Skip to main content
. 2020 Jun 28;109(7):1465–1507. doi: 10.1007/s10994-020-05890-8

Table 5.

Classification accuracy on different relational data sets

Propositionalization Learner Carc. IMDB Mut188 Mut42 Trains MovieLens
MajorityVote 0.55 0.73 0.67 0.69 0.50 0.72
Aleph (Perovšek et al. 2015) J48 0.55 0.73 0.60 0.69 0.55
Aleph (Perovšek et al. 2015) SVM 0.55 0.73 0.60 0.69 0.70
RSD (Perovšek et al. 2015) J48 0.60 0.75 0.68 0.98 0.60
RSD (Perovšek et al. 2015) SVM 0.56 0.73 0.71 0.69 0.80
RelF (Perovšek et al. 2015) J48 0.60 0.70 0.75 0.76 0.65
RelF (Perovšek et al. 2015) SVM 0.56 0.73 0.69 0.76 0.80
Wordification (Perovšek et al. 2015) J48 0.62 0.82 0.67 0.98 0.50
Wordification (Perovšek et al. 2015) SVM 0.61 0.73 0.82 0.79 0.50
Aleph (replicated) J48 0.55 0.80 0.76 0.70
Aleph (replicated) SVM 0.55 0.80 0.79 0.60
RSD (replicated) J48 0.56 0.84 0.88 0.92 0.60
RSD (replicated) SVM 0.60 0.82 0.89 0.84 0.80
Wordification (replicated) J48 0.47 0.85 0.91 0.88 0.90 0.60
Wordification (replicated) SVM 0.39 0.80 0.83 0.33 0.50 0.72
Treeliker J48 0.58 0.77 0.81 0.50
Treeliker SVM 0.60 0.90 0.80 0.70
PropDRM 0.63 0.73 0.91 0.86 0.70 0.72
PropStar 0.66 0.74 0.92 0.90 0.80 0.74

The best score for each dataset is in bold

For the proposed methods, we report average performance over 5 runs. The runs, marked with—were unable to finish in 12 h