periodontitis. Although several reports
have indicated that the stem cells mentioned above can be
delivered into infectious sites and function as critical players
in the control of inflammation and the regulation of immune

responses to achieve regeneration in models of periodontitis,
the immunomodulatory capabilities of these cells have not
entirely been elucidated [137, 138]. Moreover, evidence of
stem cell-mediated immunomodulation is limited both
in vitro and in vivo. It is very complicated to recreate
extremely polluted surroundings in animal models because
human periodontal lesions are filled with granulation tissue,
calculus, pathogenic biofilms, and plaque [139]. Further-
more, there are various differences in the mechanisms of
stem cell-mediated immunomodulation between humans
and animals [140]. The quality and quantity of stem cells
can be modulated by numerous factors, including the sources
of stem cells and the experimental design [141]. The inclu-
sion of subjects and procedures for the isolation and trans-
plantation of stem cells can influence the outcome of
regeneration and immunomodulation.

Therefore, inclusion criteria as well as a standard proce-
dure for the isolation and transplantation of the stem cells
should be established to further explore the long-term effects
of stem cells. Standard animal models of periodontitis should
be constructed to mimic human periodontal lesions. Selec-
tion of suitable biomaterial scaffolds and the appropriate
combination with growth factors for stem cells may improve
their periodontal regeneration and immunosuppression
functions. More importantly, preclinical studies and clinical
trials are critical to understand the mechanism of stem cell-

Table 1: The characteristic of different stem cells could be potentially applied to periodontal regeneration.

Stem
cell

Multipotent differentiation Immunomodulatory properties Clinical trails

DMSCs

PDLSCs
Osteoblast, adipocytes, chondrocytes, cementoblast,

and neurogenic cells
Inhibition of PBMCs, T cells, B cells, promotion of Treg
cells, neutrophils, and M2 phenotype macrophage

NCT01357785
NCT01082822

DFSCs
Osteoblast, adipocytes, chondrocytes, cementoblast,
neurogenic cells, cardiomyocyte, and dentin-like cell

Inhibition of PBMCs, promotion of Treg cells,
neutrophils, and M2 phenotype macrophage

DPSCs
Osteoblast, adipocytes, odontoblast, neurogenic cells,

cardiomyocyte, and hepatocyte

Inhibition of PBMCs, T cells, B cells, and NK cells;
promotion of Treg cells, neutrophils, and M2

phenotype macrophage

NCT03386877
NCT02523651

SCAPs
Osteoblast, adipocytes, odontoblast,
neurogenic cells, and hepatocyte

Low immunogenicity; inhibition of T cells

SHEDs
Osteoblast, adipocytes, chondrocytes,

and neurogenic cells
Inhibition of Th17 cells; promotion of Treg cells

and M2 phenotype macrophage

GMSCs
Osteoblast, adipocytes, chondrocytes,

and neurogenic cells

Inhibition of M1 macrophages, Th1/Th2/Th17 cells,
and DCs; promotion of Treg cells and M2 phenotype

macrophage
NCT03137979

DSSCs Osteoblast, adipocytes, and chondrocytes No report

Nonodontogenic stem cells

BMSCs Osteoblast, adipocytes, and chondrocytes
Inhibition of T lymphocyte survival and proliferation;

secretion of IL-1 and TNF-α
NCT02449005

ASCs
Osteoblast, adipocytes, chondrocytes,
myogenic cells, and neurogenic cells

Promotion of immune suppressive factors GBP4 and
IL-1RA

NCT04270006

iPSCs

iPSCs
Osteoblast, adipocytes, chondrocytes, myogenic cells,
neurogenic cells, cementoblast, cardiomyocyte, and

dentin-like cell

Inhibition of Th1/Th2/Th17 cells; promotion
of Treg cells

The clinical trial data have been extracted from https://clinicaltrials.gov/.
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mediated immunomodulation in the inflammatory milieu to
pave the way for applying stem cells to periodontal tissue
engineering (Table 1).

Abbreviations

DMSCs: Dental mesenchymal stem cells
iPSCs: Induced pluripotent stem cells
iDMSCs: DMSCs derived from infected tissue
PDL: Periodontal ligament
TLRs: Toll-like receptors
RANKL: Receptor activator of nuclear factor kappa-B

ligand
IL: Interleukin
Th17: T helper 17
CCL: Chemokine ligand
CCR: Chemokine receptor
TNF-α: Tumor necrosis factor α
PDLSCs: Periodontal ligament stem cells
DFSCs: Dental follicle stem cells
DPSCs: Dental pulp-derived stem cells
SCAPs: Stem cells from apical papilla
SHED: Stem cells from exfoliated deciduous teeth
GMSCs: Gingival mesenchymal stem cells
DSSCs: Dental socket-derived stem cells
Sox: Sex-determining region Y-box
ALP: Alkaline phosphatase
SSEA: Stage-specific embryonic antigen
CD: Cluster of differentiation
PGE2: Prostaglandin E2
PBMCs: Peripheral blood mononuclear cells
IFN: Interferon
TGF-β: Transforming growth factor-β
IDO-1: Indoleamine 2,3-dioxygenase-1
HGF: Hepatocyte growth factor
PD-1: Programmed cell death protein 1
PD-L1: Programmed cell death protein ligand 1
Arg: Arginase
HLA: Human leukocyte antigen
NK cells: Natural killer cells
MAPK: Mitogen-activated protein kinase
Tregs: Regulatory T cells
DCs: Dendritic cells
BMSCs: Bone marrow stromal stem cells
ASCs: Adipose tissue-derived stem cells
Oct: Octamer-binding transcription factor
HLA: Human leukocyte antigen
iPDLSCs: Inflammatory periodontal ligament stem cells.
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